

 1

Functional Dependencies

A
1
 . . . A

m
 � B

1
 . . . B

n

“A
1
, . . ., A

m
 functionally determine B

1
, . . ., B

n
”

gearhead(person_ID, main_address, make, model, year, color,
income, parking_space, age, insurance_policy, tag_number)

 2

Keys

Assume a relation with schema R(A
1
, . . ., A

n
).

� A subset of {A
1
, . . ., A

n
} is a superkey of R if it functionally

determines all the attributes of R.

� A superkey is a key if no proper subset of it is a superkey.

 3

Armstrong's Axioms

� Reflexivity – If {B
1
, . . ., B

n
} � {A

1
, . . ., A

m
} then

A
1
 . . . A

m
 � B

1
 . . . B

n
. (These are the trivial functional

dependencies.)

� Augmentation – If A
1
 . . . A

m
 � B

1
 . . . B

n
, then

A
1
 . . . A

m
 C

1
 . . . C

k
� B

1
 . . . B

n
C

1
 . . . C

k
.

� Transitivity – If A
1
 . . . A

m
 � B

1
 . . . B

n
 and B

1
 . . . B

n
� C

1
 .

. . C
k
, then A

1
 . . . A

m
 �

C

1
 . . . C

k
.

� These are sufficient to infer the consequences of a set of
functional dependencies.

 4

Splitting/Combining

A useful consequence of Armstrong's axioms is the
splitting/combining rule.

A
1
 . . . A

m
 � B

1
 . . . B

n

 if and only if

for every i from 1 to n, A
1
 . . . A

m
 � B

i
.

(See Exercise 3.2.2 for some other potentially useful
consequences.)

 5

Closure of Attributes

Suppose that S is a set of functional dependencies and that
{A

1
, . . ., A

m
} is a set of attributes. The closure of {A

1
, . . .,

A
m
} (with respect to S) is the set of attributes B such that

A
1
 . . . A

m
 � B is a consequence of the functional

dependencies in S.

The closure is denoted by {A
1
, . . ., A

m
} +.

 6

Computing the Closure

To compute the closure of {A
1
, . . ., A

m
} with respect to S:

Let X = {A
1
, . . ., A

m
}.

Repeat:

 If B
1
 . . . B

k
� C

1
 . . . C

n
 is in S and {B

1
, . . ., B

k
} is a subset

of X, then for each i from 1 to n, C
i
 is added to X if it is not

already in X.

Until X cannot be made any larger.

 7

Minimal Bases

It is often useful to work with a minimal basis for a set of
functional dependencies and their consequences.

A minimal basis for a set S of functional dependencies and
their consequences is a set B such that

� The FDs in B all have singleton right sides.

� If any FD is removed from B, the consequences of those
that are left do not equal the consequences of S.

� If any attribute is removed from the left side of any FD in
B, the consequences of the altered B do not equal the
consequences of S.

 8

Computing a minimal basis

To compute a minimal basis from a set S of FDs:

Set S' to the FDs from S split so that all right sides are
singletons.

Repeat:

 If a FD can be inferred from the other FDs in S', remove it.

 If FD1 = A
1
 . . . A

m
 � B and FD2 is the same with A

i

removed for some i and FD2 can be inferred from S',
remove FD1 from S' and add FD2.

Until S' cannot be changed anymore.

 9

Projecting a set of FDs

Given R(A
1
, . . ., A

n
) and set S of FDs. Suppose that R

1
 is the

projection �
L
(R). What functional dependencies hold on R

1
?

Let T be empty.

For each subset X of the attributes of R
1
, compute X+ with

respect to S and add X � A to T for each attribute A in X+
that is also an attribute of R

1
.

It is recommended that a minimal basis be computed for T.

Note that the proof that a FD belongs to T may refer to
attributes of R that are not attributes of R

1
.

 10

Anomalies

The main source of maintenance problems is requiring that too
much information be stored in each row of a table, usually
because each row describes the properties of more than one
object.

Redundancy – The same information about one object is
stored in more than one row (because the object is related to
more than one other object).

Update anomaly- When information about one object is
updated in one row, it may not be updated in all the other
rows where it exists.

 11

Anomalies(cont.)

Insertion anomaly – When we input information about one
object, we are forced to input information about another
object as well.

Deletion anomaly – When delete all information about one
object, we may delete information about another object as
well. (The information about the second object only
appears in rows that contain the information about the first
object.)

[gearhead]
 12

Normalization

Anomalies are reduced by decomposing a table into two or
more tables so that certain conditions are satisfied. A table
that satisfies those conditions are said to be in normal form.

Commonly used normal forms are:

Boyce-Codd Normal Form (BCNF)

Third Normal Form

Fourth Normal Form

(Others exist: Fifth Normal Form, Domain Key Normal Form,
Project-Join Normal Form.)

 13

First & Second Normal Forms

A relation is in First Normal Form if its attribute domains
contain only atomic values (the values have no internal
structure of interest to us).

(It is easy to set up a database so that all relations are in First
Normal Form from the beginning.)

A relation is in Second Normal Form if each attribute is either
in a key for the relation or is functionally determined only
by one or more keys for the relation. (No attribute not in a
key is functionally determined by a proper subset of a key.)

(More advanced normal forms will imply that a relation is also
in Second Normal Form.)

 14

Decomposition

If a relation is not in a desired advanced normal form, it is
decomposed into two or more relations, each of which is in
the desired advanced normal form.

A set of relations {R
1
, ..., R

n
} is a decomposition of a relation

R if each R
i
 is a projection from R and the union of the

attributes for all the relations in the set equals the set of
attributes for R.

[gearhead]
 15

Boyce-Codd Normal Form

A relation R is in Boyce-Codd Normal Form if the left side of
every nontrivial functional dependency for R is a superkey
for R.

This avoids redundancy: suppose AB � C, B � D. The
relation R(A,B,C,D) is not in Boyce-Codd Normal Form.

 A | B | C | D A | B | C B | D

 1 | 1 | 2 | 4 de- 1 | 1 | 2 1 | 4

 1 | 2 | 3 | 6 com- 1 | 2 | 3 2 | 6

 2 | 1 | 1 | 4 pose: 2 | 1 | 1

 2 | 2 | 4 | 6 2 | 2 | 4

 16

Computing BCNF

Given a relation R(A
1
, . . ., A

n
) and set S of its functional

dependencies.

Test the FDs in S until one is found, say X � Y, where X is
not a superkey for R. (If none found, stop.)

Replace R and S with R
1
(X+) and the projection of S down to

R
1
, and R

2
(((A

1
, . . ., A

n
) − (X+ − X)) and the projection of S

down to R
2
.

Repeat the above on R
1
 and R

2
 with their sets of functional

dependencies.

 17

Testing X � Y

To test whether X is a superkey for R, compute X+. If X+ does
not contain all the attributes of R, X is not a superkey and
the FD X � Y violates the conditions for BCNF.

[gearhead]
 18

Lossless Joins

The decomposition produced by the previous algorithm has
the property that it has a lossless join, that is, the natural join
of the relations in the decomposition reproduces the original
relation. (No information is lost.)

Example where join is not lossless:

A | B | C A | B B | C A | B | C

1 | 2 | 3 1 | 2 2 | 3 1 | 2 | 3

4 | 2 | 6 4 | 2 2 | 6 1 | 2 | 6

 4 | 2 | 3

 4 | 2 | 6

 19

Chase Test

Given R(L) decomposed into R
i
(L

i
), i = 1,...,k. For each i,

make a tuple t
i
 for R such that for each attribute A in L

i
, the

value of A in t
i
 is a, and the other values in t

i
 are distinct

variables.

Use the FDs for R to infer what values the variables have to
be. If the tuple <a,...,a> can be derived, the decomposition
has the lossless join property. If it can't be derived, the
variables can be given non-a values so that the original t

i
s

form an instance of R that is not reproduced by the natural
join of the R

i
s.

 20

Chase Test Example

Given R(A,B,C,D), FDs A � B, B � C, CD � A. R is
decomposed into R

1
(A,D), R

2
(A,C), R

3
(B,C,D).

t
1
 = <a, X1, X2, a>

t
2
 = <a, X3, a, X4>

t
3
 = <X5, a, a, a>

Tuple <a, a, a, a> can be deduced.

 21

FDs Can Be Lost

Given R(A,B,C) with FDs AB � C, C � A. Decompose R
into Boyce-Codd Normal Form relations.

R
1
(C, A) with FD C � A

R
2
(B,C) with no FDs

FD AB � C has been lost.

 22

Third Normal Form

A relation R is in Third Normal Form if the left side of every
nontrivial functional dependency for R is a superkey for R
or if every attribute in the right side of the functional
dependency that is not in the left side is in a key for R.

Example on previous slide is in 3NF but not in BCNF.

A decomposition into 3NF relations is dependency preserving
but need not have the lossless join property.

However, there are algorithms that do produce decompositions
into 3NF relations that have the lossless join property.

 23

3NF Synthesis Algorithm

Given relation R and a minimal basis S of the FDs for R.

For each FD X � A in S make a relation with XA as the
attributes of the relation.

If none of the attribute lists for the new relations is a superkey
for R, make another relation whose attribute list is a key for
R.

In practice, all the relations made for FDs having the same left
side are combined into one relation.

The resulting set of new relations is a decomposition of R that
has the lossless join property and that preserves functional
dependencies and the new relations are in 3NF.

 24

Multivalued Dependencies

Sometimes a set of attributes determines a set of values for
other attributes instead of a single value for other attributes.

Course Instructor Textbook

101 Smith book1
101 Smith book2
101 Jones book1
101 Jones book2
102 Smith book3
102 Avery book3

 25

MVD Definition

Given R(XYZ) where XY and Z are disjoint lists of attributes
and X and Y are non-empty. The multivalued dependency
(MVD)

X �� Y

 holds if whenever tuples xy
1
z

1
 and xy

2
z

2
 are in R, the tuple

xy
1
z

2
 is also in R.

(The attributes of R can occur in any order in the schema for
R. They don't have to group as shown here, with the X
attributes appearing first, followed by the Y attributes and
then the Z attributes. Also, X and Y are allowed to overlap.)

 26

Basic MVD Facts

Trivial MVD – X �� Y if Y � X.

Transitivity – If X �� Y and Y �� Z, then X �� Z.

Note: the splitting rule does not apply to MVDs.

FB promotion – If X � Y then X �� Y.

Complementation – If XYZ encompasses all the attributes of
the relation (as in the definition of MVD) and X �� Y,
then X �� Z.

Another trivial MVD – If XYZ encompasses all the attributes
of the relation (as in the definition of MVD) and Z is empty,
X �� Y.

 27

Fourth Normal Form

� A relation R is in Fourth Normal Form if for every non-
trivial MVD X �� Y for R, X is a superkey for R.

A relation is decomposed in to a set of Fourth Normal Form
relations by the same algorithm that decomposes it into a
set of BCNF relations except that MVDs are used instead of
FDs.

 28

Relations Between Normal Forms

� 4NF � BCNF � 3NF

FDs and MVDs are generally not preserved by decomposition
into 4NF. Only decomposition into 3NF is guaranteed to
preserve FDs, but some redundancy may remain.

 29

Chasing FDs and MVDs

Given a set S of FDs and/or MVDs for a relation R(XYZ)
where X and Y are nonempty, here is a general approach to
deciding whether X � Y or X �� Y holds.

(As before, the actual order of the attributes for R can be in
any order, not just the order suggested by XYZ, and X and
Y can overlap.)

 30

Does X � Y Hold?

Make two tuples such all the X attributes have the value of a
and all the attributes in YZ that are not in X are distinct
variables. The procedure is to apply the FDs and MVDs in
S to prove that for each attribute in Y, the variables or
constant assigned to that attribute in the two tuples must be
the same. If this goal can't be reached, a counter-example
can be made by assigning distinct constants to the variables
in the two tuples, subject to the equality constraints that
were produced by the inference procedure.

 31

Does X �� Y Hold?

Make two tuples by assigning a to all the attributes in X and Y
in one tuple and to all the attributes in X and Z in the other
tuple. Assign distinct variables to all the other attributes in
the two tuples. The procedure is to apply the the FDs and
MVDs in S to see whether the tuple consisting of all a's can
be produced. If it can, X �� Y holds. If it can't, the set of
tuples that has been produced is a counter-example when all
the variables are replaced by distinct new constants in a way
that is consistent with any equality constraints that were
produced by the inference procedure.

 32

Examples

Given R(A,B,C,D,E) and dependencies A �� BC, CD � E,
B � D, E � A.

A � E?

A �� E?

CD � A?

CD �� B?

CD � B? [The last two are false]

B �� E? Project onto {B,C,D} (see next slide)

 33

Projecting Dependencies

Given R(L) and set S of FDs and MVDs. Let R'(L') be such
that L' � L. We want to project S down to S', the set of FDs
and MVDs for R'. The FDs can be projected as before, but
using the FD test on slide 30. To find the MVDs for S',
consider disjoint subsets X and Y of L' and test to see if X
�� Y by Chase test. It is only necessary to derive a tuple
with a values for all the attributes that are in L', not for all
the attributes in L as before.

