A1 Logic (25 points)

\vDash is the (semantic) consequence relation for a first order predicate logic language ℓ adequate to express the formulas of this problem. ${ }^{1}$
a. (9 points)

Let

$$
\begin{gather*}
F_{1}=\forall x R(x, x), \tag{1}\\
F_{2}=\forall x \forall y(R(x, y) \rightarrow R(y, x)), \text { and } \tag{2}\\
F_{3}=\forall x \forall y \forall z((R(x, y) \wedge R(y, z)) \rightarrow R(x, z)) . \tag{3}
\end{gather*}
$$

For each of the following disprove it by exhibiting a suitable structure (different structures for different disproofs).
a(i). (3 points) $\left\{F_{1}, F_{2}\right\} \models F_{3}$.
a(ii). (3 points) $\left\{F_{1}, F_{3}\right\} \models F_{2}$.
a(iii). (3 points) $\left\{F_{2}, F_{3}\right\} \models F_{1}$.
You need not verify your structures work; just make sure they do.
b. (8 points)

Let

$$
\begin{gather*}
G_{1}=\forall x \forall y(R(x, y) \rightarrow \neg R(y, x)), \tag{4}\\
G_{2}=\forall x \forall y \forall z((R(x, y) \wedge R(y, z)) \rightarrow R(x, z)), \tag{5}\\
G_{3}=\forall x \exists y R(x, y), \text { and } \tag{6}\\
G_{4}=\neg \exists x \forall y R(y, x) . \tag{7}
\end{gather*}
$$

Prove the following step-by-step using resolution or another sound and complete technique of your stated choice. ${ }^{2}$

$$
\begin{equation*}
\left\{G_{1}, G_{2}, G_{3}\right\} \models G_{4} \tag{8}
\end{equation*}
$$

c. (8 points)

Prove by resolution (showing all your steps) the following.
For credit you must do this one employing resolution.
$\{\forall x \forall y(H(y) \rightarrow A(x, y)), \forall x \forall y(F(x) \rightarrow A(x, y)), \forall x(\neg H(x) \rightarrow F(x))\} \models \exists x \exists y(A(x, y) \wedge A(y, x))$.

[^0]
A2 Logic (25 points)

First: translate each of the four sentences a through d inclusive below into a suitable first order predicate logic language. Of course you should first specify that language and define an interpretation of its symbols of relevance to your translation.
Your specified language should include among other things symbols of the appropriate types (you must say which types) for expressing 'drinks blood', 'is happy', 'is a child of', 'can bite'. You may, if you wish, make the universe/domain of discourse the set of all bats and thereby avoid having to explicitly provide a symbol for expressing 'is a bat'.
Next: work part e below.
a. (5 points)

Every bat which drinks blood is happy if all its children can bite.
b. (5 points)

Bats which drink blood can bite.
c. (5 points)

Any bat drinks blood if it's the child of at least one blood drinking bat.
d. (5 points)

All blood drinking bats are happy.
e. (5 points)

For this part, e, write the following argument in the notation from first order logic. It is possible to get full credit (5 points) for this part, e, even if you plug in your answers from a through d inclusive and some of them are not quite right. N.B. You need not prove or disprove the argument - just express it correctly.

The argument: Sentence d is a logical consequence of sentences a through c inclusive.

A3 Logic (25 points)
Let \mathcal{I} be an interpretation (or structure) for a predicate logic formula F with corresponding universe of discourse $U_{\mathcal{I}}$. For example: for each variable x in $F, \mathcal{I}(x) \in U_{\mathcal{I}}$; for each n-ary predicate symbol P in $F, \mathcal{I}(P) \subseteq U_{\mathcal{I}}^{n}$; for each n-ary function symbol f in $F, \mathcal{I}(f): U_{\mathcal{I}}^{n} \rightarrow U_{\mathcal{I}} ; \ldots$.
Suppose s, t are terms built from the constituents of F and x is a variable from F and that G is a formula built from the constituents of F.
Then we write

$$
\begin{equation*}
\{s\}[x / t] \tag{9}
\end{equation*}
$$

to mean the result of simultaneously substituting for each occurrence of x in the term s, the term t. We write

$$
\begin{equation*}
\{G\}[x / t] \tag{10}
\end{equation*}
$$

to mean the result of simultaneously substituting for each free occurrence of x in the formula G, the term t.
Suppose $u \in U_{\mathcal{I}}$.
Then we write

$$
\begin{equation*}
\mathcal{I}[x / u] \tag{11}
\end{equation*}
$$

to mean the variant of the interpretation \mathcal{I} which is just like \mathcal{I} except that $\mathcal{I}[x / u]$ interprets x to mean u, i.e., $\mathcal{I}[x / u](x) \stackrel{\text { def }}{=} u$; whereas, $\mathcal{I}(x)$ may or may not $=u$.
a. (6.25 points)

Prove by mathematical induction on the logical complexity of the term s that

$$
\begin{equation*}
\mathcal{I}[x / \mathcal{I}(t)](s)=\mathcal{I}(\{s\}[x / t]) . \tag{12}
\end{equation*}
$$

b. (12.50 points)
N.B. For this part of A3 you may use without proof the result from A3 part a.

Definition t is free for x in $F \stackrel{\text { def }}{\Rightarrow}$ for no variable y in t does x occur free within any subformula F^{\prime} of F, where F^{\prime} is either of the form $(\forall y) H$ or of the form $(\exists y) H$.

Example 1 The term $f(x, y)$ is free for x in the formula $(\exists z) P(x, z)$.
Example 2 The term $f(x, y)$ is not free for x in the formula $(\exists y) P(x, y)$.
Suppose t is free for x in F. Then: prove by mathematical induction on the logical complexity of the formula F that

$$
\begin{equation*}
\mathcal{I}[x / \mathcal{I}(t)](F)=\mathcal{I}(\{F\}[x / t]) . \tag{13}
\end{equation*}
$$

N.B. Be sure that your proof makes it very clear how you are using the hypothesis that t is free for x in F.
c. (6.25 points)

Explicitly present an example t, x, and F for which both

- t is not free for x in F and
- (13) above fails.
N.B. You need not show your t, x, and F work, just make sure they do.

A4 Logic (25 points)

For this problem, A4, we provide considerable information, much of which is to motivate the problem (which is to prove a surprising result). Then, near the end and on the next page, we state what is to be done for this problem and subsequently give a hint making it not so difficult. ($\left.{ }^{(}\right)$

Definition PA (called: the f.o. theory of Peano arithmetic) has binary predicate symbol =, binary function symbols,$+ \cdot$, constant symbols $0,1,2, \ldots$, and the equality axioms together with the infinite, algorithmically decidable set of the following axioms (in infix notation):

$$
\begin{gather*}
\left(\forall v_{1}\right) v_{1}+0=v_{1} ; \tag{14}\\
\left(\forall v_{1}\right)\left(\forall v_{2}\right) v_{1}+\left(v_{2}+1\right)=\left(v_{1}+v_{2}\right)+1 ; \tag{15}\\
\left(\forall v_{1}\right) v_{1} \cdot 0=0 ; \tag{16}\\
\left(\forall v_{1}\right)\left(\forall v_{2}\right) v_{1} \cdot\left(v_{2}+1\right)=\left(v_{1} \cdot v_{2}\right)+v_{1} ; \tag{17}\\
0+1=1 ; \tag{18}
\end{gather*}
$$

for each positive $n \in N$,

$$
\begin{equation*}
\underbrace{1+\ldots+1}_{n \text { 1's }}=n \tag{19}
\end{equation*}
$$

where the n on the right-hand side of (19) is understood to be the constant symbol for representing n and where it is again understood that the expression $1+\ldots+1$ is parenthesized with association to the left;

$$
\begin{gather*}
\left(\forall v_{1}\right)\left(\forall v_{2}\right)\left[v_{1}+1=v_{2}+1 \supset v_{1}=v_{2}\right] ; \tag{20}\\
\left(\forall v_{1}\right) 0 \neq v_{1}+1 ; \tag{21}
\end{gather*}
$$

and all cwffs (closed well formed formulas) of the the underlying language of the form

$$
\begin{equation*}
\text { closure }([[\{A\}[x / 0] \wedge(x)[A \supset\{A\}[x /(x+1)]] \supset(x) A]), \tag{22}
\end{equation*}
$$

where A is an arbitrary wff (well formed formula) of PA, where closure (B) is $\left(\forall x_{1}\right) \cdots\left(\forall x_{m}\right) B$ for the distinct free variables x_{1}, \ldots, x_{m} of wff B, and, where $\{A\}[x / t]$ is the result of simultaneously substituting for each free occurrence of x in the wff A, the term t.

PA has a decidable language.
The first four axioms constitute the recursive definitions of + and \cdot. The axioms of the form (22) all together constitute a statement of the principle of mathematical induction.
PA suffices to prove all the theorems in elementary number theory books! It has as its standard normal model the obvious one for the arithmetic of non-negative integers. ${ }^{3}$ It was originally intended to be complete ${ }^{4}$ (but, thanks to Gödel's First Incompleteness Theorem from 1931, we now know it is not proof omitted).
PA is not decidable (proof omitted), but its theorems can be algorithmically listed.
(Problem A4 continues onto the next page.)

[^1](This page is the continuation of Problem A4.)
Definition T_{PA} (called: the f.o. theory of arithmetical truth) has the same language as PA above and its axioms are the entire set of cwffs true in the standard normal model of PA.

Trivially, T_{PA} is complete. However, it is not decidable and has no (algorithmically decidable) axiomatization (proofs omitted).

What is to be done for this problem: Follow the hint just below to employ the Compactness Theorem as well as a suitable form of the Skolem-Löwenheim Theorem to prove informally that T_{PA} also has a countable non-standard normal model, i.e., a countable one not isomorphic to its countable standard normal model.

Hint: Form an extension $\mathrm{T}_{\mathrm{PA}}^{\prime}$ of T_{PA} by adding a new constant symbol \mathbf{i} and the additional infinite set of axioms

$$
\begin{equation*}
I=\{\mathbf{i}>0, \mathbf{i}>1, \mathbf{i}>2, \ldots\} \tag{23}
\end{equation*}
$$

where, for terms t_{1}, t_{2} of $\mathrm{T}_{\mathrm{PA}}^{\prime}$,

$$
\begin{equation*}
t_{1}>t_{2} \tag{24}
\end{equation*}
$$

is an abbreviation for the wff, also of $\mathrm{T}_{\mathrm{PA}}^{\prime}$,

$$
\begin{equation*}
\left(\exists v_{1}\right)\left[t_{1}=t_{2}+\left(v_{1}+1\right)\right] \tag{25}
\end{equation*}
$$

Show informally that each finite subset of the axioms of $\mathrm{T}_{\mathrm{PA}}^{\prime}$ has a normal model.
Explain how to conclude from Compactness that $\mathrm{T}_{\mathrm{PA}}^{\prime}$ itself has a normal model.
Explain how to conclude from a suitable form of the Skolem-Löwenheim Theorem that $\mathrm{T}_{\mathrm{PA}}^{\prime}$ has a countable normal model.
Show informally this new, countable normal model restricted to the language of just T_{PA} cannot be isomorphic to the (countable) standard normal model of T_{PA}. To do this, show that, in the new normal model itself, the constant symbol i has a interpretation very unlike the standard meaning of any of the constant symbols of PA. N.B. The restricted version of the new normal model still has the same universe/domain of discourse; therefore, the object which is the interpretation of \mathbf{i} from the unrestricted version is still in there.

[^0]: ${ }^{1}$ If $(\Gamma \cup\{A\})$ is a set of formulas of $\ell, \Gamma \models A$ means that every model of Γ satisfies A.
 ${ }^{2}$ The technique you employ could be, for example, from a resolution system, one of many tableaux systems, a Hilbert style system, a Gentzen style system,

[^1]: ${ }^{3}$ A normal model is (by definition) one in which the interpretation of the equality symbol is equality on the model's universe/domain of discourse.

 In PA's standard normal model, the universe/domain of discourse is the (countable) set of non-negative integers, each constant symbol n is interpreted as the non-negative integer $n,+$ is interpreted as addition of the non-negative integers,
 ${ }^{4}$ This is since it is and was supposed to be an (algorithmically decidable) axiomatization of a fixed standard normal model. By contrast the first order theory of groups (not detailed here) was intended to axiomatize a whole giant, interesting collection of rather disparate normal models.

