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Suppose you have a computer, say the DLX, with 5 phases: Instruction Fetch(IF),
Instruction Decode(ID), Execution(EX), Memory(MEM), and Write-Back(WB).
You are considering pipelining the execution of these stages to improve perfor-
mance. Assume that you will have a 5-stage pipeline with one stage for each
of the above phases. Also assume only an integer pipeline (no need to worry
about multiple EX stages for floating-point operations. )

1. Give as many reasons as you can for why one cannot expect to obtain a
speedup of 5 using this 5-Stage pipeline.

2. Explain what is meant by

(a) Structural hazards,
(b) Data hazards, and

(¢) Control hazards

and the effect of such hazards upon pipeline speedup.

3. For each of the hazards listed in (2), describe the hardware support re-
quired by the pipeline in order to minimize the effects of such hazards. If
multiple techniques are available, describe any one technique in detail for
each of the hazards types. What are the strengths and weaknesses of the
techniques described by you?

A2

1. Distinguish between the precise and imprecise interrupts. Why is it de-
sirable to have precise interrupts in a pipelined processor? What is the
problem that precise interrupts solve? Why are precise interrupts difficult
to achieve?



2. What is meant by ”speculative execution”? What are the potential ben-
efits of this approach? Construct a concrete example to explain your
answer.

3. What our problems does speculative execution cause for providing precise
interrupts?

4. What is the reorder buffer, what does it contain, and how is it used? How
does a reorder buffer help to implement precise interrupts in the presence
of speculative execution? How is a reorder buffer similar to the reservation
stations of Tomasulo’s algorithm, and how is it different?

A3
1. 12 pt

(a) Explain 3 cache optimization strategies.

(b) Explain a strategy in detail where CPU is involved in the cache miss
penalty.

(c) Suppose that in 500 memory references there are 50 misses in the
first-level cash and 10 misses in the second-level cache. What are the
local and global missrates for first-level and second-level caches?

2. 13 pt

(a) Explain 3 techniques to improve memory bandwidth.

(b) What is the miss penalty for cache block of 4 words with the following
performance of the basic memory organization?

e 4 clock cycles to send the address
e 32 clock cycles for the access time for word
e 4 clock cycles to send a word of data

(¢) Give the clock cycle per instruction(CPI) for 16-bit bus and memory,
32-bit bus and memory with no interleaving, and 32-bit bus and
memory with interleaving,. In addition to (2) above, assume that

e Memory accesses per instruction is 1.4
e Average cycles per instruction (ignoring cache misses) is 2
e Miss rate is 4% for 16-bit block size and 2% for the 32-bit blocks
size.
A4
1. 15 pt

(a) What is Amdahl’s law?



2.

(b) Explain how it can be used to predict speedup for a parallel proces-
sor?

(c) Explain other factors that influence the performance of applications
on parallel machines?

What is multiprocessor cache coherence? Explain 2 different protocols for
enforcing this coherence.
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A2

Explain, with the help of a brief example, how increasing the cache block
size can increase the number of coherence misses in centralized shared
memory machines.

Show, by example, how contention can cause latency of a write-update
cache coherence protocol to be higher than that of a write-invalidate pro-
tocol.

Consider a two-way set associative cache. Show, by a clear example, call
increasing the cache block size can increase the number of conflict misses.

Explain a strategy in which a large number of the registers can be effec-
tively utilized, without increasing instruction length or the time required
for procedure calls.

DLX supports displacement addressing mode in which a register number
R.i and an 16-bit offset n is used for addressing a memory location M(R.i
+ n). Suppose we change this instruction set to exclude displacement
addressing mode, and to include register indirect M(R_i). Explain how
this change can influence the ability to perform instruction scheduling
and loop unrolling.

Suppose we change a system architecture to allow issuing 8 instructions per
cycle, instead of previously supported 4. List what additional resources
may be required in the system to allow it to benefit from the increased
multiple issue ability, clearly explaining why.

. you are given a system with the following parameters:

The clock speed is 100 MHz
the CPI of the system, after including the memory stalls, is 4

e each instruction generates an average of two memory accesses

30% of memory references are writes



A3

Each cache block is 8 4-byte words; the entire block is read on a miss

Cache miss rate is 5%

Cache uses write-allocate

Assume 25% of cache blocks are dirty at any given time.

Calculate the total bankwidth with requirements of the memory bus, if
the cache is a) write-back, and b) write-through.

Suppose we have a 2 processor cache coherent shared memory multipro-
cessor. The size of main memory is 64 bytes, and each processor has a
16 byte cache. Cache are directly mapped, with a block size of 2 bytes.
Given the following sequence of read and write operations (byte numbers)
from the two processors, determine if each operation is a

1) cache bit,

2) cold cache miss,

3) conflict cache miss,

4) capacity cache miss,

5) true coherence cache misses, or

6) false coherence cache miss.

Assume a write back, write-allocate cache.

Read 0 from PO, Read 8 from PO, Read 1 from PO,

Read 17 from PO, Read 0 from PO, Read 0 from P1,
Read 1 from PO, Write 8 from P1, Read 9 from PO,
Read 9 from P1, Write 8 from PO, Read 8 from P1.

. Explain how exceptions make implementations of a pipelined architec-

ture harder. Describe different classifications of exceptions, including syn-
chronous vs asynchronous, user requested vs coerced, user maskable vs
user non-maksable, within vs between instructions, and resume vs termi-
nate.

. Explain the following models of consistency, using brief examples to il-

lustrate the differences between them: sequential consistency, total store
order (TSO), partial store order, weak ordering, and release consistency.
Also describe how each of these models influences the performance and
programmability of a shared memory multiprocessor.



A4

1.

Discuss the impact of each of the following factors on the branch penalty
for conditional branches and for unconditional branches in a pipelined
processor:

(a) The extent and amount of pre-fetching of instructions in the processor
(b) The processor architecture being VLIW contrasted with superscalar

(c) The extent to which the processor has ”speculative” execution of
both instruction streams following a conditional branch.

As the chief design architecture of a new pipelined superscalar processor,
one of your tasks is to decide the strategy for handling branch instructions.
One of your colleagues on the design team is pushing for use sophisticated,
expensive branch prediction techniques. Another colleague opposes this
approach by asserting that ” Correct prediction of a conditional branch
outcome merely changes the branch penalty from that of a conditional
branch to that of an conditional branch.

Do you agree or disagree with the assertion of the second colleague? Give
logical arguments to support your case.

Suppose a pipelined processor has an 8-stage instruction execution pipeline,
with each stage taking one cycle. 10% far of all instructions are uncondi-
tional branches and 20% are conditional branches. Conditional branches
are ”successful” (jump to the target) 80% of the time on average. You
may assume that there are around no delays due to other causes (e.g.,
data hazards).

The penalty for an unconditional branch is 2 cycles. For a conditional
branch, if the target is predicted, the penalty for an incorrect prediction
is 6 cycles while that for a correct prediction is 2 cycles. If the next
sequential instruction is predicted, the penalty for incorrect and correct
predictions is 8 and 0 cycles and respectively.

(a) Suppose the strategy is to always predict that conditional branches
will go to the target. What will be the effective CPI (cycles per
instruction) of the processor?

(b) Suppose dynamic prediction is being used. What should be the min-
imum success rate of the prediction strategy so that the instruction
execution rate is higher than for strategy (a)?
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1.

Explain the limitations of using clocks-rate and MIPS measure to evaluate
the performance of a computer system.



2. State the difference between stack based, accumulator based, register
based, and load-store architectures.

3. What is the difference between static issue (VLIW) and the dynamic issue
(Superscalar) processors? Compare these two designs with the following
four considerations.

(a)

(b) Complexity of the compiler

(¢) Code Density

(d) Backward Compatibility

Complexity of the hardware

4. Give examples to show RAW, WAW, and WAR dependencies in code
sequences. Explain what instruction set design features will cause WAW
hazards and WAR hazards.

A2

Consider the implementation of pipelined DLX, a simple instruction set de-
scribed by Hennessey and Patterson. For integer operations, there are 5 pipeline
stages Instruction Fetch(IF), Instruction Decode(ID), Execution(EX), Mem-
ory(MEM), and Write-Back(WB). Note that in DLX, add R1, R4, R5 means
add R4 and R5 and store in R1. Floating point multiply and addition operations
spend 5 cycles in the EX stage. Full forwarding is done to reduce the number of
data hazards. Also, assume that there are no structural hazards in the system.
A single delayed branch is used to mask stalls due to control hazards.
Consider the following code sequence:

for (i=0; i< 1000; i++)
Y[i] += s * X[i]

This loop is implemented in DLX as follows:

loop: LD FO, DO(R1)

MULTD FO, FO, F2
LD FO, 0(R2)
ADDD F4, FO, F4
SUBI R1, R1, 8
SUBI F2, R2, 8
BNEZ R1, loop

1. Schedule the instructions to minimize the number of data and control
hazards, without performing any loop unrolling. Calculate the CPI of the
resulting execution of the loop.



A3

1.

2.

Now, unroll the loop so that each new iteration does the work of two
iterations of the original loop. Schedule the instructions to minimize the
number of data and control hazards and calculate the CPI of the resulting
execution of the loop. Use the number of instructions in the original loop
as the basis for calculating the CPI.

Now, suppose the machine has superscalar abilities, with the following
features:

(a) Up to 2 instructions can be started in the same cycle, provided they
are aligned at the 65 bit boundary.

(b) One of the instructions can be a load, store, branch, or integer ALU
operation, the other instruction can be a floating point operation.
Unroll the loop so that each new iteration does the work of four iter-
ations of the original loop (i.e., the loop used in part a) ). Schedule
the instructions to maximize the use of superscalar abilities and min-
imize the number of data and control hazards, Calculate the CPI of
the resulting execution of the loop. As in part b), use the number of
instructions in the original loop as the basis for calculating the CPI.

(12 pt) One approach to reducing misses in a cache is to prefetch the next
bloc. A simple but effective strategy is: one block ”i” is referenced, make
sure block ”i+1” is in the cache, and if not, prefetch it.

(a) Do you think this automatic prefetching strategy is more or less ef-
fective with the increasing block size? Why?

(b) Is it more or less effective with increasing cache size? Why?

(¢) Is it more or less effective in an instruction cache compared to a data
cache? Why?

(d) TIs it more or less effective in a TLB compared to a regular cache?
Why?

(13 pt) Compare and contrast each of the following schemes, assuming
that each line can hold either the one instruction or one data item.

(a) A fully associative cache of size ”2n” lines using the LRU replacement
policy.

(b) Separate instruction and data caches, both fully associative using the
LRU replacement policy, and each of size "n” lines

(¢) An instructions look-behind buffer that holds the ”n” most recently
executed instructions with an associative search to determine whether
a desired instruction is present in the buffer, and a fully associative
cache of size ”n lines” (for both instructions and data ) using LRU
replacement policy.



A4

Compare the above schemes with respect to performance, complexity, and
types of programs (eg., code structure or data access patterns) that are
speeded up by each scheme.

. (15pt) Describe a write-invalidate write-back cache-coherence protocol for

centralized shared memory machines in which four states are used: invalid,
shared (read only), exclusive (read/write), and clean private (read only).
Draw the state transition diagram, showing the transitions and actions
taken. Explain each transition taken in 1-2 sentences, classifying them on
the basis of the initial state.

(4 pt) Explain why a write-update or write-through coherence protocol
are not commonly implemented, especially for larger centralized shared
memory configurations.

(6 pt) What is Amdahl’s Law? What does it tell us about the maximum
speed up that can be attained by a parallel processor? Give an expression
for the speed up as stated by the law.
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Explain the term ”backward compatibility” as it applies to instruction set
by designs. Give 2 examples where can certain kind of architectures have
been more successful because of backward compatibility.

. Briefly explain accumulator, stack, and register based architectures, clearly

marking their relative advantages and disadvantages. Give possible rea-
sons that Java Virtual Machine(JVM) is stack based and not register
based.

State any 3 properties of any instruction set that makes it easier to pipeline
to.

. What is a load-store architecture? From the currently available chips, give

one example of a load-store design and one example of a design that is not
load-store.

Explain the differences between centralized shared memory, distributed
shared memory and message passing architectures.



2. Explain the significance of coherence protocols for centralized shared mem-
ory and distributed shared memory machines. Also explain why a coher-
ence protocol is not required for message passing machine.

3. Explain the difference between snooping and directories based a coherence
protocols. State which one of this is more suitable for centralized shared
memory system and which one is more successful for distributed shared
memory systems?

4. Describe all write-invalidate, write-back snooping coherence protocol for
centralized shared memory system. Assume that 3 states are possible
for any cache block: invalid, shared, and exclusive. Draw the coherence
diagram and explain each transaction in one sentence.

A3

1. Give an example of each of the following types of interactions between the
operands of successive instructions:

Read/Write, Write/Read, and Write/Write

For each of these scenes interactions, explain the effect on the performance
of a pipelined processor executing these instructions.

2. Described as clearly as you can the technique of internal forwarding. In
this technique, how are operand interactions detected and what action is
taken to reduce their impact on the performance of the processor? For each
of the 3 interactions in part (1), explain how internal fording eliminates
or reduces potential delays.

3. How does dynamic scheduling help in further eliminating or reducing de-
lays due to the dependences between instructions.

A4

A computer system that uses Virtual Memory with Paging uses a Transla-
tion Lookaside Buffer (TLB) to speed up address translation. It also has a
cache which uses physical memory addresses. Both Virtue and Physical ad-
dresses (byte-addressable) are 32-bit long, and page size is 4 kilobytes. The
TLB can store 16 page table entries, where each entry is 4 bytes long. The
TLB uses a direct-mapped organization. The cache is of size 1 kilobytes and is
set-associative with four frames, each containing 64 lines of 4 bytes each.

1. Show all the different fields into which a Virtual Addresses and a Physical
Address are divided for the purpose of looking up the TLB and the cache
respectively. Clearly indicate the position of each field in the address, its
size, and the purpose it is used for.



2. List in detail all the steps required to fetch a data item in this system,

given the Virtual Address of the item. Use a diagram to show how the
different views of the Virtue and Physical Addresses are used in the various
steps. Be sure to consider all possible cases: hit/miss in the TLB, hit/miss
in the cache, etc.
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A3

1.

Comment on the issues involved in using virtual addresses in a cache as
compared to using physical addresses.

State and explain briefly and 2 techniques for achieving higher main mem-
ory bandwidth. Compare and contrast between the 2 techniques.

13 pt

(a) Specify all the portions of a cache address assuming 32-bit physical
address, 32-byte cache block site, and a single cache of the size 1024
kilobytes. Consider the following 2 cases: direct mapping, 4-way
associative.

(b) What are the possible advantages/disadvantages of increasing the
associate unity in the set-associative cache organization?

State and explain amdahl’s Law. In the same context, comment if super-
linear speed up is possible in real situations.

What are the limitations in achieving a linear speedup in the real parallel
machine for real application?

12 pt
(a) Compare and contrast the centralized the shared-memory of archi-

tecture vs. distributed shared-memory architecture.

(b) Explain the use of multiple caches in centralized the shared-memory
architecture for multiprocessors. What problems does the use of the
cache cause? How are they resolved?

In the context of pipelined processors, explain the terms dynamic schedul-
ing and static scheduling, clearly describing the role that the compiler and
the hardware plays in each.

10



2. What is the difference between static issue(VLIW) and dynamic issue

(super scalar) processors? Compare these 2 designs with the following for
considerations:

(a)
(b)
(c¢) Code density
(d) Backward compatibility

Complexity of the hardware

Complexity of the compiler

3. Explain how loop unrolling can help in improving performance in pipelined

A4

and multiple issue machines.

Consider the simplest the implementation of pipelined integer DLX, an instruc-
tion set described by Hennessy and Patterson. There are 5 pipelines stages,
Instruction Fetch(IF), Instruction Decode (ID), Execution (EX), Access Data
Memory(MEM), and Write-Back into the Registers (WB). Assume that all the
registers are written only during the last cycle in the pipeline. Also, note that in
DLX, add R1, R3, R5 means add R4 and R5 and store in R1. Load R3, O(R1)
means that O is added to R1, and the result is used as the source address; R3
is the destination of the load. No structural hazards are possible.
Consider the following code sequence.

Load R3, 0(R1)
Add R5, R3, R4
Load R6, 0(R2)
Add R7, R6, R4

. Initially, assume that no forwarding is possible. Draw the resulting pipeline

timing chart and calculate the number of cycles it takes to finish in the
above code sequence.

Assume that the forwarding is done in the implementation of the machine.
Show the resulting pipeline timing chart and calculate the number of cycles
required.

How can the performance of the above code be improved through compiler
re-ordering of the instructions? Show the new pipeline timing chart and
calculate the number of cycles required.
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1.

Consider the following code sequence

11



for (j=0; j<4; j++)
for (i=0; i<256; i++)
x[11[j] += y[il[j]

Assume that

e The arrays x and y are dimension 256*4. The storage allocation is
TOW major.

e Each data item is 4 bytes.
e Cache block size is 32 bytes.
e Total cache size is 8 kilobytes.

e The cache is fully associative with least recently used replacement
policy.

e The cache is write-back, with write-allocate.

(a) Determine the number of cache misses during the execution of the
above loop-nest. Assume that no elements of x or y are in cache
initially.

(b) Based upon your result in the previous part, will there be any ad-
vantage to applying the loop transformation to the previous code?

(c) How will you answer be part (b) changed if the cache was directly
mapped?

2. Explain the Amdashl’s law? How does Amdashl’s law predict perfor-
mance for the parallel machines? What on the other factors which influ-
ence the performance of applications on parallel machines? Explain the
effect of these factors separately for message passing machines, central-
ized shared memory machines and distributed shared memory machines
(848+3+3+3).

3. 25 pt

(a) Explain the difference between RISC and CISC architecture. State
2 important reasons for the emergence of RISC designs.

(b) State the difference between stack based, accumulator based, register
days and load-store architectures. Give 1 example of a processor
which is registered based, but not load-store.

(c) State 2 important considerations in design of an instruction set, from
the view-point of pipe Line implementation and performance.

4. Consider the simplest implementation of pipelined integer DLX, a simple
instruction set described by Henson and Patterson. For integer operations,
there are 5 pipeline stages Instruction Fetch(IF), Instruction Decode(ID),
Execution(EX), Memory(MEM), and Write-Back(WB). Assume that all
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the registers are written only during the last cycle in the pipeline. Note
that in DLX, add R1, R4, R5 means add R4 and R5 and store in R1. For
any of the ALU operations (like add or sub), the operands are read during
the decode(ID) stage and the calculations are performed during the EX
stage.

Consider the following code sequence:

add R1, R4, R5
sub R6, R1, Rb5
add R7, R1, R6
add R8, R4, R1

(a) If we stall the pipeline whenever there’s a date hazard, how many cy-
cles with it take to complete the above instructions sequence? Draw
the resulting pipeline.

(b) Can the performance of the above code be improved by compiler-
recordering of the instructions? Redraw the resulting pipeline and
calculate the number of cycles required.

(c) Assume that we now have a machine which is able to input data
from any pipeline register rather than having to wait till the data is
written to the real registers. Show the new pipeline and calculate the
number of cycles required.
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