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Abstract any of the targets detected by the radar system present an
obstacle to the vehicle’s motion, and to alert the driver if
We describe a new system for estimating road shapesuch conditions arise.
ahead of a vehicle for the purpose of driver assistance. The In this paper, we present a vision algorithm which is able
method utilises a single on board colour camera, together to estimate the vehicle’s position (bearing and lateral off-
with inertial and velocity information, to estimate both the set) with respect to the centre of its current highway lane
position of the host car with respect to the lane it is follow- together with the pitch of the camera and width of the lane.
ing and also the width and curvature of the lane ahead at The curvature and rate of change of curvature of the lane up
distances of up to 80 metres. The system’s image processto 80 metres ahead is also estimated, to coincide with the
ing extracts a variety of different styles of lane markings field of view of the radar obstacle detection system. The
from road imagery, and is able to compensate for a range of system has been demonstrated on several hours’ worth of
lighting conditions. Road shape and car position are esti- data captured from the test vehicle and is found to perform
mated using a particle filter. The system, which runs at 10.5 stably in a range of road and weather conditions. We review
frames per second, has been applied with some success trelated work below, before giving details of the algorithm
several hours’ worth of data captured from highways under and some examples of its operation.
varying imaging conditions.
1.1. Previous Work

1. Introduction Attention has previously been focussed on the topic of
lane tracking, although much of this has concentrated on the
Computer vision technology is of increasing interest to use of vision information for steering control, a task which
automobile manufacturers, both for completely autonomousrequires a much shorter look ahead distance B@n.
driving and also for the more medium-term goal of driver Dickmannset a[4] have demonstrated a system that can
assistance, where hazardous road situations such as acagprovide position and curvature estimates using a Kalman
dental road exit or imminent obstacles may be identified filter estimator [5] whose observations are image edges — a
ahead of the vehicle in sufficient time for the driver to take controlled search for these features allows edges that do not
necessary action. The vision system described here is deeorrespond to useful road markings to be rejected. In sub-
signed to be part of a collision warning system. Our experi- sequent work [3], they use two cameras for road shape esti-
mental vehicle (a Buick LeSabre) is equipped with a single, mation; one wide-angle to cover the near-field, and a longer
forward looking, colour CCD camera mounted between the focal length camera to obtain better far-field information.
rear-view mirror and the windshield together with sensors  Other algorithms based upon Kalman filtering include
which yield estimate of velocity and yaw rate, and a scan- that of Ozgineret al [10], and Tayloret al [13]. Both
ning radar. The speed and yaw-rate data is converted intcof these methods use matched filters to extract lane mark-
an audio signal that can be recorded on the sound track oings from images which are then used to fit a road model.
a video tape. This useful capability permits the synchroni- Ozgineret al fit a cubic model of road shape to the im-
sation of image and proprioceptive information during data age data, with the Kalman filter providing prediction and
collection experiments. The eventual aim is to estimate thesmoothing (a data association policy is required to match
vehicle’s road position and the shape of the lane ahead of thepredictions with image measurements). Taybal use a
vehicle, and to use this information to determine whether Hough transform algorithm to fit straight lines to extracted



features and then estimate offset and bearing to the roac.1. The road model
centre from these lines. Curvature is estimated from suc-
cessive bearing measurements by their Kalman filter. Given a state vectar(t), equation 2 describes the shape

The CMU Navlab project[14] currently uses the RALPH ©f the road ahead of the vehicle.
algorithm [11], which operates on low-resolution rectified b 5 C1 4
images of the road ahead of the vehicle. The rectification y(x) = yo + tan(e)x + 5Tt (2)
process corrects for the perspective projection, yielding a . N )
new image where road lane markings are parallel; by aver-Wherey is the lateral position of the road centre with respect
aging over the rows of this image, a profile is obtained, and tp the vehicle, and the distance ahead, as illustrated in
vehicle position information is obtained from this profile. figure 1.
To estimate road shape, RALPH hypothesises five different
curvature values and uses these to straighten out any cur-
vature present in the rectified lane images. The curvature
is taken to be the hypothesis that performs this task best.
Other methods [1, 12] fit road models to groups of pixels

whose brightness exceeds a given threshold. E j

The largest challenge facing road trackers is the variabil-
ity likely to be encountered, in the form of differing road
conditions, weather conditions and the types (and quality)
of road markings used to demarcate lane boundaries. Such
variability makes feature extraction difficult and prone to er-
ror, in particular the presence of background features incor-2.2. State evolution model
rectly classified as road markers. The techniques of data as-
sociation, robust line fitting and averaging used in the work ~ Figure 2 shows the vehicle in motion between discrete
described above are all efforts to reduce the effects of thesdimet and¢+ A¢. We can obtain equations for the evolution
outliers prior to road shape estimation. By contrast, our ap-of the state vectos(t) by using equation 2 in conjunction
proach is to diminish the effects of these outliers by using with the following relationships
a robust estimation scheme, the bENSATIONalgorithm
[6], that was designed specifically with estimation in the a(t) = x(t + At) + V(1) At cose(t) 3)
presence of clutter in mind. By dealing with clutter at the y(t) = y(t + At) + V(1) At sine(?),
higher level of estimation, rather than with with lower level whereV'(¢) is the vehicle’s velocity at time

image processing, a robust system should result that is less Using the identityAz — V (£)At cos e(t) and we arrive
prone to distraction. at the following set of equations:

Figure 1. The camera, road and image co-
ordinate systems.

0
2. Road, car and observation models —yAL
s+ A= AQADs) + | o | +w0, @
At the heart of our system is a six-dimensional state vec- Af
tor (denoteds(¢) at discrete time) that describes both the
position of the vehicle and the geometry of the road ahead. \,here
1 Az A2 A2
t) = [yo(t), tan e(t), Co(t), C1(t), W (1), 0T, (1 2 6,
s(t) = [y (1), tan e(2), Co(t), C (1), W (1), 60", (1) 0 1 ae 22 g o
0 0 1 Az 0 0
, A(Ax) = , (5
wherey, denotes the lateral offset amdhe bearing of the (Az) 0 0 0 1 0 0 ®)
vehicle with respect to the centre-line of the lagg, and 0 O 0 0 1 0
C1 the curvature and rate of change of curvature of the lane 0 O 0 0 01

ahead of the vehicld}y the width of the lane, and the )

pitch of the camerato the road surface, which is assumed tayp is the vehicle’s yaw rate andd the change in pitch be-
be locally (i.e. within the&d0m working range of our system) tween timet andt + At measured from the image as de-
flat. scribed in section 3.2. Finallyy(¢) is a vector of exogenous



disturbances that reflect the uncertainty in the evolution of
the system (see section 4.1 below). Recall from the intro-
duction that we obtain estimates of bdttt) and> from
sensors in our vehicle.

i ;ﬁ/%

time t time t+At

Figure 4. Extrinsic calibration. A road of
known width, with lane marking lines marked

Figure 2. Car motion model. by the user.

both the camera’s optic centrg (c;) and the effective focal
lengths §;, f;). Once these intrinsic quantities are known, a
single image of a straight road of known width can be used
to calculate both the height of the caméfaand an initial

2.3. Imaging model

i estimate of camera pit¢h This procedure simply requires
é\ ,,,,,,,,,,,,,,,,,,,, _ 4 the user to specify the lines that define the width of the lane,
Xce) : ¥+u as illustrated in figure 4. With the ‘flat earth’ assumption,
H PlicAy ! these two lines, parallel on the road, intersect in the image
[ — at the horizon. The image in figure 4 has significant vertical
X Ground Plane ©.5) curvature, the road is however, flat within the desired oper-
ating range of our system. The camera p#dh calculated
Figure 3. Vehicle, road and image co-ordinate using the following relationship
systems. Theroad y axis pointsinto the page.
v, = —tan#, (8)

Figure 3 depicts the relationship between_ the Camerawherevh is thev co-ordinate of the horizon line.
and the plane pf the road aheaq of the vehicle, together The height of the camera may be calculated using the
with a schematic diagram of the image plane co-ordlnatesimage gradientn = du/dv of the left and right hand lane

u= _é/c Iandv N _é?' 1;he relat.lonshlps betweenvand 5 king lines, together with the camera pitch and the width
ground piane co-ordinatesy are: W of the lane on the ground:

_ -y _ Hcos — zsinf W cos 8
T Zcosf+ Hsind''  zcos+ Hsinb’ © HZMa 9)
where the relationships between image plane co-ordinatesyhere the subscriptsand! denote the left and right hand
u andv and pixel co-ordinatesand; are lane markers respectively.
_ 1 — Cj _ ] —Cj .
us T E T (7) 3. 1mage processing

¢, ¢; is the pixel location at which the camera’s optic axis  To extract information from images captured by the car’s
intersects the image plane, and afidand f; are the ef-  camera, we use two separate algorithms, both described be-
fective focal lengths of the camera in thand; directions  |ow. The first of these aims to locate the lane markings that

respectively. describe the shape of the lane in the road ahead. The second
image processing algorithm measures the vertical disparity
2.4. Calibration between successive images in order to provide an estimate

of change in camera pitch angle.
Our equations above require both intrinsf, (f;, ¢;, ¢;)

and extrinsic {7, ) properties of the car's camerato be cal- 3.1. Lane marking extraction

ibrated. For intrinsic calibration, we use a calibration tool-

box developed at the University of Southern California [2]. At first glance, the task of extracting white lane markings
Features with known geometry are extracted from a set offrom the background of a dark road may seem straightfor-
images of a calibration target (in a range of poses) and thenward. However, for a number of reasons, the task is sur-
fed into an optimisation routine that produces an estimate ofprisingly difficult. The contrast between lane markings and



road is extremely variable owing to factors such as differ- and the smaller “Bott’s dots” markings. In the lower image,
ing road surface material (tarmac, concrete) and lane mark-a scene illuminated by bright sunlight is shown — note the
ing condition (freshly painted, worn, different colours, dif- low contrast between lane markings and road surface. Itis
ferent shapes and sizes of markings). Also, as with anyalso clear from the images that the feature detection process
outdoor system, weather conditions have a great effect onproduces many false positives, i.e. road surface pixels erro-
imaging conditions; overcast days are most favourable be-neously labelled as lane markings. This is a consequence of
cause the lighting tends to be diffuse and uniform over the the requirement that the same detection system must extract
scene, whereas strong sunlight adds not only shadows bulane markings of many different types under several differ-
also yields near saturated images with low contrast betweerent imaging conditions. Clutter is particularly prevalent in
lane markings and road surface. Saturation effects are parthe far-field, where lane markings are both small and of low
ticularly notable in the far-field where the lane markings contrast. The system’s estimation scheme (section 4) offers
tend to be not only very small but also of a similar grey- significant robustness to this clutter.
level to the road surface.

We use a two-stage algorithm for extracting lane mark- 3.2. Vertical disparity estimation
ings from the red channel of our colour images (this chan-
nel has good contrast properties for both white and yellow  The evolution of the pitch of the camera as the car trav-
image markers). In the first stage, a filter matched to theels along the road is described by equation 4, and requires
expected profile of a lane marker (a bright peak on a darkeran estimate of the change of pitch between franies, If
background, roughly triangular in shape) is passed over thewe can estimate the vertical disparity (along thej image
image one line at a time, to produce an array of normalisedaxis) between two successive framég] can be obtained
cross-corrlelation scores. If the cross-correlation score ex-as follows:
ceeds a threshold, the pixel is denoted as a possible lane Af = 4 (10)
marker. fi(1+ tan6)’

The second stage of the process then inspects the greywhere, as above, is the effective focal length of the cam-
level of each such piXEl, and if that also exceeds a threShOldera in thej axis of the image, anf is the current estimate
then the pixel is confirmed as a lane marker. It should be of camera pitch.

noted that we calculate the grey level threshold dynamically ~ OQur assumption here is that the disparityreflects the
in order to account for variations in lighting. This strategy motion of the horizon line between two images (equation 8
has been found to be effective in a range of conditions from ghove relates the horizon position and pitch amjleWe
overcast to brlght sunlight, and also allows the system to Ca|cu|atedj by using the sum of absolute differences a|go-

cater for complex shadows that are cast by trees and othefithm on samples taken from around our latest estimate of
road-side structures. the horizon line.

4. Estimation by patrticle filtering

In order to estimate the shape of the road ahead of the ve-
hicle, we have chosen a particle filter, theXIDENSATION
algorithm [6]. GONDENSATION was initially developed to
address the problem of tracking curves in clutter, which
is precisely the situation we have in road tracking (track-
ing a cubic model in the presence of false positives from
the image processing). The tearticle filter refers to a
mechanism for estimating a probability distribution over the
state space(t) given observations from a stream of images.
The distribution is approximated by a setdf“particles”,
pairs{s, 7}, where, as abovs, is a state vector, and is
a weight that reflects the plausibility efas a representa-
tion of the true state of the system. Importantly, the method
places no assumptions on the distributions involved, and it

Figure 5 shows example images of two different roads asis this power to represent arbitrary, multi-modal distribu-
processed by our algorithm. In both images, the grey-leveltions that proves useful when tracking in the presence of
brightness gradient from bottom to top is notable. In the top the clutter that often confounds uni-modal methods such as
image, the lane markers include standard striped markerghe Kalman filter.

Figure 5. Feature extraction examples (ex-
tracted features marked with black dots)



The algorithm, described in full by Isard and Blake [6], 4.2. Observation
may be summarised as follows:
Repeat times for each image: The observation model is of the form
1. Stochastically selecta samples from the particle
set, based upon corresponding weigh@a procedure
known adfactored sampling6]).

z(t) = h(s(t)) + v(?), (12)

wherez is the observatior(-) describes the deterministic
2. Predict the motion of the sample in the state space us- relationship between state and observation, and the distribu-
ing a stochastic state evolution model. tion of the noise vectov(t) specn_ﬂes the st.ochas.uc elgmgnt
of the observation process. As is typical in particle filtering

3. Measure the plausibility of the evolved sample by implementations [6], we choose the distributionvgf) to
comparing its position to that of observations made be uni-modal and zero mean with long tails to permit the
from the image. Generate a new weight presence of outliers in the observed data. In our implemen-

tation, z is the position of a lane marker feature, aid)
Steps 2 and 3 require state evolution and observationdescribes the relationship between a point on the road (from

models respectively; these were introduced above in sectiorfduation 2) and a pixel in the image (from equations 6 and

2, and we revisit them below in the context of our estimation /)- o o
scheme. The purpose of observation is to score the plausibility of

a particle’s estimate. We perform this efficiently by first
constructing a score array, where each element corresponds
to a pixel in the image of the road, and the score of that
element reflects the distance to the nearest detected feature.
From section 2.2 above, we recall that the evolution of The relationship between score and distance is based upon
the states is governed by the following equation: the distribution of(¢), and is shown schematically in figure
6. To generate a total score for an estimgteve simply
0 project the estimated lane marking positions onto the score
—pAt array (usingh(-)) and sum the values of the elements lying

4.1. State evolution

s(t+ At) = A(Az)s(t) + 8 +w(t). (11) underneath the projected lines.
AOQ Score

In step 2 of the ©NDENSATION algorithm, this equation
is used to predict the new position of states sampled from
the particle set. The equation can be broken into two parts;
deterministic (the matrix) and stochastic (the noise vector
w(t)). The deterministic element of the evolution equation
forces a drift on the particle set such that it follows the sys-
tem’s overall dynamics.

To generate the prediction, we calculate the deterministic
part of the equation and then produce a noise vewta)
by sampling from a distribution that reflects the uncertainty
in the ;tate evolgtion process. In our system, We assumes parformance enhancements
that this uncertainty has zero mean (it does not introduce
bias into the system) and is uni-modal. Also, it is important
that the corrupting noise has limited extent, such that the We have also incorporated two methods that improve the
state vector remains within a region of space that describe<fficiency of the @NDENSATION algorithm into our im-
physically plausible road shapes and camera positions. Foplementation. These are known as partitioned sampling [9]
computational easey(t) is drawn from a Gaussian distri- and importance sampling [7]. The practical effect of both
bution, and physical constraints are imposed on equation 11of these measures is to reduce the total number of particles
simply by limiting the individual elements af(¢) so that required for effective tracking. Each will be dealt with sepa-
they remain within a region of the state space that describegately below, together with a measure to facilitate automatic
physically realistic configurations. recovery from loss of track, if that should occur.

0
Distance to nearest feature (pixels)

Figure 6. The relationship between score and
distance to nearest feature



5.1. Partitioned sampling state space that seems likely to contain the solution will be
inspected during the particle scoring process.

It has been shown [9] that if the state space for a  We also use animportance sampler to introduce particles
given problem can be partitioned into multiple sub-spacesin the estimation of the road curvatuég. We have esti-
that may be estimated hierarchically, then the efficiency mates of vehicle velocity and yaw rate) which, using the
and speed of the GNDENSATION algorithm can be in-  usual formula for the velocity of an object travelling along
creased. In our system, we partition the space sqte= a circular arc, yields the instantaneous estindate= /v.
[yo,tane, W,0]T andsy = [Co,Cy]T. The first partition
describes the width of the road ahead of the vehicle and5.3. Initialisation samples
the camera’s position relative to the centre of the road (the
'straight road’ properties), whilst the second partition de-  In addition to the importance samples, we introduce a
scribes the curvature properties of the road. small percentage of initialisation samples, drawn from a dis-

In the CONDENSATION algorithm with partitioned sam-  tribution of “reasonable” default road shapes, into the par-
pling, described fully by MacCormick and Blake [8], a dis- ticle set at each time step. The inclusion of such samples
tribution is estimated over the first partition using ther& allows the tracker to recover from any loss of lock that may
DENSATION algorithm described above, and then a second occur; the algorithm will always be scoring some particles
sampling (stochastic selection) stage occurs. In this secthat are in likely positions to be supported by road features.
ond stage, particles are selected by factored sampling fromT his feature also permits the algorithm to initialise itself au-
the new distribution for the first partition and are paired tomatically.
with samples (again, selected by factored sampling) from

the second partition, and these full state particles are therg  Application to image sequences
scored against observations to gain an estimate of the full

state distribution. . , . We have successfully applied our lane tracking algorithm
In our system, this allows us to estimate the straight roadto image sequences and velocity/yaw rate data collected
p][orp])er.tlesl on rf]eatures_from the Iower,_ |essﬁclutterid partdfrom the experimental vehicle as it was driven along various
of the image where, owing tc_) pgrspectlye efiects, the roadg,ie and inter-state highways. The implementation used a
curvature does not appear significant (figure 5), before ap-go¢ ot 550 particles to estimate, of which 5% at each time-

pending the curva'ture parametess)(and scoring _the full step were drawn from the initialisation distribution and 10%
state over the far field features where curvature is more ap+.,, the Hough transform importance sampling function
parent. The algorithm also allows us to concentrate MOTeThe combineds; ands, estimate was formed from 1450
particles in the *hard” part of the state space, S0 we Use &y icles of which 5% were initialisation samples and 15%
gmallerN for est|mat|ngs1, because of low clutter in the importance samples from the instantaneous estimatg of
image closer to the vehicle, and a lar@éffor the full state The algorithm executed at a frame rate of approximately

estimate owing to the increased clutter in the far field. 10.5Hz on an off-the-shelf desktop PC (867 MHz Pentium
[l). Our estimate for the state is obtained from the mean
5.2. Importance samplers of the particle set, and, if desired, a confidence measure in

road geometry can be derived from the variance of the par-

A second tool for increasing the efficiency of a parti- ticle set.
cle filter is to introducemportance samplinfunctions [7]. It is difficult to obtain ground truth data for lane tracking
These are auxiliary sources of information that allow the systems, so quantitative measures of algorithm performance
introduction of new samples into the particle set as desired.are not given here. The difficulties arise in attempting to
If introduced appropriately, these new samples do not al- measure the vehicle position with respect to a map of the
ter the underlying distribution estimated by the particle set, road with sufficient accuracy to judge both offset and bear-
but they allow a re-distribution of the particles so they are ing relative to the lane in addition to predicting the curva-
concentrated around “more likely” parts of the state space. ture ahead of the car for comparison with system estimates.

For example, in the process of estimating theparti- Whilst it is true that without this veridical information we
tion, we run a Hough transform algorithm to extract image cannotjudge system accuracy, itis possible to assess robust-
lines that correspond to the left and right hand lane mark- ness to different road and weather conditions by observing
ings, and calculate values fg§, ¢, W andf on the basis of  the algorithm’s performance on video sequences. We have
the line information from a single image. We then introduce found that the algorithm functions robustly under many con-
samples based upon this instantaneous estimate into the paditions, although saturation caused by bright sunlight and
ticle set that otherwise contains state estimates based upospecular reflections from the road during rain storms are
a time history. The “new” particles ensure that part of the problematic.



of spikes; these correspond to lane changes — the system
detects a lane change and resetsitherigin to the centre

of the new lane automatically. Each lane change is marked
with a “**'; if this is at the top of a spike, there is a leftwards
lane change, at the bottom rightwards.

Figure 8 shows the mean of the particle superimposed
(in black) on an image captured as the host vehicle follows
another car around a curve. Note that the curvature of the
road is correctly estimated even when the majority of the
right hand lane marking is occluded by the leading car.

2 7. Conclusions

We have presented an algorithm for estimating vehicle
position and road shape from a single forward-looking cam-
era mounted behind the windshield of a standard passenger
car. The algorithm performs at 10.5 frames per second and

Figure 7. Estimates vstime (s). Top: Road cur-
vature Cy (m~'). Bottom: Offset 1y, (m)(lane
changes are marked with *)).

An accompanying MPEG file shows has shown robustness to variations in both road properties
(http://mww.cis.upenn.edu/"southall/ timation scheme, the algorithm is able to self-initialise and

mpegs/ICCV2001.mpg ). This short sequence illustrates Fecover automatically in the few cases where track is lost.
typical behaviour of the algorithm, and includes a lane e are currently working to improve performance on curve
change, complex shadowing from a bridge and road-side€ntry and exit, and also on experimental procedure for mea
trees, cornering and tracking from a single set of lane Suring performance with respect to ground truth data.
markings on the vehicle’s left hand side as it crosses an

on-ramp. In this case, the lane width stays constant until Acknowledgments
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