A1. Graphics (25 points) Shading

Given a triangle with vertices v_1 , v_2 , and v_3 and normal n_1 , n_2 , and n_3 respectively, assume the surface has material (k_a , k_d , k_s , shiny) for the ambient, diffuse, specular, and shinyness components, the eye is at the origin, and the light source is at p and has intensity (I_a , I_d , I_s) for the ambient, diffuse, and specular components.

- a) (9 points) Write out the formula for computing the intensity at vertices v_1 , v_2 , and v_3 .
- b) (8 points) Derive the intensity of the centroid C (C = $(v_1 + v_2 + v_3)/3$) of the triangle using Gouroud shading.
- c) (8 points) Derive the intensity of C using Phong shading.

A2. Graphics (25 points) Texture Mapping.

a) (8 points) What is summed area table used for? Give the summed area table of the following texture.

2	4	7	5
3	6	1	0
4	1	2	3
2	5	7	9

b) (7 **points**) What are the advantages and disadvantages of using the summed area tables compared with the mipmaps?

c). (10 points) A line segment v_1v_2 in 2D space maps to p_1p_2 in a 1D camera, as shown in the figure above. Assume $v1 = (x_1, z_1)$, $v2 = (x_2, z_2)$, p_1 has texture coordinate u_1 and p_2 has texture coordinate u_2 . What is the texture coordinate for the midpoint p_{mid} of p_1 and p_2 . Assume the camera is at the origin and the image plane is at z = 1.

A3. Graphics (25 points) HSR and Transformations

- (a) (5 points) What's the point of using two color buffers, one to draw into, while the other is being displayed? In OpenGL, how do you enable two buffers?
- (b) (8 points) Define the term depth buffer (z buffer) and explain how a depth buffer can be used to solve the hidden surface problem? If a scene consists of M polygons, and the image has a resolution of NxN pixels, compare the computational overhead of depth buffer and the ray casting (tracing) algorithm. Be specific on the computational cost of each sub-step.
- (c) (7 points) Compare and contrast BSP and Depth Buffer approaches of hidden surface removal, with special emphasis on their advantages and disadvantages
- (d) (5 points) Write the transformation T mapping [x, y, z, w] to [x, y, w] and prove that T is an affine transformation.

A4. Graphics (25 points) Ray-Box Intersection

In this problem, we consider intersecting a ray with a 2D bounding box. A 2D box is defined by two horizontal $(y = y_1, y = y_2)$ and two vertical lines $(x = x_1, x = x_2)$ as shown in Figure 4.1. A ray r is defined as $(x_0, y_0) + t(x_d, y_d)$.

- a) (7 points) To determine if r intersects the box, we need to first compute the intersection points of r with the two horizontal lines and the two vertical lines, as shown in Figure 4.2. Derive t_{xmin} , t_{xmax} , t_{ymin} , t_{ymax} .
- b) (**7points**) Prove that ray r hits the box if and only if the intervals $[t_{xmin}, t_{xmax}]$ and $[t_{ymin}, t_{ymax}]$ overlap. (This may sound like an algorithm question, but the proof should be very simple and straightforward).
- c) (**5points**) What if $x_d = 0$? What if $y_d = 0$? Write out the steps for treating these two cases.
- d) (**6points**) Briefly discuss how to extend the 2D algorithm to handle 3D axis aligned bounding boxes (i.e., boxes defined by two x planes, two y planes, and two z planes).