
A New Approach to Managing the Evolution of OWL Ontologies

Chuming Chen and Manton M. Matthews
Department of Computer Science and Engineering

University of South Carolina
Columbia, SC 29208, USA

Abstract The growing demand for large and complex on-
tologies present new challenges related to their design,
maintenance and evolution. In this paper, we propose an
approach to managing the evolution of large OWL on-
tologies. Unlike conventional approaches that focus on
the versioning of entire ontology, we use an evolutionary
log to track the lifeline of each axiom or annotation that
appears in an evolving ontology. We introduce the for-
mal model for our ontology evolution framework, present
related algorithms, and discuss the potential implementa-
tion scenarios.

Keywords: Description Logics, OWL, Ontology Evolution,
Change Management, Metadata

1 Introduction

There have been great efforts in building ontologies
to support annotating, integrating and analyzing diverse
sources of high-throughput biomedical data. The NCI
Thesaurus [7] and the Gene Ontology [5] are examples
of complex and important ontologies in the domains of
biology and biomedicine. Such ontologies are usually
very large and comprise tens to hundreds of thousands of
classes. They constantly evolve to incorporate the latest
experimental discoveries and biomedical knowledge.

The dynamic nature of the biomedical domains and the
imperfect knowledge acquisition process suggest that on-
tology developers unavoidably need to revise an ontol-
ogy. For the large ontologies, more and more often, the
changes are only made to a very small portion of the on-
tology. Simply creating another version of the entire on-
tology when small changes are made is an inefficient solu-
tion. Detecting changes involves comparing two versions
of a large ontology, which makes tracking changes of even
small fragment of an ontology very expensive.

Large ontologies are usually developed collaboratively
by a group of domain experts and ontology engineers
with each member contributing to the small fragment of
an ontology, which falls into their expertise. In order to
guarantee the quality of an ontology, generally, only a

small number of people should have the authority to make
changes to that part of the ontology. This also facilitates
tracking the history of changes.

Modern ontologies are developed with logic-based on-
tology languages such as OWL [11]. An OWL ontology
consists of a set of axioms and annotations. The axioms
explicitly make statements that say what is true about the
modeled domain. The annotations associate some human
friendly information with the elements of an ontology. In
this paper, we propose using an evolutionary log to track
the lifelines of axioms and annotations in an evolving on-
tology. We do this by associating each axiom or annota-
tion with a set of metadata (e.g. ownership, access privi-
leges, time stamps of changes etc.). Using an evolutionary
log, we can easily reconstruct the evolution of the entire
ontology.

The rest of paper is structured as follows: Section
2 introduces the axiomatic ontology model. Section
3 presents the formal model of our ontology evolution
framework. Section 4 describes the related algorithms.
Section 5 discusses the implementation scenarios. Sec-
tion 6 reviews the related work. We summarize the paper
and outline future work in Section 7.

2 Axiomatic Ontology Model

Description Logics (DL) [2] are a family of concept-based
knowledge representation formalisms. They describe the
domain of interest in terms of concepts, roles and individ-
uals with precise semantics to enable deducing implicit
knowledge from explicitly represented knowledge.

OWL [11] is a family of Description Logics based on-
tology languages designed to enable automated machine
reasoning on the Semantic Web. OWL includes three sub-
languages with incremental expressiveness: OWL-Lite,
OWL-DL and OWL-Full. OWL-DL is a rich ontology
language that supports high expressiveness and decidable
reasoning. OWL-DL is a syntactic variant of the De-
scription LogicSHOIN (D) [10], whereD is a con-
crete domain of data types. As a logical theory, an OWL-
DL ontology consists of a set of axioms that reference a

set of classes, properties and individuals (concepts, roles
and individuals in DL). An individual is a single object
in the domain. A class is a group of objects in the do-
main. A property represents the binary relationship be-
tween two classes. More expressive Description Logics
SHOIQ [9], SROIQ [8] and their corresponding auto-
mated reasoning algorithms were developed very recently.
The logicSROIQ has been adopted as the logic founda-
tion for the next generation of OWL (OWL 2 [14]).

3 Ontology Evolution

3.1 Motivating Example

Most existing work on ontology evolution are based on
either frame-like or object models, which focus on the en-
tities (classes, properties and individuals) in the ontology.
Instead, we use axiomatic ontology model that focuses on
the changes to the axioms instead of entities.

As a running example, we consider two versionsOi

andOi+1 of a simple evolving ontology modeling an aca-
demic department shown as two sets of axioms in Table 1.
For reader’s convenience, we use OWL 2 functional-style
syntax instead of the more verbose XML syntax. We also
show their corresponding DL syntax.

Assume ontology engineers Alice and Bob were in
charge of maintaining this simple ontology. In ontol-
ogy Oi, Alice modeled theStudent as being disjoint
with Employee (Ax2) and commented it with an anno-
tation axiom Ax3. Note Ax3 has no corresponding DL
syntax, because it only provides human-friendly informa-
tion and bears no logical meaning. In ontologyOi, John
was aStudent. Mary was anAssistant Professor.
The assertion(John, Mary) : hasSupervisor is satis-
fiable with respect to the ontologyOi, because the do-
main of hasSupervisor role is Student, the range of
hasSupervisor role isFaculty, Assistant Professor

is aFaculty.
Later on in the ontologyOi+1, Bob introduced a

new classTA (TA ⊑ Student ⊓ Employee). To
keep the ontology consistent, he removed the axiom
Student ⊑ ¬Employee from the ontology. In the on-
tology Oi+1, Mary became anAssociate Professor.
John became aTA. Since the domain ofhasSupervisor

role isStudent and the range ofhasSupervisor role is
Faculty, the assertion(John, Mary) : hasSupervisor

is still satisfiable with respect to the ontologyOi+1.

3.2 Ontology Evolution Management

3.2.1 Change History

Ontology development is in essence an ontology evolu-
tion process represented by a sequence of changes to the

ontology. Therefore, it is indispensable that we need de-
tailed history of all the changes ever made.

What were the changes? For the axiomatic ontol-
ogy model used in this paper, we define the primitive
change operations from ontologyOi to ontologyOi+1

to be adding or removing axioms or annotations, denoted
asA+(Oi → Oi+1) andA−(Oi → Oi+1) respectively.
More complex change operations can be defined as a se-
quence of these primitive change operations. In our run-
ning example, we can identify the changes as follows:
A+(Oi → Oi+1) = {Ax8, Ax9, As4, As5}, A−(Oi →
Oi+1) = {Ax2, Ax3, As1, As2}.

Who has made the changes? We certainly want to
record who has made the changes. This is particularly
important in the collaborative ontology development en-
vironment. The expertise and priority of ontology devel-
opers are key factors in evaluating the quality of changes.

When did the changes happen? Apparently, we also
want to know when the changes were made. In our run-
ning example, changes occurred between versionOi and
Oi+1. The version numbers of an evolving ontology can
be mapped to some real world timestamps.

Were there any more supplementary changes? Since an
OWL ontology is a logical theory, the changes we made in
one part of the ontology may have logical consequences
on the rest of the ontology. In order to maintain the con-
sistency of the ontology and repair any inconsistencies,
we may end up introducing more changes. In our run-
ning example, Bob was trying to add a new classTA by
stating the axiom Ax8 (TA ⊑ Student ⊓ Employee),
which is contradictory to the axiom Ax2 (Student ⊑
¬Employee). To fix the inconsistency, he removed the
axiom Ax2 and associated annotation Ax3 from the on-
tologyOi+1.

What was the rationale behind the changes? Ideally,
the reason behind any of the changes we made should be
recorded. This may include the intentions to model the
changes in the domain or express our knowledge in a bet-
ter way.

3.2.2 Access Control

In order to support collaborative ontology development
and guarantee the quality of an ontology, some access
control restrictions to different parts of an ontology should
be imposed such that they can be modified by the devel-
opers with proper access privileges and expertise. As a
result, the ontology evolution management system should
also incorporate fine-grained access control model. Fur-
thermore, if an ontology is designed to provide selective
sharing or reasoning service, knowledge hiding is essen-
tial due to privacy and security concerns.

In our running example, the ontology was originally
developed by Alice. If Alice did not want Bob to remove

Table 1: An Evolving Ontology of Academic Department
Oi OWL Functional-style Syntax Description Logic Syntax
TBox:
Ax1: SubClassOf(Faculty Employee) Faculty ⊑ Employee

Ax2: DisjointClasses(Student Employee) Student ⊑ ¬Employee

Ax3: EntityAnnotationAxiom(OWLClass(Student)
Comment(Student is not an employee))

Ax4: SubClassOf(AssistantProfessor Faculty) AssistantProfessor ⊑ Faculty

Ax5: SubClassOf(AssociateProfessor Faculty) AssociateProfessor ⊑ Faculty

Ax6: ObjectPropertyDomain(hasSupervisor Student) ⊤ ⊑ ∀hasSupervisor−.Student

Ax7: ObjectPropertyRange(hasSupervisor Faculty) ⊤ ⊑ ∀hasSupervisor.Faculty

ABox:
As1: ClassAssertion(Mary AssistantProfessor) Mary : AssistantProfessor

As2: ClassAssertion(John Student) John : Student

As3: ObjectPropertyAssertion(hasSupervisor John Mary) (John, Mary) : hasSupervisor

Oi+1 OWL Functional-style Syntax Description Logic Syntax
TBox:
Ax1: SubClassOf(Faculty Employee) Faculty ⊑ Employee

Ax4: SubClassOf(AssistantProfessor Faculty) AssistantProfessor ⊑ Faculty

Ax5: SubClassOf(AssociateProfessor Faculty) AssociateProfessor ⊑ Faculty

Ax6: ObjectPropertyDomain(hasSupervisor Student) ⊤ ⊑ ∀hasSupervisor−.Student

Ax7: ObjectPropertyRange(hasSupervisor Faculty) ⊤ ⊑ ∀hasSupervisor.Faculty

Ax8: SubClassOf(TA ObjectIntersectionOf(Student Employee)) TA ⊑ Student ⊓ Employee

Ax9: EntityAnnotationAxiom(OWLClass(TA)
Comment(TA is both student and employee))

ABox:
As3: ObjectPropertyAssertion(hasSupervisor John Mary) (John, Mary) : hasSupervisor

As4: ClassAssertion(Mary AssociateProfessor) Mary : AssociateProfessor

As5: ClassAssertion(John TA) John : TA

any class or property definitional axioms related to the
classFaculty, i.e. Ax1, Ax4, Ax5, Ax6, Ax7, she could
achieve this by setting the permissions on those axioms to
be only writable by herself. This kind of fine-grained ac-
cess control is impossible if the smallest unit an ontology
evolution management system can handle is the whole on-
tology.

3.2.3 Inference

One of the important tasks of ontology management is
to support logic-based automated reasoning and querying
services. The ultimate goal of maintaining an evolving
and consistent ontology is to use the ontology and its au-
tomated reasoning services to derive answers to queries
asked by the agents on the Semantic Web. To facilitate
query evaluation, a set of inferred axioms can be precom-
puted by a DL reasoner and materialized with the explic-
itly asserted axioms.

In our running example, Ax8 impliesTA ⊑ Student

and TA ⊑ Employee. We can do the reasoning of-
fline and save these two inferred axioms with the rest of
axioms. This eliminates the run-time reasoning during
query answering process. To support offline reasoning,
the ontology management system then needs to distin-
guish whether the changes are made to the explicit model
or to the inferred model, and have effective methods for

handling these changes.

3.3 General Approach

Our approach associates each evolving ontology with an
evolutionary log, which keeps track of the lifeline of each
axiom or annotation in the ontology. Each version of the
evolving ontology consists a set of active axioms and an-
notations at that time. The schematic representation of
the evolutionary log for our running example is shown in
Figure 1. Unlike most other existing research, our view of
ontology evolution focuses on individual axiom or anno-
tation, not the ontology as a whole.������� �� �� �	 �	
� ���
��
��
��
��
��
��
��
��
����������������

�� ������ ��

Figure 1: Schematic View of Evolutionary Log

The Timestampmodel explicitly labels time-varying

information with a time. TheSnapshotmodel associates
each state of the domain knowledge with a time. In our
axiom-centric approach, we break down the evolution of
ontology as the evolution of each individual axiom or an-
notation. We capture its history by labeling it with a pair
of timestamps representing its creation and retirement.

In the interval-based temporal domain, possible posi-
tions of two intervals on a linear time line can be char-
acterized by Allen’s interval relations [1]. In the point-
based temporal domain, flow of time is represented as
a sequence of discrete and linearly ordered time points.
In this paper, the evolution of axioms or annotations fall
into the point-based temporal domain, which is a finite se-
quence of linearly ordered time points correspond to the
versions of an evolving ontology.

For an axiom, theValid-timedenotes the time when the
facts stated by the axiom are true with respect to the mod-
eled domain. TheTransaction-timedenotes the time when
an axiom is stated in the ontology. We useTransaction-
time to record the time when an axiom or annotation is
added to or removed from the ontology.

When an axiom is initially created, a data structure
containing metadata about it is also created. We call this
data structure “anode” as motivated by the notion of “in-
ode” used to maintain the information about files in the
Unix/Linux file system. The anodes of an axiom store
metadata such as user and group ownership, permissions,
timestamps of creation and retirement, who created it, and
who made it retired etc.

3.4 Formal Model

We now present a formal model for an evolving ontology
based on the notions of axiom log and evolutionary log.
Definition 1 (Ontology) An OWL 2 ontologyO contains
a set of axioms and annotations. The axioms can be dec-
larations, axioms about classes, axioms about object or
data properties, and assertions (sometimes also called
facts). Annotations are made like axioms in order to sim-
plify the structural specification in OWL 2 [14].
Definition 2 (Lifeline) . The life line of an evolving ontol-
ogyO is represented as a finite sequence of transaction
timesT ⊆ N , whereN is linearly ordered set ofnatural

numbers that correspond to the version numbers of an
evolving ontology.

The history of each axiom in the evolving ontology is
tracked by an axiom log that contains the axiom and as-
sociated metadata as defined below.
Definition 3 (Axiom Log). An axiom log
AL(α) for an axiom or annotation α ∈ O
is a pair of 〈α, anode〉, anode is a tuple of
〈id, type, uid, gid, acl, ctime, mtime, luid, comment〉,
where id is an unique ID for the anode;type indicates

whether axiomα is explicitly asserted axiom(0) or
inferred axiom(1); uid is the id for the owner ofα; gid
is the id for the group owner ofα; acl determines who
can readα, and who can write on the anode ofα such
that eventually retires it;ctime tells whenα and its anode
was created;mtime tells when the anode ofα was last
modified; luid tells who was the last one modified the
anode;comment is used as a short note.

Note,α itself can not be modified, only its anode can
be modified. Ifα is to be modified, it will be a different
axiom or annotation. The pair of[ctime, mtime], where
ctime, mtime ∈ T are the start and end time of the axiom
log. For example,[i, current] indicates that the axiom
log was created at timei and hasn’t ended yet. “current”
is a special time point indicates the current time or current
version of an evolving ontology. Whenα was retired at
time j, its mtime will be changed from “current” to j.
We do not reuse the retired axiom log, if the same axiom
or annotation is introduced again, it will be assigned a
new id and starts a new axiom log.α may have multiple
axiom logs during its evolution. We useα and its anode
to uniquely identify an axiom log. Similar approach has
been used in the Gene Ontology project [5], where ids for
the GO terms are not deleted from the ontology, they are
only marked as obsolete.
Definition 4 (Access Control List). For a given axiom or
annotationα, the permissions of specific users or groups
of users can be administrated by an access control list
(ACL). The list specifies who is allowed to accessα and
its anode, and what operations are allowed.

We use three distinct categories:user, group, and
others to managing the permissions. The owner ofα

comprises theuser category. Permissions assigned to the
user category are only applicable to that user.α can also
be assigned to agroup, which comprises itsgroup cate-
gory. Permissions assigned to thegroup category are only
applicable to the members of that group except the owner.
Users not in both categories comprise theothers cate-
gory. There are two basic permissions that can be applied
to α: 1) read permission, which grants user the permis-
sion to readα. 2)write permission, which grants user the
permission to modify the anode metadata. Note that the
write permission impliesread permission.

The schema proposed here is just one way to provide
fine-grained access control to managing ontological arti-
facts. It is possible to impose other kinds of access control
mechanisms.
Definition 5 (Evolutionary Log) . For a given evolving
ontologyO, we define the evolutionary logEL as a pair
of 〈O,L〉, whereO is associated evolving ontologyO,
L =

⋃
∀α∈O

AL(α).
An evolutionary log contains the set of axiom logs for

each axiom or annotation that ever appeared in the evolv-

Table 2: An Evolutionary Log of Academic Department Ontology
Axiom anode
SubClassOf(Faculty Employee) {Ax1, 0, 10, 30, rwr-r-, 1, current,10, ‘’ }
DisjointClasses(Student Employee) {Ax2, 0, 10, 30, rwrwr-, 1, i, 20, ‘’ }
EntityAnnotationAxiom(OWLClass(Student) {Ax3, 0, 10, 30, rwrwr-, 1, i, 20, ‘’ }

Comment(Student is not an employee))
SubClassOf(AssistantProfessor Faculty) {Ax4, 0, 10, 30, rwr-r-, 1, current,10, ‘’ }
SubClassOf(AssociateProfessor Faculty) {Ax5, 0, 10, 30, rwr-r-, 1, current,10, ‘’ }
ObjectPropertyDomain(hasSupervisor Student){Ax6, 0, 10, 30, rwr-r-, 2, current,10, ‘’ }
ObjectPropertyRange(hasSupervisor Faculty) {Ax7, 0, 10, 30, rwr-r-, 2, current,10, ‘’ }
SubClassOf(TA ObjectIntersectionOf {Ax8, 0, 20, 30, rwrwr-, i + 1, current, 20, ‘’ }

(Student Employee))
EntityAnnotationAxiom(OWLClass(TA) {Ax9, 0, 20, 30, rwrwr-, i + 1, current, 20, ‘’ }

Comment(TA is both student and employee))
ClassAssertion(Mary AssistantProfessor) {As1, 0, 10, 30, rwrwr-, 2, i, 20, ‘’ }
ClassAssertion(John Student) {As2, 0, 10, 30, rwrwr-, 2, i, 20, ‘’ }
ObjectPropertyAssertion(hasSupervisor {As3, 0, 10, 30, rwrwr-, 3, k − 1, 10, ‘’ }

John Mary)
ClassAssertion(Mary AssociateProfessor) {As4, 0, 20, 30, rwrwr-, i + 1, current, 20, ‘’ }
ClassAssertion(John TA) {As5, 0, 20, 30, rwrwr-, i + 1, k − 1, 20, ‘’ }

ing ontology. Let theuid of “Alice” be 10, theuid of
“Bob” be 20, thegid of the group “Alice” and “Bob” are
in be 30, the evolutionary log of our running example is
shown as in Table 2.
Definition 6 (Version of an Ontology). A version of an
evolving ontologyO at t ∈ T , V O(O, t), is defined as a
finite set of axioms and annotationsA, ∀α ∈ A, AL(α) ∈
EL, AL(α).anode.ctime≤ t ≤ AL(α).anode.mtime.

4 Evolutionary Log Operations

4.1 Operations on Axioms

Algorithm 1 is used to add a new axiom or annotation
to the evolutionary logEL of an evolving ontologyO at
time t. Note, if an axiom or annotationα is currently ac-
tive in the evolutionary logEL, we skip this step. But if it
was in theEL and has been retired, we then need to addα

as a new axiom log to theEL. This action may make the
ontology logically inconsistent, so one of the supplemen-
tary actions is checking the consistency of the updated
ontology and resolving any inconsistencies. The routine
repairConsistency(O) may end up adding or removing an-
other set of axioms. We refer the readers to [15] for the
techniques and algorithms for repairing ontology incon-
sistencies. Algorithm 3, retrieveOntology(EL, t), is used
to retrieve a version of ontology at a particular time and is
defined later.

Once an axiom or annotation is created, it will be valid
in the evolving ontology until it is retired. As mentioned
before, axiom or annotation itself is not allowed to be
modified after its creation, only the anode associated with
it can be modified. To modify the anode, users must have
the write permission. Thetype, uid andctime can not

Algorithm 1 Add an axiom or annotation at timet
Input : an axiom or annotationα, evolutionary logEL, version numbert,

current editor user idcuid, current editor group idcgid

Output : updated evolutionary logEL

if AL(α) ∈ EL andAL(α).anode.mtime == “current” then
return

otherwise
AL(α).α := α

AL(α).anode.id := “new id”
AL(α).anode.type := 0
AL(α).anode.uid := cuid

AL(α).anode.gid := cgid

AL(α).anode.acl := “rwrwr-”
AL(α).anode.ctime := t

AL(α).anode.mtime := “current”
AL(α).anode.luid := cuid

EL := EL
⋃

AL(α)
O := retrieveOntology(EL, t)
if isConsistent(O) then

return EL

otherwise
repeat

repairConsistency(O)
until isConsistent(O)
return EL

end if
end if

be changed once they were created. Thus, the users can
only modify the fields ofacl, mtime, luid andcomment.
If an axiom or annotation is still active in the evolution-
ary logEL, mtime will be marked as “current”, so we
don’t need to update this field every time we change other
axioms or annotations in the evolving ontology.

Algorithm 2 is used to retire an axiom or annotation
from the evolutionary logEL of an ontologyO at timet.
Note, in order to maintain the complete history of all the
axioms ever occurred in the ontology, we don’t remove
retired axiom logs from the evolutionary log. The pair

Algorithm 2 Retire an axiom or annotation at timet
Input : an axiom or annotationα, evolutionary logEL,

version numbert, current editor user idcuid

Output : updated evolutionary logEL

if allowToChangeAnode(AL(α), cuid) = = falsethen
return

Otherwise
if AL(α) ∈ EL andAL(α).anode.mtime != “current” then

return
otherwise

AL(α).anode.mtime := t

AL(α).anode.luid := cuid

return EL

end if
end if

[ctime, mtime] in the anode of a retired axiom tells us
the period it has been active in the evolving ontology.

4.2 Retrieve Version of an Ontology

Algorithm 3 is used to select a specific version of an
evolving ontologyO at time t ∈ T . The algorithm is
quite straightforward, it basically takes the union of all
the axioms and annotations in the evolutionary log that
were active at that particular time.

Algorithm 3 Retrieve a specific version of an evolving ontologyO
form evolutionary logEL

Input : version numbert, evolutionary logEL

Output : a versionΩ of an evolving ontologyO

Ω := ∅
for all AL(α) ∈ EL do

if AL(α).anode.ctime ≤ t ≤ AL(α).anode.mtime then
Ω := Ω

⋃
{α}

end if
end for
return Ω

5 Implementation Scenarios

5.1 Rich Axiom Annotations

The anode information associated with an axiom or an-
notationα is essentially the annotations forα. Therefore,
if we consider our evolutionary log as an ontology and
being represented as an OWL document, the annotations
then can be embedded with the axioms or annotations in
the ontology. In current OWL DL specification (OWL
1.0) [16], annotations can only be used for “entities”
(i.e., classes, properties, individuals) via a set of Annota-
tionProperties. One of the design goals of OWL 2 is to
support annotations on axioms. We can not only annotate
a classc, but also annotate any axiom references the
classc. For the axiom SubClassOf(Faculty Employee)

in our evolutionary log, we can add its anode metadata
annotations like the follows:

SubClassOf(
Annotation((anode:id) “Ax1”)
Annotation((anode:type) 0)
Annotation((anode:uid) 10)
Annotation((anode:gid) 30)
Annotation((anode:acl) “rwrwr-”)
Annotation((anode:ctime) 1)
Annotation((anode:mtime) “current”)
Annotation((anode:luid) 10)
Annotation((rdfs:comment) “first axiom”)
Faculty Employee)

Apparently, using annotations on axioms enriches
them with the critical metadata that are important for any
collaborative ontology development. The drawback of
this approach is that as every axiom is described with
some extra annotations, the size of our evolutionary log
will increase drastically, and become very verbose and
cumbersome to handle. One of the persistent storage for
an OWL ontology is an OWL document stored as a plain
text file in the file system. Whenever we need to access
the ontology model, the OWL document is read, parsed
and loaded into memory. These procedures seem to work
fine when the ontology is in a reasonable size. But when
the size of an ontology exceeds the physical capacity
of our machine, this approach will doom to fail. It is
very inefficient to read, parse the entire large ontology
when we are only interested in a small fragment of the
ontology. Therefore, we need alternative solutions.

5.2 Temporal Database

Both scalability and efficiency are keys to the success
of large-scale OWL ontologies. Two well-known ontol-
ogy management systems Jena [4] and Sesame [3] have
provided persistent storage for ontologies using relational
databases as the back-end. But their storage models are
based on RDF triple model, which is inefficient for very
large ontologies. They do not take into consideration
the semantics of OWL ontology and its rich logical con-
structors and descriptions. Many useful query operations
will involve the join of very large triple tables. Further-
more, they do not maintain detailed metadata related to
the changes. We propose to implement our ontology
evolution approach using relational database management
systems with well-designed schema that capture the struc-
tural specifications of OWL 2 ontology. The evolutionary
log is actually a temporal database managing the changes
of an evolving ontology and related metadata. The ben-
efit of this approach is that we can use existing database
technology to provide a scalable ontology evolution man-
agement framework. On top of that, we can build efficient
DL-based reasoning and querying services.

6 Related Work

Eder and Koncilla [6] propose using temporally labeled
directed graph to represent changing knowledge. The
concepts and relations between them are explicitly labeled
with their valid times to enable identifying ontologies that
were valid in the past. In this paper, we focus on axiom-
centric OWL ontology model, which is more expressive.
We use transaction time instead of valid time for the life-
line of an axiom or annotation.

Marwaha and Bedi [13] propose combining the tempo-
ral frame and slot versioning to create temporally tagged
ontologies with embedded version information to enable
applications to work with multiple versions of an ontol-
ogy. Their approach can only keep track of the evolution
of concepts in an ontology, not the axioms or annotations.
They do not take into consideration the permissions asso-
ciated with the axioms or annotations, which is the basic
requirement for collaborative ontology engineering.

7 Summary and Future Work

In this paper, we use timestamp temporal model and point
based transaction time to describe the evolution of an ax-
iom or annotation through its lifetime. i.e from its creation
to ultimate retirement. Instead of maintaining different
versions of an evolving ontology, we use an evolutionary
log to track the lifelines of axioms and annotations by as-
sociating them with a set of metadata (e.g. ownership,
access privileges, time stamps of changes etc.).

We present the algorithms for manipulating an evolu-
tionary log. We argue that document-centric and rich ax-
iom annotation based approach is not suitable for imple-
menting our ontology evolution framework. We suggest
developing an ontology evolution management system us-
ing temporal database for the sake of scalability and effi-
ciency.

Building a temporal database model for our ontology
evolution framework is under way. We also plan to do
evaluation using OWL ontology benchmark data set [12].

References

[1] James F. Allen. “Reasoning about Plans”. Temporal Rea-
soning and Planning, p. 2-68. Morgan Kaufmann, 1991.

[2] Franz Baader, Diego Calvanese, Deborah L. McGuinness,
Daniele Nardi and Peter F. Patel-Schneider. “The Descrip-
tion Logic Handbook: Theory, Implementation and Appli-
cation”. Cambridge University Press, 2003.

[3] Jeen Broekstra, Arjohn Kampman and Frank van Harme-
len. “Sesame: A Generic Architecture for Storing and

Querying RDF and RDF Schema”. In The Semantic Web
- ISWC 2002, LNCS, Vol. 2342, p. 54–68. 2002.

[4] Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave
Reynolds, Andy Seaborne and Kevin Wilkinson. “Jena: Im-
plementing the Semantic Web Recommendations”. In Pro-
ceedings of the 13th international World Wide Web confer-
ence, p. 74-83, New York, NY, USA, 2004.

[5] Gene Ontology Consortium. “The Gene Ontology (GO)
Database and Informatics resource”. Nucleic Acids Re-
search, 32(Database-Issue): 258-261, 2004.

[6] Johann Eder and Christian Koncilia. “Modelling Changes
in Ontologies”. In OTM Workshops, p. 662-673, 2004.

[7] Jennifer Golbeck, Gilberto Fragoso, Frank W. Hartel,
James A. Hendler, Jim Oberthaler and Bijan Parsia. “The
National Cancer Institutes Thesaurus and Ontology”. Jour-
nal of Web Semantics, 1(1):75-80, 2003.

[8] Ian Horrocks, Oliver Kutz and Ulrike Sattler. “The Even
More IrresistibleSROIQ”. In KR 2006, p. 57-67. AAAI
Press, 2006.

[9] Ian Horrocks and Ulrike Sattler. “A Tableaux Decision Pro-
cedure forSHOIQ”. In Proceedings of the 19th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
p. 448-453, 2005.

[10] Ian Horrocks and Peter F. Patel-Schneider. “Reducing
OWL Entailment to Description Logic Satisfiability”. Jour-
nal of Web Semantics, 1(4): 345-357, 2004.

[11] Ian Horrocks and Peter F. Patel-Schneider, and F. V.
Harmelen. “FromSHIQ and RDF to OWL: The Making
of a Web Ontology Language”. Journal of Web Semantics,
1(1): 7-26, 2003.

[12] Li Ma, Yang Yang, Zhaoming Qiu, GuoTong Xie, Yue Pan
and Shengping Liu. “Towards a Complete OWL Ontology
Benchmark”. ESWC 2006: p. 125-139, 2006.

[13] Sudeep Marwaha and Punam Bedi. “Temporal Extension
of OWL Ontologies”. International Journal of Information
Technology, 4(1): 53-60, 2007.

[14] Boris Motik, Peter F. Patel-Schneider, Ian Horrocks.
“OWL 2 Web Ontology Language: Structural Specifica-
tion and Functional-Style Syntax”. W3C Working Draft 11
April 2008, http://www.w3.org/TR/owl2-syntax/.

[15] Stefan Schlobach, Zhisheng Huang, Ronald Cornet and
Frank van Harmelen. “Debugging Incoherent Terminolo-
gies”. Journal of Automated Reasoning, 39(3): 317-349,
2007.

[16] Michael K. Smith, Chris Welty, Deborah L.
McGuinne. “OWL Web Ontology Language Guide”.
http://www.w3.org/TR/owl-guide/, 10 February 2004.

