## Review of material covered before midterm exam

Book lectures covered: 1-16, A, 17, 18

- 1: not much here
- 2: review of strings and sets, concatenation, set operations: union, intersection, complement, set concatenation, powers, asterate
  - 3: formal definition of deterministic finite automaton (DFA), language of a DFA, regular sets
- 4: closure properties of regular sets: union, intersection, complement, concatenation, asterate; product of two DFAs
- 5: nondeterministic finite automata (NFA), subset construction of an equivalent DFA from an NFA, do it without constructing unreachable states
- 6: Formal definition of NFAs, the subset construction, Thm: an NFA and the DFA constructed from it accept the same set of strings,  $\epsilon$ -transitions, proof that concatenation preserves regularity
- 7: patterns; atomic: letters in  $\Sigma$ ,  $\epsilon$ ,  $\emptyset$ , #, @; compound patterns: +,  $\cap$ , · (concatenation),  $\sim$ , \*, (, ), the languages of patterns, pattern matching
- 8: regular expressions: patterns restricted to letters in  $\Sigma$ ,  $\epsilon$ ,  $\emptyset$ , +, ·, \*, (, ), Thm: the languages of DFAs, patterns and regular expressions are all the same
- 9: simplification of regular expressions (pp. 49,50,57), construction of regular expression for the language of a DFA or NFA using  $\alpha_{u,v}^X$  (pg. 52)
  - A: Kleene algebra: pages 55-top three lines of 58; skip from matrices onward
- 10: homomorphisms, use to show other sets are regular, use to reduce NFAs with  $\epsilon$ -transitions to NFAs without  $\epsilon$ -transitions; skip Hamming distance
  - 11: not all sets are regular, Pumping lemma, especially the contrapositive version
  - 12: using the pumping lemma to show a set is not regular, ultimate periodicity
- 13: minimization of DFAs, quotient construction of  $M/\approx$  from M and  $\approx$ , Thm: $L(M'/\approx)=L(M)$ 
  - 14: a minimization algorithm; computing  $\approx$  relation,  $M/\approx$
- 15: Isomorphism, Myhill-Nerode relations for a set R; right congruence, refinement of R, finite index,  $\equiv_M$ ,  $M_\equiv$ 
  - 16: Myhill-Nerode theorem, use to show whether a set is regular or not
- 17: Two-way deterministic A, finite automata(2DFA), formal definition, configurations, the next relation  $(\frac{1}{x})$ , other binary relations,  $\frac{n}{x}$ ,  $\frac{*}{x}$ 18: Tables  $T_x$  for showing the state of a 2DFA as it moves its head left and right across the
- 18: Tables  $T_x$  for showing the state of a 2DFA as it moves its head left and right across the right boundary of string x, the equivalence relation I called  $\equiv_T$ , construction of a DFA from the tables (two ways), showing that 2DFAs accept only regular sets