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Functional Dependencies

A
1
 . . . A

m
 �  B
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 . . . B
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“A
1
, . . ., A

m
 functionally determine  B

1
, . . ., B

n
”

gearhead(person_ID, main_address, make, model, year, color, 
income, parking_space, age, insurance_policy, tag_number)
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Keys

Assume a relation with schema R(A
1
, . . ., A

n
).

� A subset of {A
1
, . . ., A

n
} is a superkey of R if it functionally 

determines all the attributes of R.

� A superkey is a key if no proper subset of it is a superkey.
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Armstrong's Axioms

� Reflexivity – If {B
1
, . . ., B

n
} � {A

1
, . . ., A

m
} then              

A
1
 . . . A

m
 �  B

1
 . . . B

n
.  (These are the trivial functional 

dependencies.)

� Augmentation – If A
1
 . . . A

m
 �  B

1
 . . . B

n
, then                  

A
1
 . . . A

m
 C

1
 . . . C

k 
�  B

1
 . . . B

n 
C

1
 . . . C

k
.

� Transitivity – If A
1
 . . . A

m
 �  B

1
 . . . B

n
 and B

1
 . . . B

n
�  C

1
 . 

. . C
k
, then A

1
 . . . A

m
 �

 
C

1
 . . . C

k
.

� These are sufficient to infer the consequences of a set of 
functional dependencies.
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Splitting/Combining

A useful consequence of Armstrong's axioms is the 
splitting/combining rule.

A
1
 . . . A

m
 �  B

1
 . . . B

n
 

    if and only if 

for every i from 1 to n, A
1
 . . . A

m
 �  B

i
.

(See Exercise 3.2.2 for some other potentially useful 
consequences.)
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Closure of Attributes

Suppose that S is a set of functional dependencies and that 
{A

1
, . . ., A

m
} is a set of attributes.  The closure of {A

1
, . . ., 

A
m
} (with respect to S) is the set of attributes B such that   

A
1
 . . . A

m
 �  B is a consequence of the functional 

dependencies in S.

The closure is denoted by {A
1
, . . ., A

m
} +.
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Computing the Closure

To compute the closure of {A
1
, . . ., A

m
} with respect to S:

Let X = {A
1
, . . ., A

m
}.

Repeat:

    If B
1
 . . . B

k
�  C

1
 . . . C

n
 is in S and {B

1
, . . ., B

k
} is a subset 

of X, then for each i from 1 to n, C
i
  is added to X if it is not 

already in X.

Until X cannot be made any larger.
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Minimal Bases

It is often useful to work with a minimal basis for a set of 
functional dependencies and their consequences.

A minimal basis for a set S of functional dependencies and 
their  consequences is a set B such that

� The FDs in B all have singleton right sides.

� If any FD is removed from B, the consequences of those 
that are left do not equal the consequences of S.

� If any attribute is removed from the left side of any FD in 
B, the consequences of the altered B do not equal the 
consequences of S.
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Computing a minimal basis

To compute a minimal basis from a set S of FDs:

Set S' to the FDs from S split so that all right sides are 
singletons.

Repeat:

    If a FD can be inferred from the other FDs in S', remove it.

    If FD1 = A
1
 . . . A

m
 �  B and FD2 is the same with A

i
 

removed for some i and FD2 can be inferred from S',  
remove FD1 from S' and add FD2.

Until S' cannot be changed anymore. 
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Projecting a set of FDs

Given R(A
1
, . . ., A

n
) and set S of FDs.  Suppose that R

1
 is the 

projection �
L
(R).  What functional dependencies hold on R

1
?

Let T be empty.

For each subset X of the attributes of R
1
, compute X+ with 

respect to S and add X �  A to T for each attribute A in X+ 
that is also an attribute of R

1
.

It is recommended that a minimal basis be computed for T.

Note that the proof that a FD belongs to T may refer to 
attributes of R that are not attributes of R

1
.
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Anomalies

The main source of maintenance problems is requiring that too 
much information be stored in each row of a table, usually 
because each row describes the properties of more than one 
object.

Redundancy – The same information about one object is 
stored in more than one row (because the object is related to 
more than one other object).

Update anomaly- When information about one object is 
updated in one row, it may not be updated in all the other 
rows where it exists.
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Anomalies(cont.)

Insertion anomaly – When we input information about one 
object, we are forced to input information about another 
object as well.

Deletion anomaly – When delete all information about one 
object, we may delete information about another object as 
well.  (The information about the second object only 
appears in rows that contain the information about the first 
object.)

[gearhead]
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Normalization

Anomalies are reduced by decomposing a table into two or 
more tables so that certain conditions are satisfied.  A table 
that satisfies those conditions are said to be in normal form.

Commonly used normal forms are:

Boyce-Codd Normal Form (BCNF)

Third Normal Form

Fourth Normal Form

(Others exist: Fifth Normal Form, Domain Key Normal Form, 
Project-Join Normal Form.)
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First & Second Normal Forms

A relation is in First Normal Form if its attribute domains 
contain only atomic values (the values have no internal 
structure of interest to us).

(It is easy to set up a database so that all relations are in First 
Normal Form from the beginning.)

A relation is in Second Normal Form if each attribute is either 
in a key for the relation or is functionally determined only 
by one or more keys for the relation.  (No attribute not in a 
key is functionally determined by a proper subset of a key.)

(More advanced normal forms will imply that a relation is also 
in Second Normal Form.) 
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Decomposition

If a relation is not in a desired advanced normal form, it is 
decomposed into two or more relations, each of which is in 
the desired advanced normal form.

A set of relations {R
1
, ..., R

n
} is a decomposition of a relation 

R if each R
i
 is a projection from R and the union of the 

attributes for all the relations in the set equals the set of 
attributes for R.

[gearhead]
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Boyce-Codd Normal Form

A relation R is in Boyce-Codd Normal Form if the left side of 
every nontrivial functional dependency for R is a superkey 
for R.

This avoids redundancy:  suppose AB �  C, B �  D. The 
relation R(A,B,C,D) is not in Boyce-Codd Normal Form.

     A  |  B  |  C  |  D             A  |  B  |  C           B  |  D

      1  |  1  |   2  |  4   de-       1  |  1  |  2             1  |  4

      1  |  2  |   3  |  6   com-    1  |  2  |  3             2  |  6

      2  |  1  |   1  |  4   pose:    2  |  1  |  1

      2  |  2  |   4  |  6               2  |  2  |  4
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Computing BCNF

Given a relation R(A
1
, . . ., A

n
) and set S of its functional 

dependencies.

Test the FDs in S until one is found, say X �  Y, where X is 
not a superkey for R. (If none found, stop.)

Replace R and S with R
1
(X+) and the projection of S down to 

R
1
, and R

2
(((A

1
, . . ., A

n
) − (X+ − X)) and the projection of S 

down to R
2
.

Repeat the above on R
1
 and R

2
 with their sets of functional 

dependencies.
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Testing X �  Y

To test whether X is a superkey for R, compute X+.  If X+ does 
not contain all the attributes of R, X is not a superkey and 
the FD X �  Y violates the conditions for BCNF.

[gearhead]
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Lossless Joins

The decomposition produced by the previous algorithm has 
the property that it has a lossless join, that is, the natural join 
of the relations in the decomposition reproduces the original 
relation.  (No information is lost.)

Example where join is not lossless:

A | B | C     A | B      B | C                     A | B | C

1  | 2 |  3     1  |  2      2 |  3                      1 | 2 | 3

4  | 2 |  6     4  |  2      2 |  6                      1 | 2 | 6

                                                               4 | 2 |  3

                                                               4 | 2 |  6
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Chase Test

Given R(L) decomposed into R
i
(L

i
), i = 1,...,k.  For each i, 

make a tuple t
i
 for R such that for each attribute A in L

i
, the 

value of A in t
i
 is a, and the other values in t

i
 are distinct 

variables.

Use the FDs for R to infer what values the variables have to 
be.  If the tuple <a,...,a> can be derived, the decomposition 
has the lossless join property.  If it can't be derived, the 
variables can be given non-a values so that the original t

i
s 

form an instance of R that is not reproduced by the natural 
join of the R

i
s.
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Chase Test Example

Given R(A,B,C,D), FDs A �  B, B �  C, CD �  A.  R is 
decomposed into R

1
(A,D), R

2
(A,C), R

3
(B,C,D).

t
1
 = <a, X1, X2, a>

t
2
 = <a, X3, a, X4>

t
3
 = <X5, a, a, a>

Tuple <a, a, a, a> can be deduced.
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FDs Can Be Lost

Given R(A,B,C) with FDs AB �  C, C �  A.  Decompose R 
into Boyce-Codd Normal Form relations.

R
1
(C, A) with FD C �  A

R
2
(B,C) with no FDs

FD AB �  C has been lost.
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Third Normal Form

A relation R is in Third Normal Form if the left side of every 
nontrivial functional dependency for R is a superkey for R 
or if every attribute in the right side of the functional 
dependency that is not in the left side is in a key for R.

Example on previous slide is in 3NF but not in BCNF.

A decomposition into 3NF relations is dependency preserving 
but need not have the lossless join property.

However, there are algorithms that do produce decompositions 
into 3NF relations that have the lossless join property.
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3NF Synthesis Algorithm

Given relation R and a minimal basis S of the FDs for R.

For each FD X �  A in S make a relation with XA as the 
attributes of the relation.

If none of the attribute lists for the new relations is a superkey 
for R, make another relation whose attribute list is a key for 
R.

In practice, all the relations made for FDs having the same left 
side are combined into one relation.

The resulting set of new relations is a decomposition of R that 
has the lossless join property and that preserves functional 
dependencies and the new relations are in 3NF.
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Multivalued Dependencies

Sometimes a set of attributes determines a set of values for 
other attributes instead of a single value for other attributes.

Course Instructor Textbook

101 Smith book1
101 Smith book2
101 Jones book1
101 Jones book2
102 Smith book3
102 Avery book3
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MVD Definition

Given R(XYZ) where XY and Z are  disjoint lists of attributes 
and X and Y are non-empty.  The multivalued dependency 
(MVD)

X ��  Y

   holds if whenever tuples xy
1
z

1
 and xy

2
z

2
 are in R, the tuple 

xy
1
z

2
 is also in R.

(The attributes of R can occur in any order in the schema for 
R.  They don't have to group as shown here, with the X 
attributes appearing first, followed by the Y attributes and 
then the Z attributes.  Also, X and Y are allowed to overlap.)
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Basic MVD Facts

Trivial MVD  – X ��  Y if Y � X.

Transitivity – If X ��  Y and Y ��  Z, then X ��  Z.

Note: the splitting rule does not apply to MVDs.

FB promotion – If X �  Y then X ��  Y.

Complementation – If XYZ encompasses all the attributes of 
the relation (as in the definition of MVD) and X ��  Y, 
then X ��  Z.

Another trivial MVD – If XYZ encompasses all the attributes 
of the relation (as in the definition of MVD) and Z is empty, 
X ��  Y.

  27

Fourth Normal Form

� A relation R is in Fourth Normal Form if for every non-
trivial MVD X ��  Y for R, X is a superkey for R.

A relation is decomposed in to a set of Fourth Normal Form 
relations  by the same algorithm that decomposes it into a 
set of BCNF relations except that MVDs are used instead of 
FDs.
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Relations Between Normal Forms

� 4NF � BCNF � 3NF

FDs and MVDs are generally not preserved by decomposition 
into 4NF.  Only decomposition into 3NF is guaranteed to 
preserve FDs, but some redundancy may remain.
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Chasing FDs and MVDs

Given a set S of FDs and/or MVDs for a relation R(XYZ) 
where X and Y are nonempty, here is a general approach to 
deciding whether X �  Y or X ��  Y holds.

(As before, the actual order of the attributes for R can be in 
any order, not just the order suggested by XYZ, and X and 
Y can overlap.)
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Does X �  Y Hold?

Make two tuples such all the X attributes have the value of a 
and all the attributes in YZ that are not in X are distinct 
variables.  The procedure is to apply the FDs and MVDs in 
S to prove that for each attribute in Y, the variables or 
constant assigned to that attribute in the two tuples must be 
the same.  If this goal can't be reached, a counter-example 
can be made by assigning distinct constants to the variables 
in the two tuples, subject to the equality constraints that 
were produced by the inference procedure.
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Does X ��  Y Hold?

Make two tuples by assigning a to all the attributes in X and Y 
in one tuple and to all the attributes in X and Z in the other 
tuple.  Assign distinct variables to all the other attributes in 
the two tuples.  The procedure is to apply the the FDs and 
MVDs in S to see whether the tuple consisting of all a's can 
be produced.  If it can, X ��  Y holds.  If it can't, the set of 
tuples that has been produced is a counter-example when all 
the variables are replaced by distinct new constants in a way 
that is consistent with any equality constraints that were 
produced by the inference procedure.
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Examples

Given R(A,B,C,D,E) and dependencies A ��  BC, CD �  E, 
B �  D, E �  A.

A �  E?

A ��  E?

CD �  A?

CD ��  B?

CD �  B?        [The last  two are false]

B ��  E?           Project onto {B,C,D} (see next slide)
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Projecting Dependencies

Given R(L) and set S of FDs and MVDs.  Let R'(L') be such 
that L' � L.  We want to project S down to S', the set of FDs 
and MVDs for R'.  The FDs can be projected as before, but 
using the FD test on slide 30.  To find the MVDs for S', 
consider disjoint subsets X and Y of L' and test to see if X 
��  Y by Chase test.  It is only necessary to derive a tuple 
with a values for all the attributes that are in L', not for all 
the attributes in L as before.


