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Abstract

In this paper, we describe the automatic creation of
video mosaics of the ocean floor, which deals with the
problem of image motion estimation in a robust and au-
tomatic way.

The motion estimation presented in this work is based
on a initial matching of corresponding areas over pairs
of images. As the error prone nature of the match-
ing process is a commonly overlooked problem, this pa-
per makes use of robust matching techniques, which can
cope with an high percentage of wrong matches.

In our approach, several motion models are estab-
lished under the projective geometry framework, allow-
ing the creation of high quality mosaics where no as-
sumptions are made on the camera motion. This is an
improvement over traditional approaches for underwa-
ter mosaicing, usually relying on the camera to be facing
the sea floor, so that the image plane is approzimately
parallel to the floor plane.

Ezxtensive tests were run on underwater image se-
quences, testifying the good performance of the imple-
mented matching and registration methods. FEven with
notorious violations of the underlying assumption of
static planar scenes, the algorithm can still find the mo-
tion parameters as to create mosaics with bearably no-
ticeable misalignments to the human eye.

I. Introduction

In the past few years we have witnessed a significant
research effort to increase the autonomy of underwa-
ter vehicles. One of the key problems is the need of
advanced sensor technologies that provide a better per-
ception of the environment. Among these technologies,
computer vision is increasingly being used as a mean
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for generating suitable representations of the underwa-
ter medium, both for aiding a human operator or to be
integrated in the vehicle navigation system. In this con-
text, video mosaicing constitutes an important tool for
ocean floor exploration, since it can be used in opera-
tions such as site exploration, navigation and wreckage
visualization. Furthermore, due to the underwater lim-
ited visual range, registration of close range images is
often the only solution for obtaining large visual areas
of the floor.

Traditional approaches for underwater mosaicing rely
on the camera to be facing the sea floor, so that the im-
age plane is parallel to the floor plane. Moreover it is
usually assumed that image rotation and zoom is small.
In our approach, several motion models are established
under the projective geometry framework. These mod-
els range from simple image translation to the most gen-
eral projective planar transformation that accounts for
the registration of any view of a planar scene. There-
fore, this approach allows the creation of high quality
mosaics where no assumptions are made on the camera
motion.

One of the main problems in motion analysis lies on
the difficulty of the matching process between corre-
sponding image areas. Contributing factors to this dif-
ficulty include the lack of image texture, object occlu-
sions and acquisition noise, which are frequent in un-
derwater imaging. As the error prone nature of the
matching process is a commonly overlooked problem,
the work here presented makes use of robust matching
techniques, which cope with up an high percentage of
wrong matches. As it will be shown here, the associ-
ation of robust methods and geometrical model based
estimation, allows the creation of video mosaics even in
the presence of moving objects and non-planar scenes.

Research on automatic mosaic creation for under-
water applications has been conducted in the last few
years. In [7] a setup is proposed for creating mosaics
by taking images at locations whose coordinates are
known with high precision. Image merging can thus be
performed without image analysis, because the frame-
to-frame motion parameters can be computed directly



from the camera positions. Marks et al. [8] have devel-
oped a system for ocean floor mosaic creation in real-
time. In their work, a four-parameter semi-rigid motion
model is used, and small rotation and zooming on the
image frames is assumed. This allows fast processing
algorithms, but restricts the scope of applications to
the case of a images taken by a camera whose retinal
plane is closely parallel to the ocean floor. A common
difficulty in underwater mosaicing arises from the pres-
ence of 3-D occlusions caused by seabed irregularities.
Strategies for dealing with such occlusions are discussed
by Tiwari in [12].

Although not dealt with in this paper, an important
issue in mosaic creation is the propagation of registra-
tion errors over a sequence of images. This problem is
tackled and discussed by Fleischer et al. in [2, 3] for the
case of closed-loop image chains were the effects of the
accumulation of small registration errors become appar-
ent.

This paper is organized as follows. Section II. de-
scribes the framework under which the geometrical
models for the mosaic formation are obtained, and the
robust methods used for image motion estimation. In
section III., the creation of video mosaics is presented,
as being accomplished in two separate stages: registra-
tion and rendering. Finally, section IV. presents some
results obtained from underwater footage and draws the
conclusions on the performance and applicability of the
method.

II. Approach

A. TImage Motion Model

In this section we will assume the reader to be famil-
iar with the basic concepts and properties of projective
geometry. For an in-depth explanation on the subject,
refer to [1].

The most commonly used camera model in computer
vision is the pinhole model under which the camera per-
forms a linear projective mapping from the projective
space IP3 to the projective plane 52. This mapping
can be concisely written as m = PM, where M is a 3-
D point location expressed in homogeneous coordinates,
m is its projection in the retinal plane, P is the (3 x 4)
camera projection matrix and the = symbol denotes the
equality up to a scale factor.

As we are interested in registering scenes with primar-
ily planar content, we will now focus on 2-D projective
transformations whose importance is emphasised by the
fact that they can be used as models for image motion
with an enormously vast field of application in Com-
puter Vision. It can be easily shown[10, 4] that two

different views of the same planar scene in 3-D space
are related by a collineation in P2, represented by a
(3 x 3) matrix! defined up to scale and establishing a
one-to-one relation between corresponding points over
two images. Thus, for a pair of image points of the same
3-D point of a planar scene with homogeneous coordi-
nates u and 1;’, the collineation Typ relating u; and u}
will impose w = Tspu.

The computation of a planar collineation requires at
least four pairs of corresponding points matched over
two images. If more than four correspondences are
available, then a least-square estimation can be accom-
plished. Let Top be the collineation relating two image
planes from which we have a set of n correspondences
such that u} = Typu;, for i = 1,...,n. For each pair
we will have two linear constraints on the elements of
Tsp. An homogeneous system of equations can thus
be assembled in the form H.t; = 0, where t; is the col-
umn vector containing the elements of T5p in a row-wise
fashion, and H is a (2n x 9) matrix. The system can
be solved by the means of the Singular Value Decom-
position, after imposing an additional constraint of unit
norm for t;, i.e., ||t;]] = 1.

As it is defined up to scale, the most general colli-
neation in /P? has eight independent parameters. If ad-
ditional information is available on the camera setup,
such has camera motion constraints, then the coordi-
nate transformation u} = Thpu; might not need the
eight independent parameters of the general case to ac-
curately describe the image motion. As an example we
can point out the case where the camera is just panning,
thus inducing a simple sideways image translation. If
we know beforehand which is the simplest model that
can explain the data equally well, then there will be no
reason for using the most general. Table 1 illustrates
some restricted models.

B. Robust Motion Estimation

Model estimation, in the sense of model fitting to noisy
data, is employed in computer vision on a large vari-
ety of tasks. The most commonly used method is the
least-squares mainly due to the ease of implementa-
tion and fast computation. The least-squares is opti-
mal when the underlying error distribution of the data
is Gaussian[9]. However, in many applications the data
are not only noisy, but it also contains outliers, i.e. data
in gross disagreement with the assumed model. Under
a least-square framework, outliers can distort the fit-
ting process to the point of making the fitted parameter
arbitrary[13].

1A collineation in /P? is also commonly refered to as a planar
transformation.



Image Model Matrix form p | Domain
t1 0 ity
Translation and zoom | Typ = 0 t1 t3 3 | Image plane is parallel to the planar scene.
0 0 t4 No rotation but with variable focal length or
distance to the scene.
ty t2 13
”Semi-Rigid” Top=| —ta 11 14 4 | Same as above but with rotation and scaling
0 0 ts along the image axes.
ty tz 13
Affine Transformation | Tsp = | ta 15 ts 6 | Distant scene subtending a small field of view.
0 0 tr

Table 1: Some of the possible motion models used for image merging, ordered by the number of free parameters p.

A widely used non-linear minimization method for
dealing with outliers is the least-median-of-squares [11]
(LMedS). The parameters for the planar transformation
are estimated by solving

. T 2
min mied (hi .tz)

where h? is the i’" row of the observations matrix H.
As pointed out in [9], this minimization problem cannot
be reduced to a least-squares based solution. The mini-
mization on the space of all possible solutions is usually
impracticable. Therefore it is common practice to use a
Monte Carlo technique and to analyze only a randomly
sampled subsets of points.

In the work presented on this paper, we have used a
two-step variant of LMedS, referred to as MEDSERE[5].
It exhibits a similar breakdown point but requires less
random sampling in order to achieve the same degree
of outlier rejection[4]. The MEDSERE algorithm com-
prises two phases of random sampling LMedS. After
the first phase, the data set is reduced by selecting the
best data points in the sense of the chosen cost function.
Next, the reduced data undergoes another random sam-
pling LMedS phase.

ITI. Mosaic Creation

The creation of video mosaics is accomplished in two
stages: registration and rendering. On the registration
stage the image motion is estimated, then the individ-
ual frames are fitted to a global model of the sequence.
The rendering stage deals with the creation of a sin-
gle mosaic, by applying a temporal operator over the
registered and aligned images.

The frame-to-frame motion estimation procedure al-
lows the construction of mosaics by the analysis of con-

secutive pairs of frames. In the global registration step,
the frame-to-mosaic transformation for the last frame
is computed by sequentially cascading all the previous
inter-frame transformations.

A. Registration

The work presented on this paper evolves around the
analysis of point projections and their correspondence
between image frames. In order to improve the corre-
spondence finding, a number of points are selected cor-
responding to image corners or highly textured patches,
using a simplified version of the well-known corner de-
tector proposed by Harris and Stephens[6].

For each image I, a set of features is extracted and
matched directly on the following image I41, using a
correlation-based matching procedure and resulting in
two lists of coordinates of corresponding points. Due
to the error prone nature of the matching process, it is
likely that a number of point correspondences will not
relate to the same 3-D point.

The MEDSERE algorithm is used for the estimation
of T} r+1 which relates the coordinate frames of I; and
Ipy1. Let (¥)u; be the location of the it* feature ex-
tracted from image Iy, and matched with **Yu on im-
age Ipy1. The criterion to be minimized is the median
of sum of the square distances,

m_ed(dz((k)ui, Tk,k+1 (k"'l)ui)

(O T ) W
where d (-, -) stands for the point-to-point Euclidean dis-
tance.

After estimating the frame-to-frame motion parame-
ters, these collineations are cascaded to form a global
model. The global model takes the form of a global reg-
istration, where all frames are mapped into a common,



arbitrarily chosen, reference frame. Let Tg.r: be the
transformation matrix relating the frames of the chosen
reference and the first image frame. The global regis-
tration is defined by the set of transformation matrices
{Trefr :k=1...N}, where for 2 <k < N,

k-1
Treft = TRef1 I_L.:1 1541

B. Rendering

After global registration, the following step consists in
merging the images. On ovelapping regions there are
more multiple contributions for a single point on the
output image, and some method has to be established
in order to determine the unique intensity value that
will be used. The contributions for the same output
point can be thought of as lying on a line which is par-
allel to the time axis, in a space-time continuum of the
globally aligned images. Therefore, the referred method
operates on the time domain, thus called a temporal op-
erator. Some of the commonly used methods are the
use-first, use-last, mean and median. The first two use
only a single value from the contributions vector, re-
spectively the first and the last entries of the timely or-
dered vector. The mean operator takes the average over
all the point contributions, and is effective in removing
temporal noise inherent in video. Finally, the median
operator also removes temporal noise but is particularly
effective in removing transient data, such as fast mov-
ing objects whose intensity patterns are stationary for
less than half the frames. It is therefore adequate for
underwater sequences of the seabed, where moving fish
or algae are captured.

IV. Results and Discussion

The ocean floor mosaics presented in this paper were
created from a number of video sequences where no in-
formation was used, other than the images themselves
and the most suitable motion model.

An example of a sea bed mosaic is given in Figure 1.
It was composed with 101 frames, registered under the
semi-rigid model and rendered with the median opera-
tor. The original sequence was obtained by a manually
controlled underwater vehicle, and depicts a man-made
construction. This scene is not planar nor static. The
camera is moving along a fracture inside which some
rocks can be seen. In the fracture there are noticeable
depth variations as opposed to the almost planar sur-
rounding sea bed. Even so, the sea bed is mostly covered
with algae and weeds, which provide good features for
the matching process, but violate the underlying planar
scene assumption. Another assumption violation is due

to some moving fish. Figure 2 shows two sub-mosaics
in which the motion of the fish can be clearly noticed.
Although constructed from the same sequence, these
sub-mosaics were rendered using the use-last temporal
operator.

Figure 3 presents two views of a mosaic from a se-
quence of images captured by a surface-driven ROV, on
a pipe inspection task. In this example the perspective
distortion effects are noticeable, since the image plane
of the camera is distinctly not parallel to the sea floor.
The most suitable motion model is, therefore, the full
planar transformation. The left image was created using
the first frame of the sequence as the reference frame.
For the right image, a reference frame was chosen as to
make the contour lines of the pipe approximately par-
allel, yielding a top view of the floor.

The presented mosaics illustrate the good perfor-
mance of the implemented matching and registration
methods. Even with notorious violations of the assumed
model, the algorithm can still find the motion parame-
ters as to create a mosaic with small misalignments to
the human eye.
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