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Abstract

We describe a new system for estimating road shape
ahead of a vehicle for the purpose of driver assistance. The
method utilises a single on board colour camera, together
with inertial and velocity information, to estimate both the
position of the host car with respect to the lane it is follow-
ing and also the width and curvature of the lane ahead at
distances of up to 80 metres. The system’s image process-
ing extracts a variety of different styles of lane markings
from road imagery, and is able to compensate for a range of
lighting conditions. Road shape and car position are esti-
mated using a particle filter. The system, which runs at 10.5
frames per second, has been applied with some success to
several hours’ worth of data captured from highways under
varying imaging conditions.

1. Introduction

Computer vision technology is of increasing interest to
automobile manufacturers, both for completely autonomous
driving and also for the more medium-term goal of driver
assistance, where hazardous road situations such as acci-
dental road exit or imminent obstacles may be identified
ahead of the vehicle in sufficient time for the driver to take
necessary action. The vision system described here is de-
signed to be part of a collision warning system. Our experi-
mental vehicle (a Buick LeSabre) is equipped with a single,
forward looking, colour CCD camera mounted between the
rear-view mirror and the windshield together with sensors
which yield estimate of velocity and yaw rate, and a scan-
ning radar. The speed and yaw-rate data is converted into
an audio signal that can be recorded on the sound track of
a video tape. This useful capability permits the synchroni-
sation of image and proprioceptive information during data
collection experiments. The eventual aim is to estimate the
vehicle’s road position and the shape of the lane ahead of the
vehicle, and to use this information to determine whether

any of the targets detected by the radar system present an
obstacle to the vehicle’s motion, and to alert the driver if
such conditions arise.

In this paper, we present a vision algorithm which is able
to estimate the vehicle’s position (bearing and lateral off-
set) with respect to the centre of its current highway lane
together with the pitch of the camera and width of the lane.
The curvature and rate of change of curvature of the lane up
to 80 metres ahead is also estimated, to coincide with the
field of view of the radar obstacle detection system. The
system has been demonstrated on several hours’ worth of
data captured from the test vehicle and is found to perform
stably in a range of road and weather conditions. We review
related work below, before giving details of the algorithm
and some examples of its operation.

1.1. Previous Work

Attention has previously been focussed on the topic of
lane tracking, although much of this has concentrated on the
use of vision information for steering control, a task which
requires a much shorter look ahead distance than80m.
Dickmannset al[4] have demonstrated a system that can
provide position and curvature estimates using a Kalman
filter estimator [5] whose observations are image edges – a
controlled search for these features allows edges that do not
correspond to useful road markings to be rejected. In sub-
sequent work [3], they use two cameras for road shape esti-
mation; one wide-angle to cover the near-field, and a longer
focal length camera to obtain better far-field information.

Other algorithms based upon Kalman filtering include
that of Özgüner et al [10], and Tayloret al [13]. Both
of these methods use matched filters to extract lane mark-
ings from images which are then used to fit a road model.
Özgüneret al fit a cubic model of road shape to the im-
age data, with the Kalman filter providing prediction and
smoothing (a data association policy is required to match
predictions with image measurements). Tayloret al use a
Hough transform algorithm to fit straight lines to extracted



features and then estimate offset and bearing to the road
centre from these lines. Curvature is estimated from suc-
cessive bearing measurements by their Kalman filter.

The CMU Navlab project [14] currently uses the RALPH
algorithm [11], which operates on low-resolution rectified
images of the road ahead of the vehicle. The rectification
process corrects for the perspective projection, yielding a
new image where road lane markings are parallel; by aver-
aging over the rows of this image, a profile is obtained, and
vehicle position information is obtained from this profile.
To estimate road shape, RALPH hypothesises five different
curvature values and uses these to straighten out any cur-
vature present in the rectified lane images. The curvature
is taken to be the hypothesis that performs this task best.
Other methods [1, 12] fit road models to groups of pixels
whose brightness exceeds a given threshold.

The largest challenge facing road trackers is the variabil-
ity likely to be encountered, in the form of differing road
conditions, weather conditions and the types (and quality)
of road markings used to demarcate lane boundaries. Such
variability makes feature extraction difficult and prone to er-
ror, in particular the presence of background features incor-
rectly classified as road markers. The techniques of data as-
sociation, robust line fitting and averaging used in the work
described above are all efforts to reduce the effects of these
outliers prior to road shape estimation. By contrast, our ap-
proach is to diminish the effects of these outliers by using
a robust estimation scheme, the CONDENSATIONalgorithm
[6], that was designed specifically with estimation in the
presence of clutter in mind. By dealing with clutter at the
higher level of estimation, rather than with with lower level
image processing, a robust system should result that is less
prone to distraction.

2. Road, car and observation models

At the heart of our system is a six-dimensional state vec-
tor (denoteds(t) at discrete timet) that describes both the
position of the vehicle and the geometry of the road ahead.

s(t) = [y0(t); tan �(t); C0(t); C1(t);W (t); �(t)]T ; (1)

wherey0 denotes the lateral offset and� the bearing of the
vehicle with respect to the centre-line of the lane,C0 and
C1 the curvature and rate of change of curvature of the lane
ahead of the vehicle,W the width of the lane, and� the
pitch of the camera to the road surface, which is assumed to
be locally (i.e. within the80mworking range of our system)
flat.

2.1. The road model

Given a state vectors(t), equation 2 describes the shape
of the road ahead of the vehicle.

y(x) = y0 + tan(�)x+
C0
2
x2 +

C1
6
x3; (2)

wherey is the lateral position of the road centre with respect
to the vehicle, andx the distance ahead, as illustrated in
figure 1.
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Figure 1. The camera, road and image co-
ordinate systems.

2.2. State evolution model

Figure 2 shows the vehicle in motion between discrete
timet andt+�t. We can obtain equations for the evolution
of the state vectors(t) by using equation 2 in conjunction
with the following relationships

x(t) = x(t+�t) + V (t)�t cos �(t)
y(t) = y(t+�t) + V (t)�t sin �(t);

(3)

whereV (t) is the vehicle’s velocity at timet.
Using the identity�x = V (t)�t cos �(t) and we arrive

at the following set of equations:

s(t+�t) = A(�x)s(t) +

2
6666664

0

� _ �t
0
0
0
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3
7777775
+w(t); (4)
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_ is the vehicle’s yaw rate and�� the change in pitch be-
tween timet andt + �t measured from the image as de-
scribed in section 3.2. Finally,w(t) is a vector of exogenous



disturbances that reflect the uncertainty in the evolution of
the system (see section 4.1 below). Recall from the intro-
duction that we obtain estimates of bothV (t) and _ from
sensors in our vehicle.
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Figure 2. Car motion model.

2.3. Imaging model
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Figure 3. Vehicle, road and image co-ordinate
systems. The road y axis points into the page.

Figure 3 depicts the relationship between the camera
and the plane of the road ahead of the vehicle, together
with a schematic diagram of the image plane co-ordinates
u = �yc andv = �zc. The relationships betweenu,v and
ground plane co-ordinatesx,y are:

u =
�y

x cos � +H sin �
; v =

H cos � � x sin �

x cos � +H sin �
; (6)

where the relationships between image plane co-ordinates
u andv and pixel co-ordinatesi andj are

u =
i� ci
fi

; v =
j � cj
fj

: (7)

ci; cj is the pixel location at which the camera’s optic axis
intersects the image plane, and andfi and fj are the ef-
fective focal lengths of the camera in thei andj directions
respectively.

2.4. Calibration

Our equations above require both intrinsic (fi; fj ; ci; cj)
and extrinsic (H; �) properties of the car’s camera to be cal-
ibrated. For intrinsic calibration, we use a calibration tool-
box developed at the University of Southern California [2].
Features with known geometry are extracted from a set of
images of a calibration target (in a range of poses) and then
fed into an optimisation routine that produces an estimate of

Figure 4. Extrinsic calibration. A road of
known width, with lane marking lines marked
by the user.

both the camera’s optic centre (ci; cj) and the effective focal
lengths (fi; fj). Once these intrinsic quantities are known, a
single image of a straight road of known width can be used
to calculate both the height of the cameraH , and an initial
estimate of camera pitch�. This procedure simply requires
the user to specify the lines that define the width of the lane,
as illustrated in figure 4. With the ‘flat earth’ assumption,
these two lines, parallel on the road, intersect in the image
at the horizon. The image in figure 4 has significant vertical
curvature, the road is however, flat within the desired oper-
ating range of our system. The camera pitch� is calculated
using the following relationship

vh = � tan �; (8)

wherevh is thev co-ordinate of the horizon line.
The height of the camera may be calculated using the

image gradientm = du=dv of the left and right hand lane
marking lines, together with the camera pitch and the width
W of the lane on the ground:

H =
W cos �

mr �ml

; (9)

where the subscriptsr andl denote the left and right hand
lane markers respectively.

3. Image processing

To extract information from images captured by the car’s
camera, we use two separate algorithms, both described be-
low. The first of these aims to locate the lane markings that
describe the shape of the lane in the road ahead. The second
image processing algorithm measures the vertical disparity
between successive images in order to provide an estimate
of change in camera pitch angle.

3.1. Lane marking extraction

At first glance, the task of extracting white lane markings
from the background of a dark road may seem straightfor-
ward. However, for a number of reasons, the task is sur-
prisingly difficult. The contrast between lane markings and



road is extremely variable owing to factors such as differ-
ing road surface material (tarmac, concrete) and lane mark-
ing condition (freshly painted, worn, different colours, dif-
ferent shapes and sizes of markings). Also, as with any
outdoor system, weather conditions have a great effect on
imaging conditions; overcast days are most favourable be-
cause the lighting tends to be diffuse and uniform over the
scene, whereas strong sunlight adds not only shadows but
also yields near saturated images with low contrast between
lane markings and road surface. Saturation effects are par-
ticularly notable in the far-field where the lane markings
tend to be not only very small but also of a similar grey-
level to the road surface.

We use a two-stage algorithm for extracting lane mark-
ings from the red channel of our colour images (this chan-
nel has good contrast properties for both white and yellow
image markers). In the first stage, a filter matched to the
expected profile of a lane marker (a bright peak on a darker
background, roughly triangular in shape) is passed over the
image one line at a time, to produce an array of normalised
cross-corrlelation scores. If the cross-correlation score ex-
ceeds a threshold, the pixel is denoted as a possible lane
marker.

The second stage of the process then inspects the grey-
level of each such pixel, and if that also exceeds a threshold,
then the pixel is confirmed as a lane marker. It should be
noted that we calculate the grey level threshold dynamically
in order to account for variations in lighting. This strategy
has been found to be effective in a range of conditions from
overcast to bright sunlight, and also allows the system to
cater for complex shadows that are cast by trees and other
road-side structures.
            

            

Figure 5. Feature extraction examples (ex-
tracted features marked with black dots)

Figure 5 shows example images of two different roads as
processed by our algorithm. In both images, the grey-level
brightness gradient from bottom to top is notable. In the top
image, the lane markers include standard striped markers

and the smaller “Bott’s dots” markings. In the lower image,
a scene illuminated by bright sunlight is shown – note the
low contrast between lane markings and road surface. It is
also clear from the images that the feature detection process
produces many false positives, i.e. road surface pixels erro-
neously labelled as lane markings. This is a consequence of
the requirement that the same detection system must extract
lane markings of many different types under several differ-
ent imaging conditions. Clutter is particularly prevalent in
the far-field, where lane markings are both small and of low
contrast. The system’s estimation scheme (section 4) offers
significant robustness to this clutter.

3.2. Vertical disparity estimation

The evolution of the pitch of the camera as the car trav-
els along the road is described by equation 4, and requires
an estimate of the change of pitch between frames,��. If
we can estimate the vertical disparitydj (along thej image
axis) between two successive frames,�� can be obtained
as follows:

�� =
dj

fj(1 + tan2 �)
; (10)

where, as above,fj is the effective focal length of the cam-
era in thej axis of the image, and� is the current estimate
of camera pitch.

Our assumption here is that the disparitydj reflects the
motion of the horizon line between two images (equation 8
above relates the horizon position and pitch angle�). We
calculatedj by using the sum of absolute differences algo-
rithm on samples taken from around our latest estimate of
the horizon line.

4. Estimation by particle filtering

In order to estimate the shape of the road ahead of the ve-
hicle, we have chosen a particle filter, the CONDENSATION

algorithm [6]. CONDENSATION was initially developed to
address the problem of tracking curves in clutter, which
is precisely the situation we have in road tracking (track-
ing a cubic model in the presence of false positives from
the image processing). The termparticle filter refers to a
mechanism for estimating a probability distribution over the
state spaces(t) given observations from a stream of images.
The distribution is approximated by a set ofN “particles”,
pairsfs; �g, where, as above,s is a state vector, and� is
a weight that reflects the plausibility ofs as a representa-
tion of the true state of the system. Importantly, the method
places no assumptions on the distributions involved, and it
is this power to represent arbitrary, multi-modal distribu-
tions that proves useful when tracking in the presence of
the clutter that often confounds uni-modal methods such as
the Kalman filter.



The algorithm, described in full by Isard and Blake [6],
may be summarised as follows:

RepeatN times for each image:

1. Stochastically selecta samples from the particle
set, based upon corresponding weight� (a procedure
known asfactored sampling[6]).

2. Predict the motion of the sample in the state space us-
ing a stochastic state evolution model.

3. Measure the plausibility of the evolved sample by
comparing its position to that of observations made
from the image. Generate a new weight�.

Steps 2 and 3 require state evolution and observation
models respectively; these were introduced above in section
2, and we revisit them below in the context of our estimation
scheme.

4.1. State evolution

From section 2.2 above, we recall that the evolution of
the states is governed by the following equation:

s(t+�t) = A(�x)s(t) +

2
6666664

0

� _ �t
0
0
0
��

3
7777775
+w(t): (11)

In step 2 of the CONDENSATION algorithm, this equation
is used to predict the new position of states sampled from
the particle set. The equation can be broken into two parts;
deterministic (the matrixA) and stochastic (the noise vector
w(t)). The deterministic element of the evolution equation
forces a drift on the particle set such that it follows the sys-
tem’s overall dynamics.

To generate the prediction, we calculate the deterministic
part of the equation and then produce a noise vectorw(t)
by sampling from a distribution that reflects the uncertainty
in the state evolution process. In our system, we assume
that this uncertainty has zero mean (it does not introduce
bias into the system) and is uni-modal. Also, it is important
that the corrupting noise has limited extent, such that the
state vector remains within a region of space that describes
physically plausible road shapes and camera positions. For
computational ease,w(t) is drawn from a Gaussian distri-
bution, and physical constraints are imposed on equation 11
simply by limiting the individual elements ofs(t) so that
they remain within a region of the state space that describes
physically realistic configurations.

4.2. Observation

The observation model is of the form

z(t) = h(s(t)) + v(t); (12)

wherez is the observation,h(�) describes the deterministic
relationship between state and observation, and the distribu-
tion of the noise vectorv(t) specifies the stochastic element
of the observation process. As is typical in particle filtering
implementations [6], we choose the distribution ofv(t) to
be uni-modal and zero mean with long tails to permit the
presence of outliers in the observed data. In our implemen-
tation,z is the position of a lane marker feature, andh(�)
describes the relationship between a point on the road (from
equation 2) and a pixel in the image (from equations 6 and
7).

The purpose of observation is to score the plausibility of
a particle’s estimates. We perform this efficiently by first
constructing a score array, where each element corresponds
to a pixel in the image of the road, and the score of that
element reflects the distance to the nearest detected feature.
The relationship between score and distance is based upon
the distribution ofv(t), and is shown schematically in figure
6. To generate a total score for an estimates, we simply
project the estimated lane marking positions onto the score
array (usingh(�)) and sum the values of the elements lying
underneath the projected lines.

Score

0
Distance to nearest feature  (pixels)

Figure 6. The relationship between score and
distance to nearest feature

5. Performance enhancements

We have also incorporated two methods that improve the
efficiency of the CONDENSATION algorithm into our im-
plementation. These are known as partitioned sampling [9]
and importance sampling [7]. The practical effect of both
of these measures is to reduce the total number of particles
required for effective tracking. Each will be dealt with sepa-
rately below, together with a measure to facilitate automatic
recovery from loss of track, if that should occur.



5.1. Partitioned sampling

It has been shown [9] that if the state space for a
given problem can be partitioned into multiple sub-spaces
that may be estimated hierarchically, then the efficiency
and speed of the CONDENSATION algorithm can be in-
creased. In our system, we partition the space intos1 =
[y0; tan �;W; �]

T ands2 = [C0; C1]
T . The first partition

describes the width of the road ahead of the vehicle and
the camera’s position relative to the centre of the road (the
’straight road’ properties), whilst the second partition de-
scribes the curvature properties of the road.

In the CONDENSATION algorithm with partitioned sam-
pling, described fully by MacCormick and Blake [8], a dis-
tribution is estimated over the first partition using the CON-
DENSATION algorithm described above, and then a second
sampling (stochastic selection) stage occurs. In this sec-
ond stage, particles are selected by factored sampling from
the new distribution for the first partition and are paired
with samples (again, selected by factored sampling) from
the second partition, and these full state particles are then
scored against observations to gain an estimate of the full
state distribution.

In our system, this allows us to estimate the straight road
propertiess1 on features from the lower, less cluttered part
of the image where, owing to perspective effects, the road
curvature does not appear significant (figure 5), before ap-
pending the curvature parameters (s2) and scoring the full
state over the far field features where curvature is more ap-
parent. The algorithm also allows us to concentrate more
particles in the “hard” part of the state space, so we use a
smallerN for estimatings1, because of low clutter in the
image closer to the vehicle, and a largerN for the full state
estimate owing to the increased clutter in the far field.

5.2. Importance samplers

A second tool for increasing the efficiency of a parti-
cle filter is to introduceimportance samplingfunctions [7].
These are auxiliary sources of information that allow the
introduction of new samples into the particle set as desired.
If introduced appropriately, these new samples do not al-
ter the underlying distribution estimated by the particle set,
but they allow a re-distribution of the particles so they are
concentrated around “more likely” parts of the state space.

For example, in the process of estimating thes1 parti-
tion, we run a Hough transform algorithm to extract image
lines that correspond to the left and right hand lane mark-
ings, and calculate values fory0; �;W and� on the basis of
the line information from a single image. We then introduce
samples based upon this instantaneous estimate into the par-
ticle set that otherwise contains state estimates based upon
a time history. The “new” particles ensure that part of the

state space that seems likely to contain the solution will be
inspected during the particle scoring process.

We also use an importance sampler to introduce particles
in the estimation of the road curvatureC0. We have esti-
mates of vehicle velocityv and yaw rate_ which, using the
usual formula for the velocity of an object travelling along
a circular arc, yields the instantaneous estimateC0 = _ =v.

5.3. Initialisation samples

In addition to the importance samples, we introduce a
small percentage of initialisation samples, drawn from a dis-
tribution of “reasonable” default road shapes, into the par-
ticle set at each time step. The inclusion of such samples
allows the tracker to recover from any loss of lock that may
occur; the algorithm will always be scoring some particles
that are in likely positions to be supported by road features.
This feature also permits the algorithm to initialise itself au-
tomatically.

6. Application to image sequences

We have successfully applied our lane tracking algorithm
to image sequences and velocity/yaw rate data collected
from the experimental vehicle as it was driven along various
state and inter-state highways. The implementation used a
set of 550 particles to estimates1, of which 5% at each time-
step were drawn from the initialisation distribution and 10%
from the Hough transform importance sampling function.
The combineds1 ands2 estimate was formed from 1450
particles of which 5% were initialisation samples and 15%
importance samples from the instantaneous estimate ofC0.
The algorithm executed at a frame rate of approximately
10.5Hz on an off-the-shelf desktop PC (867 MHz Pentium
III). Our estimate for the state is obtained from the mean
of the particle set, and, if desired, a confidence measure in
road geometry can be derived from the variance of the par-
ticle set.

It is difficult to obtain ground truth data for lane tracking
systems, so quantitative measures of algorithm performance
are not given here. The difficulties arise in attempting to
measure the vehicle position with respect to a map of the
road with sufficient accuracy to judge both offset and bear-
ing relative to the lane in addition to predicting the curva-
ture ahead of the car for comparison with system estimates.
Whilst it is true that without this veridical information we
cannot judge system accuracy, it is possible to assess robust-
ness to different road and weather conditions by observing
the algorithm’s performance on video sequences. We have
found that the algorithm functions robustly under many con-
ditions, although saturation caused by bright sunlight and
specular reflections from the road during rain storms are
problematic.
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Figure 7. Estimates vstime ( s). Top: Road cur-
vature C0 (m�1). Bottom: Offset y0 (m)(lane
changes are marked with ‘*’)).

An accompanying MPEG file shows
the algorithm running on test data.
(http://www.cis.upenn.edu/˜southall/
mpegs/ICCV2001.mpg ). This short sequence illustrates
typical behaviour of the algorithm, and includes a lane
change, complex shadowing from a bridge and road-side
trees, cornering and tracking from a single set of lane
markings on the vehicle’s left hand side as it crosses an
on-ramp. In this case, the lane width stays constant until
the lane markings re-appear on the right, at which point
it re-locks onto both set of lane markers. The sequence
also highlights the most frequent (but mild) failure of the
algorithm; that curvature estimates lag on entry and exit to
bends in the road. The state evolution equation 4 does not
predict non-random changes of curvature, so the particle
set will not be “pushed” into a curve during prediction, and
it typically takes a few frames before the image observed
image data begins pull the mean of the distribution into the
curve. We are currently investigating importance sampling
functions forC1 that will purely use image data. This
should increase the system’s responsiveness to curvature
changes.

            

Figure 8. Road shape estimate on a curve.

Example parameter estimates and shape road estimates
are illustrated in figures 7 and 8. Figure 7 plots (against
time) the estimates for curvatureC0 (top) and lateral off-
set y0 (bottom). They0 graph is accentuated by a series

of spikes; these correspond to lane changes – the system
detects a lane change and resets they0 origin to the centre
of the new lane automatically. Each lane change is marked
with a ‘*’; if this is at the top of a spike, there is a leftwards
lane change, at the bottom rightwards.

Figure 8 shows the mean of the particle superimposed
(in black) on an image captured as the host vehicle follows
another car around a curve. Note that the curvature of the
road is correctly estimated even when the majority of the
right hand lane marking is occluded by the leading car.

7. Conclusions

We have presented an algorithm for estimating vehicle
position and road shape from a single forward-looking cam-
era mounted behind the windshield of a standard passenger
car. The algorithm performs at 10.5 frames per second and
has shown robustness to variations in both road properties
and illumination conditions. Owing to the under-lying es-
timation scheme, the algorithm is able to self-initialise and
recover automatically in the few cases where track is lost.
We are currently working to improve performance on curve
entry and exit, and also on experimental procedure for mea-
suring performance with respect to ground truth data.
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