Functional Dependencies

“Al, o Am functionally determine p L Bn

Assume a relation with schema Rl(A. . An).

« Asubsetof {A, ..., A}is asuperkeyof R if it functionally
determines all the attributes of R.

» A superkey is &eyif no proper subset of it is a superkey.

gearhead(person_ID, main_address, make, model,gaar,
income, parking_space, age, insurance_policy, tamber)

Splitting/Combining

A useful consequence of Armstrong's axioms is the

Closure of Attributes

Suppose that S is a set of functional dependenaciéshat

splitting/combining rule. {A, ... A}isasetof attributes. Thdosureof {A ,. ..,
A} (with respect to S) is the set of attributes Blsthat
A...A>B...B A, ...A - Bisaconsequence of the functional
toomo " dependencies in S.
if and only if

foreveryifromlton, A...A > B. .
Vel 1 m i The closure is denoted by {A .., A}".
(See Exercise 3.2.2 for some other potentiallyulsef
consequences.)

Armstrong's Axioms

o Reflexivity — If {Bl, . Bn} c {Al, o Am} then
A ...A > B ...B. (These are the trivial functional
dependencies.)

« Augmentation- IfAl. ..Am-) Bl. .. E’% then
A...AC...G»>B...BC...C.

« Transitivity—IfA ... A B, ...BandB...B> C
..q(,thenAi...Am-)Cl...q.

» These are sufficient to infer the consequencesset af
functional dependencies.

'

Computing the Closure

To compute the closure of {A. . ., A } with respect to S:
LetX={A,.. AL
Repeat:

IfBl...E’T(-) Cl...CnisinSand{q,...,q}isasubsew
of X, then for each i from 1 to n, Gs added to X if it is no
already in X.

Until X cannot be made any larger.



Minimal Bases

It is often useful to work with a minimal basis ®iset of
functional dependencies and their consequences.

A minimal basidor a set S of functional dependencies anc
their consequences is a set B such that

- The FDs in B all have singleton right sides.

- If any FD is removed from B, the consequences o$et
that are left do not equal the consequences of S.

- If any attribute is removed from the left side af/&D in
B, the consequences of the altered B do not eheal t
consequences of S.

Anomalies

Computing a minimal basis

To compute a minimal basis from a set S of FDs:

Set S' to the FDs from S split so that all righkiesi are
singletons.

Repeat:
If a FD can be inferred from the other FDs inr@move it.

IfFD1=A ...A - BandFD2is the same with A

removed for some i and FD2 can be inferred from S',
remove FD1 from S' and add FD2.

Until S' cannot be changed anymore.

Anomalies(cont.)

Projecting a set of FDs

Given R(A, ..., A) and set S of FDs. Suppose thatRhe
projection /7(R). What functional dependencies hold off

Let T be empty.

For each subset X of the attributes gf ®&mpute X with

respectto S and addX A to T for each attribute A in X
that is also an attribute oflR

It is recommended that a minimal basis be compiated.

Note that the proof that a FD belongs to T mayrrife
attributes of R that are not attributes gf R

Normalization

The main source of maintenance problems is requthiat toc
much information be stored in each row of a tabseially
because each row describes the properties of rhareane
object.

Redundancy- The same information about one object is
stored in more than one row (because the objeetased tc
more than one other object).

Update anomakWhen information about one object is
updated in one row, it may not be updated in &ldther
rows where it exists.
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Insertion anomaly- When we input information about one
object, we are forced to input information aboutther
object as well.

Deletion anomaly- When delete all information about one
object, we may delete information about anotheectgs
well. (The information about the second objectonl
appears in rows that contain the information alboeifirst
object.)

[gearhead]
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Anomalies are reduced by decomposing a table oot
more tables so that certain conditions are satisfie table
that satisfies those conditions are said to beimmal form

Commonly used normal forms are:
Boyce-Codd Normal Form (BCNF)
Third Normal Form
Fourth Normal Form

(Others exist: Fifth Normal Form, Domain Key Nornfrairm,
Project-Join Normal Form.)

12



First & Second Normal Forms

A relation is inFirst Normal Formif its attribute domains
contain only atomic values (the values have naate
structure of interest to us).

(It is easy to set up a database so that all oelsitére in First
Normal Form from the beginning.)

A relation is inSecond Normal Forrif each attribute is eithe
in a key for the relation or is functionally detened only
by one or more keys for the relation. (No attréonot in a
key is functionally determined by a proper subdet key.)

(More advanced normal forms will imply that a rédatis alsc
in Second Normal Form.)
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Computing BCNF

Given arelation R(4 . . ., A) and set S of its functional
dependencies.

Test the FDs in S until one is found, say’XY, where X is
not a superkey for R. (If none found, stop.)

Replace R and S withﬁ(*) and the projection of S down t«
R,and B((A, ... A) - (X" = X)) and the projection of :
down to R.

Repeat the above on Bnd R with their sets of functional
dependencies.

If a relation is not in a desired advanced norroatt, it is
decomposed into two or more relations, each of wigdn
the desired advanced normal form.

A set of relations {R ..., R} is a decomposition of a relatiol
R if each Ris a projection from R and the union of the

attributes for all the relations in the set equlésset of
attributes for R.

[gearhead]
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Testing X 2> Y

To test whether X is a superkey for R, compute X X* does
not contain all the attributes of R, X is not asyey and
the FD X= Y violates the conditions for BCNF.

[gearhead]
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Boyce-Codd Normal Form

A relation R is inBoyce-Codd Normal Forrif the left side of
every nontrivial functional dependency for R isuparkey
for R.

This avoids redundancy: suppose ABC, B> D. The
relation R(A,B,C,D) is not in Boyce-Codd Normal For

A|B|C|D A|lB]|C B|D
111] 2|4 de- 1|2 1|4
12| 3|6 com 1]2|3 2|6
2|11 1|4 pose: 2|11
2|12] 416 22|
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Lossless Joins

The decomposition produced by the previous algaritias
the property that it haslassless jointhat is, the natural jo
of the relations in the decomposition reproducesattiginal
relation. (No information is lost.)

Example where join is not lossless:

AIB|C A|B BIC AlB|C
11213 1]2 2|3 1]2]3
412|16 412 2|6 1]2]6
4121 3
412] 6
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Chase Test

Given R(L) decomposed into(R), i = 1,....k. Foreach i,
make a tuple for R such that for each attribute A in the
value of A in itis a, and the other values ilrare distinct
variables.

Use the FDs for R to infer what values the varialiave to
be. If the tuple g,...a> can be derived, the decompositic

has the lossless join property. If it can't beast, the
variables can be given nanvalues so that the originas t
form an instance of R that is not reproduced bynidteiral
join of the Rs.
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Third Normal Form

A relation R is inThird Normal Formif the left side of every
nontrivial functional dependency for R is a supgri@ R
or if every attribute in the right side of the ftional
dependency that is not in the left side is in afceyR.

Example on previous slide is in 3NF but not in BCNF

A decomposition into 3NF relations is dependen@serving
but need not have the lossless join property.

However, there are algorithms that do produce decsitions
into 3NF relations that have the lossless join prop
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Chase Test Example

Given R(A,B,C,D), FDs A> B,B=> C,CD-> A. Ris
decomposed into RA,D), R (A,C), R(B,C,D).

t =<a X1, X2,a>

t,=<a, X3,a, X4>

t,=<X5aa a>

Tuple <, a, a, a> can be deduced.

20

3NF Synthesis Algorithm

Given relation R and a minimal basis S of the FsR.

For each FD %> Ain S make a relation with XA as the
attributes of the relation.

If none of the attribute lists for the new relasds a superke'
for R, make another relation whose attribute fsi key for
R.

In practice, all the relations made for FDs hawimg same lef
side are combined into one relation.

The resulting set of new relations is a decompmsitif R that
has the lossless join property and that presestibnal

dependencies and the new relations are in 3NF.
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FDs Can Be Lost

Given R(A,B,C) with FDs AB» C, C» A. Decompose R
into Boyce-Codd Normal Form relations.

R(C, A)with FDC> A
R,(B.C) with no FDs
FD AB » C has been lost.
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Multivalued Dependencies

Sometimes a set of attributes determines a sedloés for
other attributes instead of a single value for p#tgibutes.

Course Instructor ~ Textbook

101 Smith hook1
101 Smith hook?2
101 Jones hook1
101 Jones hook?2
102 Smith hook3
102 Awry book3

24



MVD Definition

Given R(XYZ) where XY and Z are disjoint lists attributes
and X and Y are non-empty. The multivalued depeoge
(MVD)

X2>>Y
holds if whenever tuples & and xyz, are in R, the tuple
Xy,z, is also in R.

(The attributes of R can occur in any order indbleema for
R. They don't have to group as shown here, withxth
attributes appearing first, followed by the Y dttriies and
then the Z attributes. Also, X and Y are allowedverlap.
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Relations Between Normal Forms

* 4NF < BCNF < 3NF

FDs and MVDs are generally not preserved by decaitipo
into 4NF. Only decomposition into 3NF is guaradtéz
preserve FDs, but some redundancy may remain.
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Basic MVD Facts

Trivial MVD — X2 YifY c X.

Transitivity—If X > Yand Y2 Z, then X»> > Z.
Note: the splitting rule does not apply to MVDs.

FB promotion— If X » Y then X Y.

Complementatior- If XYZ encompasses all the attributes
the relation (as in the definition of MVD) and-X- Y,
then X~ Z.

Another trivial MVD — If XYZ encompasses all the attribut
of the relation (as in the definition of MVD) andiZempty.
X>-Y.
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Chasing FDs and MVDs

Given a set S of FDs and/or MVDs for a relation RZX
where X and Y are nonempty, here is a general agprto
deciding whether %> Y or X » = Y holds.

(As before, the actual order of the attributesRazan be in
any order, not just the order suggested by XYZ, Xrachd
Y can overlap.)
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Fourth Normal Form

* Arelation R is inFourth Normal Fornif for every non-
trivial MVD X = = Y for R, X is a superkey for R.

A relation is decomposed in to a set of Fourth Nadrform
relations by the same algorithm that decomposesoita
set of BCNF relations except that MVDs are useteans of
FDs.
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Does X » Y Hold?

Make two tuples such all the X attributes havevhlee ofa
and all the attributes in YZ that are not in X digtinct
variables. The procedure is to apply the FDs amMD®lin
S to prove that for each attribute in Y, the valealor
constant assigned to that attribute in the twoesiphust be
the same. If this goal can't be reached, a cowxample
can be made by assigning distinct constants tedhables
in the two tuples, subject to the equality constsathat
were produced by the inference procedure.
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Does X » = Y Hold?

Make two tuples by assigniragto all the attributes in X and
in one tuple and to all the attributes in X andhZhie other
tuple. Assign distinct variables to all the othéributes in
the two tuples. The procedure is to apply theRbe and
MVDs in S to see whether the tuple consisting b&alcan
be produced. If it can, ¥ = Y holds. If it can't, the set ¢
tuples that has been produced is a counter-exanipa all
the variables are replaced by distinct new constana way
that is consistent with any equality constraint there
produced by the inference procedure.
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Given R(A,B,C,D,E) and dependencies’»»» BC, CD~ E,
B-> D,E~> A.

A->E?

A->-> E?

CD-» A?

CD~»~> B?

CD - B? [The last two are false]

B->-> E? Project onto {B,C,D} (see next slide)
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Projecting Dependencies

Given R(L) and set S of FDs and MVDs. Let R'(Ll&)such
that L'c L. We want to project S down to S', the set ob
and MVDs for R'. The FDs can be projected as Ilegfont
using the FD test on slide 30. To find the MVDs %,
consider disjoint subsets X and Y of L' and testde if X
-2 - Y by Chase test. Itis only necessary to deritugote
with a values for all the attributes that are in L', footall
the attributes in L as before.
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