
is not the case with, for example, a neural net representa-
tion. The large number of free parameters allows the histo-
gram to represent a wider range of density shapes than is
possible with a multi-Gaussian PDF. Computing probabil-
ity densities from the model is computationally fast when
compared to any of the alternatives (particularly to K-
nearest neighbor); a single table lookup followed by a sin-
gle division operation produces the required result.

Note that the issues concerning the use of full RGB
color versus normalized color are quite different for the
obstacle detector than for shadow compensation and crop
line detection. Normalized color is not used as an attempt
to remove shadow noise; that is accomplished using the
method described in Section 3. Here, normalized color is
used to compensate for different iris openings between the
training image and the images to be processed, and also as
a means for reducing the dimensionality of the PDF space.
While this does prevent the use of intensity as a metric for
distinguishing obstacles, we have found that obstacles typ-
ically differ from crop significantly enough in color alone
that the use of intensity information is not as necessary;
such is often not the case for the crop line follower, which
often must distinguish between the quite similar appear-
ance of cut and uncut crop.

In order to perform robustly, it is likely that further
development of the obstacle detector will be necessary; for
example, the histogram PDF may need to be allowed to
evolve over time to compensate for changing crop appear-
ance. Field testing of the obstacle detector is still in a pre-
liminary stage, though results such as shown in Figure 5
are promising.

6. Conclusions
Several different vision-based behaviors have been

implemented for the Demeter automated harvester, and
have been demonstrated successfully in real world condi-
tions. A crop line tracking behavior, which adapts to local
changes in the environment, has been successfully used to
cut over 60 acres of alfalfa hay. Explicitly modeling and
removing shadows in the outdoor environment, though a
difficult problem in general, has proven partially amenable
to approximation methods. Other behaviors, such as end-
of-row detection and obstacle detection, show promising
initial results.

These combined results demonstrate the feasibility of
vision-based guidance in an agricultural environment.
Such a system, when combined with the positioning capa-
bility allowed by GPS, appears viable for near term com-
mercial development as either a driver aid or as a
completely autonomous system.
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3) For each scan line i in the image, compute a score for
the scan line S(i) as follows:

a) set S(i) = 0;

b) Increment S(i) for every scan line x from 0 (the top of
the image) to i-1 for which F(x) = “afterEnd”.

c) Increment S(i) for every scan line y from i+1 to
i_MAX (the bottom of the image) for which F(y) =
“beforeEnd”.

4) The end of row is the row i with the highest score S(i).

We experimented with a broad range of binary evalua-
tion functions F(i). Our current version first computes the
crop line fitting algorithm described in Section 2 to each
scan line. The location and height of the resulting best fit
step functions are then compared to precomputed ranges
gathered from training data; if they fall within the allowed
ranges, the boundary is accepted as a genuine crop line
and the row receives a “beforeEnd” label; otherwise, the
row is labeled “afterEnd”.

Our most common use for the end-of-row detection
module is to trigger a transition into a turn behavior when
the end of row is reached, as described in Section 1. In
order to prevent a single spurious image from falsely caus-
ing an end-of-row trigger, this message is sent only after
both 1) the distance to the end of row falls below some
threshold and 2) a series of processed images indicate the
end of row has been coming progressively nearer.

Although we have not yet gathered enough data to
obtain accurate reliability figures, the system has success-
fully located several end-of-row points in field experi-
ments. One problem with trying to ascertain the reliability
of the end-of-row detector is the wide variety of situations
which can be encountered; while the crop row tracker need
only distinguish between cut and uncut crop, the end-of-
row detector must be capable of dealing with images con-
taining almost anything, such as the road and cow pasture
which appear near the top of Figure 7.

5. Obstacle detection
The obstacle detection algorithm is used to locate

potential obstacles in the camera’s field of view. The
method uses a training image to build a probability density
function (PDF) for combined cut and uncut crop as a func-
tion of RGB pixel value. For each new image, shadows are
compensated for as described in Section 3. Next, image
pixels are marked whose probability of belonging to the
crop PDF falls below some threshold. Finally, regions of
the image containing a large number of such marked pix-
els are identified as obstacles. Figure 8 shows an example
of such an image before and after processing; potential
obstacles are marked as a solid region.

Traditionally, a wide range of representations have
been used for PDFs; multi-dimensional Gaussian models,

K-nearest-neighbor approximations, histograms, and neu-
ral nets, just to name a few. These representations vary in
computational efficiency and in the kinds of PDFs that can
be represented. Each of these representations has advan-
tages and disadvantages in training time, representational
power, lookup time, and storage space. For this applica-
tion, we used a discretized 2D histogram in normalized
color space, with each cell containing an independent
probability density estimate; the reasons for this choice are
discussed below.

The discretization used is 12 bits; 6 for R/(R+G+B),
and 6 for G/(R+G+B). Producing the histograms requires
an independent estimation of probability for each of 64x64
= 4096 different discretized bins; it thus requires over
4000 parameters to describe. Compared to a multi-Gauss-
ian representation, this may seem excessive; since there
are so many free parameters, a large number of training
samples are required in order to form a reasonable PDF. In
our application, however, training data is plentiful, since
every image pixel represents a training point. Further,
updating the PDF with a new training point is quite rapid,
since it simply requires incrementing a single counter; this

Figure 8: Detecting potential obstacles.



significant shadow; for our application values of Cred =
5.6, Cgreen = 4.0, and Cblue = 2.8 were found to work well.

An attempt was made to calculate Cred, Cblue and
Cgreen values a priori from blackbody spectral distribution
models of sunlight and skylight. This calculation produced
qualitatively the correct result, e.g. Cred > Cgreen > Cblue;
however, the a priori calculated values were found to be
less useful than the experimentally determined values.
This discrepancy may be due to a number of sources, such
as the inadequacy of the blackbody spectral distribution
function as a model for skylight and the variable sensitiv-
ity of the camera CCD to red, green, and blue light.

The method described above necessarily makes a
number of simplifications. The red, green, and blue filters
actually each pass a range of frequencies; SPD variations
in sunlight and skylight within a single band are not taken
into account. Shadowed areas can receive significant illu-
mination from reflected light from neighboring sunlit
areas; such interreflections are not modeled. The differing
effects of lighting angle for sunlight and skylight are
ignored, as are non-linearities in the CCD chip response.

The values of Cred, Cblue, and Cgreen depend on color
of both the sunlight and the skylight. These colors can
vary across different times of day and different atmo-
spheric conditions. In our application, shadows typically
cause the most trouble on cloudless days in the late after-
noon; we therefore chose coefficients optimized for this
case.

Despite these limitations, applying this method allows
crop lines to be successfully extracted from a number of
images which would otherwise return incorrect results.
For example, applying the shadow compensation method
described above to the image shown in Figure 5 produces
a much improved estimate of the crop boundary, as shown
in Figure 6. In at least one field test, the shadow compen-
sation allowed the harvester to successfully follow a crop

line in an area in which it failed without the compensation.
Further, the same set of constants Cred, Cblue, and Cgreen
were found to work in the two locations for which shad-
owed images were collected (Kansas and Pennsylvania).

From initial testing, it appears that the method works
better away from shadow edges; as can be seen in Figure
6, the compensation becomes increasingly inaccurate near
shadow/sunlit boundaries, possibly because the simple
two-source spectral distribution model breaks down.

4. Detecting the End of a Crop Row

The goal of the end of row detector is to estimate the
distance of the harvester from the end of the crop row.
When the end of row boundary is approximately perpen-
dicular to the crop line, and the camera is mounted with
zero roll (as in our system), the distance to the end of row
is purely a function of the image row where the crop line
boundary stops. Figure 7 shows an image which has been
correctly processed; the white line marks the computed
image row corresponding to the crop row end.

Our end of row detection algorithm attempts to find
the image row i which most cleanly separates those scan
lines containing a crop line boundary from those which do
not contain such a boundary. The algorithm, described
below, first uses a binary function F(i) to classify each
image row according to whether it contains a crop row
boundary; next, it searches for the row which best divides
the “beforeEnd” rows from the “afterEnd”.

1) Digitize an image.

2) Remove shadow noise as described in section 3.

2) For each scan line i in the image:

Apply a binary evaluation function F(i) to determine
whether row i contains a genuine crop line boundary.
Let F(i) = “beforeEnd” if i contains a genuine bound-
ary point, and F(i) = “afterEnd” if not.

Figure 6: A successful example of shadow compensation.

Figure 7: Locating the end of a crop row.



rapidly, the prevalence and effect of shadow noise can vary
dramatically on time scales of less than a second.

Normalizing for intensity, though an intuitively
appealing method of dealing with shadow noise, fails to be
useful in our application for two reasons. The primary
problem is that it does not take into account the significant
color changes present in shadowed areas. For example,
normalizing the image in Figure 5 before processing still
results in an incorrect crop line boundary estimate. A num-
ber of factors contribute to this color shift, but perhaps the
most significant is the difference in illumination sources
between the shadowed and unshadowed regions[5]; the
dominant illumination source for the unshadowed areas is
sunlight, while the dominant illumination source for the
shadowed areas is skylight. A secondary problem with
intensity normalization is that it prevents the crop line
tracking algorithm from using natural intensity differences
to discriminate between cut and uncut crop; depending on
local conditions, such natural intensity differences can be
a useful feature.

We present a technique for modeling and removing
shadow noise which is based on compensating for the dif-
ference in the spectral power distribution (SPD) between
the light illuminating the shadowed and unshadowed
regions. In an ideal camera, the RGB pixel values at a
given image point are a function of S( ), the spectral
power distribution (SPD) emitted by a point in the envi-
ronment [7]; for example, R is determined in Equation (1),
where r0 is a scaling factor and ( ) is the function
describing the response of the CCD chip and red filter;
typically, this function falls to 0 outside of a narrow wave-
length band.

(1)

r0 and ( ) are purely functions of the CCD camera;
our goal, therefore, is to construct a model of how shad-
ows alter the function S( ).

To a first approximation, S( ) is simply the product
of the SPD of the illuminating light, I( ), with the reflec-
tance function of the illuminated surface point, ( ):

(2)

Suppose we assume that every point in the environ-
ment is illuminated by one of two SPDs; either Isun( ),
comprising both sunlight and skylight, or Ishadow( ),
comprising skylight only. Then the red pixel values for
unshadowed regions will be computed by

(3)

and the red pixel vales for shadowed regions by

(4)

From Equations (3) and (4), we see that it is in general
not possible to compute Rsun from Rshadow without knowl-
edge of the reflectance function of the environment patch
being imaged. This is problematic, because for our appli-
cation, this reflectance function is always unknown. How-
ever, if we approximate ( ) as a delta function with a
non-zero value only at red, then (3) and (4) simplify to

(5)

and

(6)

so that Rsun and Rshadow can be related by a constant factor
Cred:

(7)

The same analysis can be repeated for the G and B
pixel values. Under the assumptions given above, the
parameters Cred, Cblue, and Cgreen remain constant across
all reflectance functions ( ) for a given camera in a
given lighting environment.

Implementing this shadow compensation therefore
requires

1) the selection of appropriate constants for Cred, Cblue and
Cgreen,

2) a method for determining whether points are shadowed
or unshadowed, and

3) “Correcting” the shadowed pixels using Equation (7).

Determining whether points were shadowed or
unshadowed was accomplished by intensity threshholding.
Approximate values for Cred, Cblue, and Cgreen were hand-
selected by experimentation on several images containing

Figure 5: Shadow noise.
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nant computes the line in RGB space such that when the
pixel values are projected onto that line, the ratio of aver-
age interclass distance to average intraclass scatter is max-
imized. Intuitively, this results in the linear function which
most cleanly separates the cut and uncut pixel classes. The
discriminant function used for the first image is chosen
arbitrarily; in practice, a poor choice may result in inaccu-
rate crop line estimates for the first few images until the
algorithm converges to more effective discriminant func-
tions. Since current cycle times for our implementation of
this algorithm are roughly 5 Hz, we have found the crop
line estimates to be quite reliable 0.5 seconds after the
crop line tracker begins to cycle.

A summary of our adaptive algorithm is given below:

1. Initialize the color discriminant function: f = 1.0 R+
1.0 G + 1.0 B.

2. Digitize an image.

3. For each scan line in the image:

a. plot f as a function of image column i;

b. Compute the best fit step function to the above plot;

c. Return the location of the step as the crop line
boundary estimate.

4. Compute an updated discriminant function using the
Fisher linear discriminant.

5. go to step 2.

This algorithm allows for a very general crop line
boundary; any single-valued function of image row can be
represented. Figure 4 shows a typical result from this algo-
rithm; in this image, a white dot has been placed on each
scan line at the location of the estimated crop boundary.

Using the camera calibration parameters, each image
row crop line boundary pixel is converted into a vote for a
discretized pure pursuit steering angle. After the votes are
tallied, the steering command with the most votes is
relayed from the crop line tracker to the vehicle controller.
In order to reduce processing time, low-resolution (160 x
120) images are used, and only that portion of the image

corresponding to the rectangle in Figure 4 is processed.
Under these conditions, cycle times of 5-6 Hz are typical.

The use of the adaptive discriminant function
improved performance considerably. Over time scales of a
few minutes, or distances of a hundred meters, changes in
the crop and soil color can be quite pronounced; however,
the adaptive color metric deals fairly well with such varia-
tions. Highly localized differences in crop and soil color
can be problematic; however, such variations within any
single image are typically slight and relatively unstruc-
tured. Shadow noise presents a more serious challenge,
and is discussed in detail in Section 3.

Using the adaptive algorithm, we have successfully
tracked and cut entire curved crop rows of over 1 mile in
length from circular fields in Kansas; this compares to
maximum distances of 150 yards for the old non-adaptive
algorithm using a discriminant of R/G. From one fairly
challenging sequence of 29 images (from which Figure 4
is taken), the adaptive algorithm was able to correctly
locate the crop boundary in 28 of the 29 images; by com-
parison, the R/G discriminant described in [8] was able to
correctly locate the boundary in only 21 of 29 images.

3. Shadow Compensation

Shadow noise can heavily distort both image intensity
(luminance) and color (chrominance). An example of a
severe case is shown in Figure 5; here, a shadow cast by
the harvester body lies directly over the region containing
the crop line. This shadow is directly responsible for the
resultant error in the crop line boundary estimate produced
by the crop line tracker.

Shadow noise causes difficulties for a number of rea-
sons. It is often quite structured, and thus is not well mod-
eled by stochastic techniques. Its effects and severity are
difficult to predict; if the sun is momentarily obscured by a
passing cloud or the orientation of the harvester changes

f(i, j)

j

cut crop uncut crop

Figure 3: A model plot of f(i, j) as a function of
j for a single scan line i.

Figure 4: Sample output from the crop line tracker.



control machine functions; a separate Sparc 20 is dedi-
cated to the perception system. An on board GPS receiver
coupled with a fixed base station allows the use of differ-
ential GPS-based positioning. Forward-facing RGB cam-
eras equipped with auto-iris lenses are mounted to either
side of the cab roof, near the ends of the harvester’s cutter
bar. The cameras are calibrated using a method developed
by Tsai [11], which allows conversion of image pixel coor-
dinates into real world locations.

One might reasonably question whether vision based
guidance is necessary for this application. Automation of
field vehicles using GPS (Global Positioning Satellite)
appears promising; differential GPS systems with accura-
cies of 20 cm or better are commercially available at the
time of this writing. While still expensive, these systems
are rapidly falling in price as demand grows in applica-
tions such as surveying and automotive guidance.

As with all sensors, however, differential GPS is sub-
ject to various failures, such as satellite dropouts or broken
communication links between the mobile and fixed GPS
units. A vision system can provide an independent source
of steering guidance while cutting; provide estimates to
the end of the crop row; and detect potential obstacles.
Further, such a system is extremely inexpensive compared
to the cost of differential GPS. Rather than viewing vision
based perception and GPS as competing sensor modalities,
it makes more sense to consider GPS and vision as com-
plementary; a combination of the two is likely to outper-
form either one alone.

In order to test the effectiveness of vision based sens-
ing, we have performed a number of experiments using
vision and dead reckoning as guidance for the harvester,
without making use of the GPS system. A typical experi-
ment begins by using the crop line tracker vision to follow
the boundary between cut and uncut crop. The end of row
detector is used as a trigger to decide when to transition
into a turn behavior controlled by dead reckoning. When

the turn is complete, the system transitions back to the
crop line tracking behavior (Figure 2).

2. Crop Line Tracking

The crop line tracking method used is an adaptive ver-
sion of the algorithm presented by Ollis and Stentz [8].
Each scan line in the image is processed separately, in an
attempt to find a boundary which divides the two roughly
homogenous regions corresponding to cut and uncut crop.
This is accomplished by computing the best fit step func-
tion to a plot of a pixel discriminant function f(i, j) for the
scan line; the location of the step is then used as the
boundary estimate for that scan line, as shown in Figure 3.

Previously published versions of this algorithm used a
fixed discriminant function, such as f = G/(R+G+B). How-
ever, even within the same field, changes in lighting condi-
tions and soil type prevent any single discriminant
function from consistently returning a correct segmenta-
tion. To address this variability in the environment, we
have implemented a method for adaptively updating the
discriminant function.

After each image is processed, the algorithm com-
putes the Fisher linear discriminant [3] in RGB space
between the cut and uncut pixel classes; this becomes the
discriminant used for the next image. The Fisher discrimi-

Figure 1: The Demeter automated harvester.

Tracking the crop line

Detected end of row

Turn behavior

Tracking the crop line again

Figure 2: Transitioning between behaviors



Abstract

This paper describes a vision-based perception sys-
tem which has been used to guide an automated harvester
cutting fields of alfalfa hay. The system tracks the bound-
ary between cut and uncut crop; indicates when the end of
a crop row has been reached; and identifies obstacles in
the harvester’s path. The system adapts to local variations
in lighting and crop conditions, and explicitly models and
removes noise due to shadow.

In field tests, the machine has successfully operated in
four different locations, at sites in Pennsylvania, Kansas,
and California. Using the vision system as the sole means
of guidance, over 60 acres have been cut at speeds of up to
4.5 mph (typical human operating speeds range from 3-6
mph). Future work largely centers around combining
vision and GPS based navigation techniques to produce a
commercially viable product for use either as a navigation
aid or for a completely autonomous system.

1. Introduction
Agricultural applications have several appealing traits

as candidates for automation. Current agricultural machin-
ery is often expensive, so that sensing and computing can
be added for a small marginal cost factor. The potential
market size is large. Many agricultural tasks are dull,
repetitive, and occasionally dangerous. They often take
place in environments for which a priori knowledge is
plentiful; for example, most agricultural machines only
need to process one type of crop at a time, and accomplish
their task within a known bounded geographic area.

This paper describes a vision-based perception sys-
tem which has been used to guide an automated harvester
through fields of alfalfa hay. Several vision based behav-
iors have been implemented as part of the Demeter auto-
mation project. A crop line tracker detects and follows the
boundary between cut and uncut crop; an end-of-row
detector estimates the distance to the end of the crop row;
and an obstacle detector visually locates obstacles in the
vehicle’s path.

The seeming similarity of the road following problem
to crop line tracking led us initially to attack this problem
using RALPH [9], a highly successful road-following sys-
tem. Results from an early RALPH experiment soon dem-
onstrated several difficulties: for instance, ragged edges,
highly variable curvatures, and uneven coloring were
much more prevalent in the agricultural domain than in
road following. We therefore investigated techniques
developed explicitly for agricultural use.

Klassen and Wilson [6] describe an algorithm for dis-
tinguishing cut and uncut crop using a monochrome CCD
camera. While their work was valuable in establishing that
machine vision techniques could be applied to this task,
there were some significant limitations: their system com-
putes only straight line boundaries, requires a specialized
digital signal processor, and has not been used to guide an
actual vehicle. Gerrish et al. [4] used a variety of edge-
detection and template-matching techniques to pick out
“work edges”; these were tested on actual field images
(including alfalfa). Straight line boundaries were still
assumed, however, and processing times required were on
the order of 20 seconds using a 68000 processor. Reid &
Searcy [10] and Brandon & Searcy [2] have published
work on a related problem, vision-based segmentation of
crop canopy from soil, which further supported the appli-
cability of vision-based techniques to this area.

Some results on guiding an actual agricultural vehicle
are presented in Billingsley and Schoenfish [1], but their
emphasis was on the discrimination of crop vs. soil for
row crops, and they had limited opportunities for field tri-
als. Ollis and Stentz [8] present a precursor to our crop
line follower; subsequent work presented in this paper
includes both a better algorithm for crop line following
(including an adaptive capability and shadow compensa-
tion) and development of additional behaviors (end-of-row
detection and obstacle detection).

The harvester is shown in Figure 1; it is a New Hol-
land 2550 Speedrower retrofitted with wheel encoders and
servos to control a number of machine functions, such as
the throttle, steering and cutter bar. A Sun Sparc 20 board
running a real time operating system (VxWorks) is used to
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