

A Web Interface for Nessus Network Security Scanner

Chuming Chen Manton M. Matthews
Department of Computer Science and Engineering

University of South Carolina
Columbia, SC 29208, USA

Abstract

A fully functional web interface (NessusWeb) for the
Nessus network security scanner has been developed.
NessusWeb provides public accessibility for authorized
users and supports SSL communication, multiple sessions
and centralized scan configurations and management of
scan reports. It was created using a multi-tier distributed
architecture. The client tier is a web browser. The Apache
Secure Web Server including Apache HTTP server and
Tomcat serves as the web tier. As a servlet engine,
Tomcat is used to generate dynamic web content and
monitor the Nessusd server through the SSL channel
using the NTP (Nessus Transport Protocol). The Nessusd
server forms the business tier, which performs the actual
network security scans. User scan configurations and
network vulnerability scan results generated by the
Nessusd server are saved into a MySQL database, which
provides the back-end storage. Two user interfaces were
implemented, one for the administrator and one for all
other users. This paper presents an overview of the
design and implementation of the NessusWeb project.

Keywords

NessusWeb, Nessus, Network Security Scanner,
Apache

1. Introduction

 A network security scanner is a software tool that
can remotely audit a given network and determine
whether “attacker” has broken into it or whether
there are vulnerabilities in the network. As a
network administrator, you can use this tool to check
the vulnerabilities of your network and patch them
before somebody attacks you. Compared to other
commercial network security scanners (Internet

Security Scanner by ISS, STAT Analyzer by Harris,
and Retina by eEye etc.) [1], Nessus is a free and
open source network security scanner [2] for any
POSIX systems. As a security-auditing tool, it is
implemented in a “client – server” architecture. The
server (called Nessusd) is in charge of scanning and
finding the vulnerabilities of a given network. It has
a vulnerability database, which is a set of
vulnerability checks it can perform. The client is a
front-end that is used to monitor and configure the
server. It also serves as a result repository and report
generation tool. SSL (Secure Socket Layer) [10], the
industry standard for security, guarantees the
security of the communication between the client
and server. As of today, there is only one version of
the Nessusd server that runs on any POSIX system,
and there are multiple clients. One called Nessus,
which has a command-line version and a GUI
version that works with GTK [2]. Another has been
written for Win32 (named NessusWX) [3]. For most
of these client tools, the user interface for displaying
the scan report can only be used on the machine
with the client tool installed. Thus accessibility is
limited compared to NessusWeb, which is available
on the Internet. Those client tools can generate scan
reports in different formats (for example, ASCII,
html, PDF, XML, etc.), but the data in these reports
are not conveniently searchable, there is no way to
search for vulnerability about a particular port, or to
show what type of vulnerability check has been
conducted to generate this report. As an
administrator, you may wish to not only check on
the health of your machines, but also have
centralized management of the scan settings and
scan reports, so that you can do network security
analysis. Furthermore, there is no user management

and network security analysis functionalities
integrated into these tools.
 Using a web interface is one of the solutions to
provide convenience and public accessibility for
allowing authorized users to configure and monitor
network security scans. There are some existing web
interfaces [4, 5] that provide certain public
accessibility, but they are not real clients of the
Nessusd server. They are constructed merely by
wrapping a web interface around the Nessus
command line client, a C program for POSIX
systems. In these web interfaces, user inputs from
the html forms were used as the arguments passed to
the Nessus command line client. Since this
command-line tool can only take limited arguments,
these web interfaces are not fully functional client
tools. There is no ways for a user to do complicated
scan configurations, i.e. select plugins, set up plugin
preferences, set scan options and knowledge base
options etc. There is also no direct communication
between those web clients and the Nessusd server.
 The drawbacks of the existing Nessus client tools
provide good justification for developing a new
interface for Nessus Security Scanner. The objective
of this project is to create a new fully functional web
interface, which is publicly accessible for authorized
user and supports SSL communication, multiple
sessions, and centralized management of scan
settings and scan reports. The authors designed and
implemented multi-tier distributed application
architecture [16]. In this architecture, the web browser
is the client tier, the Apache Secure Web Server [6]
serves as the web tier, the Nessusd [2] server is the
business tier, and the MySQL[7] database server
serves as a back-end tier. The project was
implemented using Serlvet [8], JSP (JavaServer
Page) [9], JSSE (Java Secure Socket Extension) [10],
and JDBC (Java Database Connectivity) [11]
technologies.

2. System Design

The existing implementation of the Nessus network
security scanner used “client–server” architecture.
In this architecture, the Nessusd server carries out
most of the business logic (scanning network and
generating scan results). The Nessus client is
basically used to configure and control the scanning
processes. It is also in charge of receiving scan
results sent by the server, formatting them into a

proper format and saving them to local storage.
Putting data management on the client side
inevitably degrades its performance and scalability
with the increase of the number of scanning
processes. Adding a database management system,
which serves as the back-end storage and handles all
the data management, will dramatically increase the
system performance, efficiency and scalability.
 In this project, the authors developed a multi–tier
distributed system. Figure 1 shows this multi-tier
architecture divided into different tiers described in
the following list:

• Client tier ― Web Browser
• Web tier ― Apache Secure Web Server
• Business tier ― Nessusd Server
• Backend tier ― MySQL Database Server

 Although the NessusWeb consists of four tiers as
shown in Figure 1, we can still consider it to be
three-tier application. Because they are distributed
over three different locations: the client machine, the
NessusWeb machine, and the database server
machine at the back end. This kind of three-tiered
application extends the standard client and server
model by placing a multi-threaded application server
between the client application and back-end storage
[12].

2.1 Web Browser

The client tier of the NessusWeb multi-tier
distributed application is basically a web browser,
which allows authorized users to logon to the
NessusWeb system, set up their scan configurations,
send scan configurations and scan requests to the
Apache Secure Web Server. Once a scan is done, the
user can view the scan report, scan history and scan
configurations generated from the Apache Secure
Web Server. The user can also reuse the settings
from the previous scan sessions. As a super user, the
administrator can not only conduct all the operations
allowed for normal users but also manage user
accounts (which includes creating user accounts,
setting user permissions, and generating user
certificates for the Nessusd server), and set up the
Nessusd server and mail server, which will be used
for user registration and user scan report notification
etc. The Apache Secure Web Server running in the
Web tier generates those dynamic web pages. Users
use the web browser to render the pages received
from the web server. In this case, the web client is

 Web
Client

Apache
Secure Web

Server

Nessusd
Server

Client
Tier

Web
Tier

Business
Tier

Backend
Tier

Client
Machine

NessusWeb
Machine

Database
Server
Machine DataBase

Server MySQL

Figure 1 NessusWeb multi-tier distributed architecture

actually a thin client, which usually does not query
databases or communicate with the Nessusd server.
Those heavyweight operations are off-loaded to Java
servlets running on the Apache Secure Web Server.

2.2 Web Server

The Apache Secure Web Server is the actual client
to the Nessusd Server (in charge of scanning the
networks). In addition to handle requests from the
web client, it also has the ability to communicate
with the Nessusd server to configure and monitor
the network scan processes. Furthermore, it can save
all the scan settings and scan results into the
database. If the user wants to view the scan history
or a particular scan report, the web server can
retrieve the information from the database and send
it back to the user web browser. Because scanning
the network is very time-consuming, a lot of
network traffic needs to be generated during this
process, it really doesn’t make sense to keep user
hanging around for a long time. The user will be
detached from the scan process when he finishes
configuring a scan and sending the scan request. An
email with a scan report attached will be sent out to

notify the user once the scan finishes. The scan
results are saved into the database, so the user can
come back and view the results or query against the
database to do network security analysis.

2.3 Nessusd Server

As the business tier of the NessusWeb architecture,
the Nessusd server conducts the actual network scan
operations. The Nessusd server consists of a
vulnerability database (a collection of plugins),
knowledge base of the current active scan and the
scan engine. The network scans performed by the
Nessusd server are coded as external modules
(plugins) written in either C or NASL (Nessus
Attack Scripting Language) [2]. Since the Nessusd is
used to conduct network scans, it should be
configured correctly, and only the authorized user
can use it, this is maintained by a user database
associated with the Nessusd server. In the
NessusWeb architecture, all communication
between the Apache Secure Web Server and the
Nessusd Server is encrypted. The Nessusd server
uses OpenSSL (C implementation of SSL and TLS),
the JSPs or Servlets running in the Apache Secure

Web Server uses JSSE (Java implementation of SSL
and TLS).

Dynamic
HTML pages

Apache-SSL
Web Server

Tomcat

MySQL
Database Server

Nessusd Server

HTTPS
Response

HTTPS
Request

Client Tier

Web Tier

Backend Tier Business Tier

JDBC
JSSE NTP

Figure 2 Implementation technologies used in
the NessusWeb project

2.4 Database Server

As a back-end tier, the database processes and saves
user scan settings that are sent to the Apache Secure
Web Server. When the Apache Secure Web Server
starts communicating with the Nessusd Server, it
will retrieve configuration information from the
database, and use it to construct NTP (Nessus
Transfer Protocol) [2] messages and pass them to the
Nessusd server to monitor and control the scan
process. It also saves the scan results passed back
by the Nessusd server into the database. The users
can retrieve all their previous scan settings and scan
reports by sending requests to the Apache Secure
Web Server. The web server will retrieve the
relevant data from the database, dynamically
generate web pages, and send back to the user web
browser. By operating this fashion, we have
centralized control and management of scan
configurations and scan reports.
 The MySQL database server is used to serve as the
back-end storage tier in this project. The Servlets
running in Tomcat handles all these database access
operations using JDBC. Opening and closing the
database connection is the most frequent and most
expensive operation in this project. Unlike the
standard J2EE [12] applications, which have an
automatic connection pooling mechanism, the pure
JSPs we are using here can’t manage the connection
themselves. To support connection pooling in this
project, we have used the Turbine application
framework [13]. It has all the components that
developers need to create secure web application
including database connection pooling.

3. System Implementation

Several different technologies including Java
Servlets, JSP, Java Secure Socket Extension (JSSE),
Java Database Connectivity (JDBC), Turbine etc.
were used to implement portions of the NessusWeb
project (Figure 2).

3.1 Secure Communication

The current version of the Nessusd server is
designed to only allow access from the authorized

users. Users can either use a combination of login-
name and password or a certificate to access the
server. When the administrator initially installs the
Nessusd server, by default Secure Socket Layer
(SSL) and Transport Layer Security (TLS) [14] are
installed. SSL and TLS are industry standards for
secure communications between clients and servers.
It is possible for the administrator to change this
installation procedure and not install SSL and TLS.
But if this is done NessusWeb will not be able to
communicate with the Nessesd server in a secure
manner. Because the NessusWeb is a web-interface,
with its URL available for public access, its own
security has been the highest priority for the entire
project. Putting the NessusWeb interface pages
under the Apache Secure Web Server provides the
first layer of protection to guarantee the security of
communication between the NessusWeb Client (web
browser) and the web server.
 The second layer of protection is the secure
communication between the JSPs or Servlets
running in the Tomcat JSP container of the Apache
Secure Web Server and the Nessusd server. The
Nessusd server is implemented in C and utilizes
OpenSSL. The NessusWeb is implemented in Java
and uses the Java Secure Socket Extension (JSSE),
which implements a Java version of SSL (Secure
Sockets Layer) v3 and TLS (Transport Layer
Security) v1 protocols and includes functionalities

for data encryption, server authentication, message
integrity [10].
 The “nessus-mkcert” script is used to generate
server RSA private key, CA (Certificate Authority)
RSA private key, server Certificate and CA
certificate during the installation of the Nessus
software packages. A “nessus- mkcert- client” script
is used to generate keys and certificate for clients
implemented using OpenSSL. In the NessusWeb
project, the client is comprised of a collection of
Java classes running in the Tomcat server, which is
a pure Java implementation, so the authors used the
JDK 1.4 keytool and the methods suggested by
Angell [15] to generate keys and certificates for each
new user. These client keys and certificates are used
to initialize the information exchange between the
client and the server as part of the SSL handshake
[10].

3.2 Access Control

In the NessusWeb system, there are basically two
types of users, the administrator and other users,
which will refer to as “normal users”. Normal user
can perform a network scans, view scan history and
perform network analysis. Administrators have all
the capabilities that normal users have and in
addition, the administrator is also in charge of
setting up the whole system and managing user
accounts. The user interfaces and functionalities
exposed to the normal user is thus a subset of those
available to the administrator. In fact, both user
interfaces are implemented using the same JSP
pages. When a user signs on the system, the system
will know the user’s access privileges and the JSP
pages will dynamically generate appropriate content
to present to the different categories of users. The
access control was implemented using a session
variable “login”, which is set after a user
successfully logs onto the system. For each of the
succeeding page requests, this session variable is
checked to determine what user interface and
functionality should be presented to the login user. If
the user tries to bypass the login process or refresh
the page after the session timeout, the user will be
redirected back to the login page. This process
guarantees that only authorized users can access the
appropriate pages.

3.3 User Management

The Nessusd server keeps a user database used for
authentication and access control when users try to
connect to the Nessusd server using client tools.
From the Linux or Unix console, an administrator
can run “nessus-adduser” command to add a user to
this user database. The NessusWeb project
completely automates this process. The
administrator can add a new user to the system by
entering all the required user registration
information through user management web pages.
The administrator can also remove a user from the
system or reset a user’s password.

3.4 Automatic Plugin Update

The Nessus project web site maintains an up-to-date
database of vulnerability checks (plugins), but the
Nessusd server can only use the local copy of this
vulnerability database. On the system set up page of
NessusWeb, which includes setting up the Nessusd
server host and port, the Mail server host and port,
the administrator can check a checkbox named
“Update Plugins” to update the local copy of this
vulnerability database. The “nessus-update-plugins”
script is wrapped by a Java class to retrieve the
newest plugins from the Nessus project web site and
update the PLUGIN table in the NessusWeb
database. The administrator is encouraged to
regularly go to this system set up page and keep
updating the plugins for the whole system.

3.5 Network Scan User Interface

Both the Nessus X-window client and the
NessusWX windows client have a very nice user
interface for setting up scan preference options,
including the plugins, the targets and the knowledge
base used in each scan session. In the NessusWeb
project, JavaScript is used to create the network scan
user interface with seven tabbed pages: Plugins,
Preferences, Scan Options, Knowledge Base, Target
Selection and Start the Scan in an HTML inner
frame.
 For each scan session, the user can select the
plugins he wants to use, set preference values for
those plugins that need scan preferences, set the scan
options, setup the knowledge base and enter the
names of the targets. The changes made by the user
on each page will be saved in the session variables
before the scan starts, so the user can go back and

forth to change them. Once the user clicks the “Start
the Scan” tab, the secure connection and
communication with the Nessusd server will be
established. The scan setting information is saved in
the database, formatted into the corresponding NTP
(Nessus Transfer Protocol) messages and sent to the
Nessusd server. A new thread running as daemon is
initiated after the above steps. Since the scan thread
is now running in the background, the “Start the
Scan” page will return immediately, and the user can
start a new scan session without waiting for the
results of this perhaps time-consuming scan.
Because some lengthy vulnerability checks with
multiple machines and multiple plugins could take
several hours to complete. The scan thread daemon
communicates with the Nessusd server to control
and monitor the scan process. The information on
the vulnerabilities found by the Nessud server and
their corresponding estimate of the severity of the
vulnerability will be sent back to the thread that
initiated the scan. This thread saves this information
into the NessusWeb database SCAN_REPORT table
for each scan session. The Nessusd server informs
the scan thread whenever the scan process
terminates, then the scan thread will retrieve the
scan results from the database, format a HTML
network scan report and send it as an email
attachment to inform the user that the scan is
completed. By running the scan process as a
daemon, the user doesn’t need to hanging around for
the completion of a long scan process, which
improves the system performance and user
satisfaction.

3.6 Automatic Email Service

One basic functionality of web sites is the automatic
email service. This service is widely used in the
NessusWeb project. Whenever a new user is created,
updated, removed, or a user password is changed,
the corresponding user registration information is
emailed to the user as a reminder/security
notification. When a scan terminates, an email is
sent out to notify the owner of this particular scan
session with the HTML scan report attached. All the
email functionality was implemented using the
javax.mail and sun.net.smtp.SmtpClient packages.

3.7 Online Assistance

If you are the first time user of the Nessus tools,
there are many new terms, buttons and checkboxes
all over the place that might lead to confusion. To
address this complexity it is definitely a necessity
for the system to provide a good online assistance.
In the NessusWeb project, JavaScript has been used
to create “ToolTips” for the links, buttons,
textboxes, checkboxes and radio buttons. The
system also utilizes JavaScript to implement pop up
windows showing scan reports and scan settings.
This online assistance makes NessusWeb web
interface dynamic and user friendly.

4. Conclusions and Future work

We have created NessusWeb, a fully functional web
interface for the Nessus network security scanner
using a multi-tier distributed architecture.
NessusWeb is publicly accessible for authorized
users and supports secure communication, multiple
sessions and centralized management of scan
configurations and scan reports. Saving scan
configuration and scan results into the database
makes it easy and possible to do sophisticated
network security analysis. The project was
implemented using Java Servlets, JSPs, Java Beans,
JSSE and JDBC. The details of this project and the
page for downloading the software package can be
found at http://www.cse.sc.edu/~chen7NessusWeb/.
 The current version of the NessusWeb only
supports HTML version of scan report and scan
setting report. One of the areas for future work is to
provide the user options to export scan report into
different formats, for example, HTML, XML, PDF,
NSR (used by X-window Nessus client) etc.
Another area of future work is to increase the
support for higher-level security analysis

References

[1] Astalavista, “Network Security Scanner”, see
http://www.astalavista.com/tools/auditing/network/securityscan
ner/

[2] Deraison, R., “Nessus Project”, see http://www.nessus.org/

[3] Victor, “NessusWX - Nessus Client for Win32”, see
http://www.securityprojects.org/nessuswx/

[4] Inprotect.com, “Inprotect Web Interface for Nessus”, see
http://www.inprotect.com/

http://www.cse.sc.edu/%7Echen7NessusWeb/
http://www.astalavista.com/tools/auditing%20/network/securityscanner/
http://www.astalavista.com/tools/auditing%20/network/securityscanner/
http://www.nessus.org/
http://www.securityprojects.org/nessuswx/
http://www.inprotect.com/

[5] Karas, Kristofer T., “Nessus Network Vulnerability
Assessment Scanner”, see
http://enterprise.bidmc.harvard.edu/pub/nessus-php/

[6] Apache Software Fondation, “Apache HTTP server project”,
see http://httpd.apache.org/

[7] MySQL, “MySQL Reference Manual for version 4.0.3”,see
http://www.mysql.com/documentation/mysql/bychapter/

[8] Sun Microsystems, “Java Servlet Technology”, see
http://java.sun.com/products/servlet/

[9] Sun Microsystems, “JavaServer Pages White Paper”, see
 http://java.sun.com/products/jsp/whitepaper.html

[10] Sun Microsystems, JavaTM Secure Socket Extension (JSSE)
1.0.3, API User's Guide, see
http://java.sun.com/products/jsse/doc/guide/API_users_guide.ht
ml#SSLOverview

[11] Sun Microsystems, “JDBCTM Data Access API”, see
http://java.sun.com/products/jdbc/

[12] Sun Microsystems, “The J2EE tutorial”, see
http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html

[13] Apache Software Foundation, “Apache Turbine Project”,
see http://jakarta.apache.org/turbine/turbine-22/

[14] OpenSSL, “OpenSSL Project”, see http://www.openssl.org/

[15] Angell, K. W., “Java Programming features the Java Secure
Socket Extensions”, see
http://www.ddj.com/articles/2001/0102/

[16] Chuming Chen, Web Interface for Nessus Network
Security Scanner, Department of Computer Science and
Engineering, University of South Carolina, M.S.Thesis, May,
2003

http://enterprise.bidmc.harvard.edu/pub/nessus-php/
http://httpd.apache.org/
http://www.mysql.com/documentation/mysql/bychapter/
http://java.sun.com/products/servlet/
http://java.sun.com/products/jsp/whitepaper.html
http://java.sun.com/products/jsse/doc/guide/API_users_guide.html#SSLOverview
http://java.sun.com/products/jsse/doc/guide/API_users_guide.html#SSLOverview
http://java.sun.com/products/jdbc/
http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html
http://jakarta.apache.org/turbine/turbine-22/
http://www.openssl.org/
http://www.ddj.com/articles/2001/0102/

	Abstract
	Keywords
	2.1 Web Browser
	2.3 Nessusd Server
	2.4 Database Server

	References

