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Abstract
To navigate reliably in indoor environments, a mobile

robot must know where it is. This includes both the abil-
ity of globally localizing the robot from scratch, as well
as tracking the robot’s position once its location is known.
Vision has long been advertised as providing a solution to
these problems, but we still lack efficient solutions in un-
modified environments. Many existing approaches require
modification of the environment to function properly, and
those that work within unmodified environments seldomly
address the problem of global localization.

In this paper we present a novel, vision-based local-
ization method based on theCONDENSATION algorithm
[17, 18], a Bayesian filtering method that uses a sampling-
based density representation. We show how theCONDEN-
SATION algorithm can be used in a novel way to track the
position of the camera platform rather than tracking an ob-
ject in the scene. In addition, it can also be used to globally
localize the camera platform, given a visual map of the en-
vironment.

Based on these two observations, we present a vision-
based robot localization method that provides a solution to
a difficult and open problem in the mobile robotics commu-
nity. As evidence for the viability of our approach, we show
both global localization and tracking results in the context
of a state of the art robotics application.

1 Introduction
To operate autonomously, mobile robots must know

where they are.Mobile robot localization, that is the pro-
cess of determining and tracking the location of a mobile
robot relative to its environment, has received consider-
able attention over the past few years. Accurate local-
ization is a key prerequisite for successful navigation in
large-scale environments, particularly when global models
are used, such as maps, drawings, topological descriptions,
and CAD models [22]. As demonstrated by a recent survey
of localization methods by Borenstein, Everett, and Feng
[2], the number of existing approaches is diverse. Cox [7]
noted that “Using sensory information to locate the robot
in its environment is the most fundamental problem to pro-

viding a mobile robot with autonomous capabilities.”

The current state of the art in localization often uses
laser range finders or sonar [2], but these sensor modalities
have a number of problems. They tend to be easily con-
fused in highly dynamic environments, e.g., when the laser
or sonar beams are blocked by people [12]. Being limited
in range, they cannot be expected to provideaccurate lo-
calization in large open areas, where no landmarks can be
observed [15]. Finally, these systems tend to be expensive.

Vision has long been advertised as providing a solution
to these problems, but efficient solutions in unmodified en-
vironments are still lacking. Many of the approaches re-
viewed in [2] require artificial landmarks such as bar-code
reflectors [10], reflecting tape, or visual patterns that are
easy to recognize, such as black rectangles with white dots
[1]. But even approaches that use more natural landmarks
[26, 20, 23, 15] are used mainly totrack the position of a
robot, and are not able to globally localize the robot.

In this paper, we present a vision-based approach to lo-
calization based on the CONDENSATION algorithm, which
provides both robustness and the capability to globally lo-
calize the robot. The idea is to use a visual map of the
ceiling, obtained by mosaicing, and localize the robot us-
ing a simple scalar brightness measurement as the sensor
input. Because the information coming from this sensor
is highly ambiguous, a Kalman filter approach is not ap-
plicable. The CONDENSATION algorithm was introduced
in the vision community precisely to deal with this type
of measurement uncertainty [17, 18]. It belongs to the
general class of Monte Carlo filters, invented in the sev-
enties [16], and recently rediscovered independently in the
target-tracking [13], statistical [21], and computer vision
literature [17, 18]. These algorithms use a set of random
samples orparticlesto represent the propagation of arbi-
trary probability densities over time. It is this property that
makes them ideally suited to our application.

The resulting localization method, which we have called
the MonteCarlo Localization method, draws on the fol-
lowing contributions:

1. We show how the CONDENSATION algorithm can



be used in a novel way to track the position of the camera
platform rather than tracking an object in the scene.

2. We show how in addition to providing robust track-
ing, the CONDENSATION algorithm can be used to globally
localize the robots, given a visual map of the environment.

3. Based on these two observations, we present a vision-
based robot localization method that provides a solution to
a difficult and open problem in the robotics community.

As evidence for the viability of our approach, we show
both global localization and tracking results in the context
of a state of the art robotics application. In this applica-
tion, the mobile robot Minerva functioned as an interac-
tive robotic tour-guide in the Smithsonian’s National Mu-
seum of American History. During its two weeks of per-
formance, it interacted with over 50,000 people, travers-
ing more than 44 km. Our successful results within this
unmodified and highly dynamic environment attest to the
promise of our approach.

In the remainder of this paper we first discuss the gen-
eral problem of robot localization, in Section 2. This is
made more explicit in Section 3, where we discuss how a
simple vision-based sensor can give rise to complex like-
lihood densities. In Section 4, we provide a taxonomy of
algorithms based on the way they deal (or not) with these
types of densities. In Section 5, we show how the CON-
DENSATION algorithm provides an elegant solution to the
problem, and use it as the basis for a novel localization
method. Finally, Section 6 shows global localization and
tracking results in our museum testbed application.

2 Robot Localization
In robot localization, we are interested in estimating

the state of the robot at the current time-stepk, given
knowledge about the initial state and all measurements
Zk = {zk, i = 1..k} up to the current time. Typically, we
work with a three-dimensional state vectorx = [x, y, θ]T ,
i.e. the position and orientation of the robot. This estima-
tion problem is an instance of the Bayesian filtering prob-
lem, where we are interested in constructing the posterior
densityp(xk|Zk) of the current state conditioned on all
measurements. In the Bayesian approach, this probability
density function (PDF) is taken to represent all the knowl-
edge we possess about the statexk, and from it we can
estimate the current position. Often used estimators are the
mode (the maximum a posteriori or MAP estimate) or the
mean, when the density is unimodal. However, particu-
larly during the global localization phase, this density will
be multi-modal and calculating a single position estimate
is not appropriate.

Summarizing, to localize the robot we need to recur-
sively compute the densityp(xk|Zk) at each time-step.
This is done in two phases:

Prediction PhaseIn the first phase we use amotion
model to predict the current position of the robot in the
form of a predictive PDFp(xk|Zk−1), taking only mo-
tion into account. We assume that the current statexk is
only dependent on the previous statexk−1 (Markov) and
a known control inputuk−1, and that the motion model is
specified as a conditional densityp(xk|xk−1,uk−1). The
predictive density overxk is then obtained by integration:

p(xk|Zk−1) =
∫
p(xk|xk−1,uk−1) p(xk−1|Zk−1) dxk−1

(1)

Update PhaseIn the second phase we use ameasure-
ment modelto incorporate information from the sensors
to obtain the posterior PDFp(xk|Zk). We assume that
the measurementzk is conditionally independent of earlier
measurementsZk−1 given xk, and that the measurement
model is given in terms of a likelihoodp(zk|xk). This term
expresses the likelihood of the statexk given thatzk was
observed. The posterior density overxk is obtained using
Bayes’ theorem:

p(xk|Zk) =
p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)
(2)

After the update phase, the process is repeated recur-
sively. At timet0 the knowledge about the initial statex0

is assumed to be available in the form of a densityp(x0).
In the case of global localization, this density might be a
uniform density over all allowable positions. In tracking
work, the initial position is often given as the mean and co-
variance of a Gaussian centered aroundx0. In our work,
as in [4], the transition from global localization to track-
ing is automatic and seamless, and the PDF evolves from
spanning the whole state space to a well-localized peak.

3 Vision-Based Localization
In this section, we explain the basic idea behind our

vision-based approach to localization, and show that it
gives rise to complex and multi-modal likelihood densities
p(z|x). This provides the motivation for using the CON-
DENSATION algorithm rather than a Kalman filter based
approach.

The basic idea of our approach is to generate an image
mosaic of the ceiling of the environment in which the robot
needs to operate, and use that during operation to localize
the robot. An example of such a ceiling mosaic from our
testbed-application is shown in Fig. 1. The figure shows
a large portion (40 m. deep by 60 m. wide) of the first
floor ceiling of the Museum for American History (MAH),
one of the Smithsonians in Washington, DC. The mosaic
was generated from 250 images by globally aligning the



Figure 2: The likelihood densitiesp(z|x) of being at positionx given a brightness measurementz for three values ofz.
Left: highz indicates the robot is under a light. Middle: intermediatez. Right: lowz: not under a light.

Figure 1: Example of a large-scale ceiling mosaic. The
area shown is 40 m. deep by 60 m. wide.

images, and estimating the texture of the ceiling from the
aligned images. The alignment was done using a variant of
an algorithm by Lu and Milios [25] for map-building from
laser range finder scans. The details are beyond the scope
of the current paper, and are described elsewhere [8].

At run time, we use a simple scalar measurement to lo-
calize the robot. Rather than working with entire images,
the idea is to use a very simple sensor that can be inte-
grated at high frequencies while requiring very little com-
putation and memory. This is an important property in en-
abling small, low cost robots. In particular, the brightness
of a small ceiling patch directly above the robot is mea-
sured. In our testbed application, the measurement is done
using a camera pointed at the ceiling, by extracting a small
window of 25 by 25 pixels from the center of the image.
A Gaussian filter with a standard deviation of 6 pixels is
then applied, to create a single scalar measurement. The
blurring is essential to filter out frequency components that
cannot be represented within the mosaic, which is of finite

resolution.
The likelihood densitiesp(z|x) associated with this

simple sensor model are in general complex and multi-
modal, which explains the need for more powerful prob-
abilistic reasoning. To illustrate this, three different likeli-
hood densities are shown in Fig. 2, respectively when the
robot is under a light, at the border of a light, and not under
a light. It is clear that these densities do not resemble any-
thing remotely like a Gaussian density, and that more pow-
erful density representations are required than provided by
the Kalman filter.

4 Existing Approaches:
A Tale of Density Representations

The solution to the robot localization problem is ob-
tained by recursively solving the two (1) and (2). Depend-
ing on how one chooses to represent the densityp(xk|Zk),
one obtains algorithms with vastly different properties:

The Kalman filter If both the motion and the measure-
ment model can be described using a Gaussian density, and
the initial state is also specified as a Gaussian, then the den-
sity p(xk|Zk) will remain Gaussian at all times. In this
case, (1) and (2) can be evaluated in closed form, yield-
ing the classical Kalman filter [27]. Kalman-filter based
techniques [24, 31, 14] have proven to be robust and accu-
rate for keeping track of the robot’s position. Because of
its concise representation (the mean and covariance matrix
suffice to describe the entire density) it is also a particu-
larly efficient algorithm. However, it is clear that the basic
assumption of Gaussian densities is violated in our applica-
tion, where the likelihood densities are typically complex
and multi-modal, as discussed above.

Topological Markov Localization To overcome these
disadvantages, different approaches have used increasingly
richer schemes to represent uncertainty, moving away from
the restricted Gaussian density assumption inherent in the
Kalman filter. These different methods can be roughly dis-
tinguished by the type of discretization used for the rep-



resentation of the state space. In [28, 32, 19, 34], Markov
localization is used for landmark-based corridor navigation
and the state space is organized according to the topolog-
ical structure of the environment. However, in many ap-
plications one is interested in a more fine-grained position
estimate, e.g., in environments with a simple topology but
large open spaces, where accurate placement of the robot
is needed.

Grid-based Markov Localization To deal with multi-
modal and non-Gaussian densities at a fine resolution, one
can discretize the interesting part of the state space, and
use it as the basis for an approximation of the density
p(xk|Zk), e.g. by a piece-wise constant function [3]. This
idea forms the basis of the grid-based Markov localization
approach [5, 11]. Methods that use this type of represen-
tation are powerful, but suffer from the disadvantages of
computational overhead anda priori commitment to the
size of the state space. In addition, the resolution and
thereby also the precision at which they can represent the
state has to be fixed beforehand. The computational re-
quirements have an effect on accuracy as well, as not all
measurements can be processed in real-time, and valuable
information about the state is thereby discarded.

Sampling-based MethodsFinally, one can represent
the density by a set of samples that are randomly drawn
from it. This is the representation we will use, and it forms
the topic of the next section.

5 Monte Carlo Localization
In this section, we present a novel localization method

based on a sampling-based representation, using the CON-
DENSATION algorithm [17, 18] to propagate the posterior
density over time. In the localization context, CONDEN-
SATION is used to estimate the position of the camera plat-
form rather than an object in the scene. In addition, the
ability to represent arbitrary densities enables us to per-
form global localization without modification.

In sampling-based methods one represents the density
p(xk|Zk) by a set of N random samples orparticlesSk =
{sik; i = 1..N} drawn from it. We are able to do this be-
cause of the essential duality between the samples and the
density from which they are generated [33]. From the sam-
ples we can always approximately reconstruct the density,
e.g. using a histogram or a kernel based density estimation
technique.

The goal is then to recursively compute at each time-
stepk the set of samplesSk that is drawn fromp(xk|Zk).
A particularly elegant algorithm to accomplish this is the
CONDENSATION algorithm [17, 18], known alternatively
as the bootstrap filter [13] or the Monte-Carlo filter [21].
These methods are generically known asparticle filters,
and an overview and discussion of their properties can be
found in [9].

In analogy with the formal filtering problem outlined in
Section 2, the algorithm proceeds in two phases:

Prediction PhaseIn the first phase we start from the set
of particlesSk−1 computed in the previous iteration, and
apply the motion model to each particlesik−1 by sampling
from the densityp(xk|sik−1,uk−1):

(i) for each particlesik−1:
draw one samples′ik from p(xk|sik−1,uk−1)

In doing so a new setS′k is obtained that approximates
a random sample from the predictive densityp(xk|Zk−1).
The prime inS′k indicates that we have not yet incorpo-
rated any sensor measurement at timek.

Update PhaseIn the second phase we take into account
the measurementzk, and weight each of the samples in
S′k by the weightmi

k = p(zk|s′ik), i.e. the likelihood of
s′
i
k givenzk. We then obtainSk by resampling from this

weightedset:

(ii) for j=1..N:
draw oneSk samplesjk from {s′ik, mi

k}

The resampling selects with higher probability sampless′
i
k

that have a high likelihood associated with them, and in do-
ing so a new setSk is obtained that approximates a random
sample fromp(xk|Zk). An algorithm to perform this re-
sampling process efficiently in O(N) time is given in [6].

After the update phase, the steps (i) and (ii) are repeated
recursively. To initialize the filter, we start at timek = 0
with a random sampleS0 = {si0} from the priorp(x0).
A Graphical Example

A B C D
p(xk−1|Zk−1) p(xk|Zk−1) p(zk|xk) p(xk|Zk)

Fig. 3: The probability densities and particle sets for one
iteration of the algorithm. See text for detail.

One iteration of the algorithm is illustrated in Figure 3.
In the figure each panel in the top row shows the exact den-
sity, whereas the panel below shows the particle-based rep-
resentation of that density. In panel A, we start out with a



Fig. 5: Initial uncertainty
at iteration 15.

Fig. 6: Representing ambiguity
at iteration 38.

Fig. 7: Global localization
at iteration 126.

Figure 4: Our testbed, the robotic museum tour-guide Min-
erva. The ceiling camera can be seen on the right.

cloud of particlesSk−1 representing our uncertainty about
the robot position. In the example, the robot is fairly local-
ized, but its orientation is unknown. Panel B shows what
happens to our belief state when we are told the robot has
moved exactly one meter since the last time-step: we now
know the robot to be somewhere on a circle of 1 meter
radius around the previous location. Panel C shows what
happens when we observe a landmark, half a meter away,
somewhere in the top-right corner: the top panel shows the
likelihoodp(zk|xk), and the bottom panel illustrates how
each samples′ik is weighted according to this likelihood.
Finally, panel D shows the effect of resampling from this
weighted set, and this forms the starting point for the next
iteration.

Good explanations of the mechanism underlying the
CONDENSATION algorithm are given in [6, 29]. The en-
tire procedure of sampling, reweighting and subsequently

resampling to sample from the posterior is calledSam-
pling/Importance Resampling(SIR) [30], and an accessi-
ble introduction to it can be found in [33].

6 Experimental Results
As a test-bed for our approach we used the robotic tour-

guide Minerva, a prototype RWI B18 robot shown in Fig.
4. In the summer of 1998, Minerva functioned for two
weeks as an interactive robotic tour-guide in the Smith-
sonian’s National Museum of American History. During
this time, it interacted with thousands of people, travers-
ing more than 44 km. The datasets we work with consist
of logs of odometry and vision-based measurements col-
lected while Minerva operated within the MAH environ-
ment. The upward pointing camera, used both for building
the ceiling-mosaic as performing the brightness measure-
ment, can be seen on the right-hand side of Fig. 4. Using
the time stamps in the logs, all tests have been conducted
in real-time.

6.1 Global Localization
One of the key advantages of using a sampling-based

representation over Kalman-filter based approaches is its
ability to represent multi-modal probability distributions.
This ability is a precondition for localizing a mobile robot
from scratch, i.e., without knowledge of its starting loca-
tion. This global localization capability is illustrated in Fig.
5 through Fig. 7. In the first iteration, the algorithm is ini-
tialized by drawing 40,000 samples from a uniform prob-
ability density save where there are known to be (static)
obstacles. After 15 iterations of the algorithm, the samples
are still scattered over the area, but tend to be concentrated
in areas with high brightness. This is shown in Fig. 5.
After 38 iterations, all but a few possibilities have been
eliminated, as shown in Fig. 6. This is possible because all
samples that disagree with the actual temporal sequence of
brightness measurements become very unlikely. It should
be noted that in this early stage of localization, the ability



Fig. 8: Estimated path
using odometry only

Fig. 9: Corrected path
using vision

to represent ambiguous probability distributions is vital for
successful position estimation. Finally, after 126 iterations
only one localized peak is left, as shown in Fig. 7, which
indicates that the robot has been able to uniquely determine
its position. Note that the samples are shown after the re-
sampling step, where they are unweighted, and that most
of the off-peak samples have in fact low probability.

6.2 Position Tracking
Using the same approach, we are also able to track the

position of a robot over time, even when the robot is mov-
ing at high speeds. In this experiment, we used recorded
data from Minerva, as it was moving with speeds up to 1.6
m/sec through the museum. At the time of this run there
were no visitors in the museum, and the robot was remotely
controlled by users connected through the world wide web.

To illustrate this, Fig. 8 shows an occupancy grid map
of the museum along with the estimated trajectoryusing
odometry alone. In the tracking experiment, the robot po-
sition is initialized with the true position at the top of the
map. Due to the accumulatedodometry error, the robot is
hopelessly lost after traversing 200 meters. In contrast, the
path estimated using the vision-sensor keeps track of the
global position at all times. This can be appreciated from
Fig. 9, where the vision-corrected path is shown. This path
was generated by running the CONDENSATION algorithm
with 1000 samples, and plotting the mean of the samples
over time. The resulting estimated path is noisier than the
one obtained by odometry, but it ends up within 10 cm. of
the correct end-position, indicated with a black dot at the
right of the figure.

In general, far fewer samples are needed for position
tracking than for global localization, and an issue for future

research is to adapt the number of samples appropriately.
Also, the noisy nature of the estimated position occurs of-
ten when two or more probability peaks arise. In this case,
rather than plotting one mean position, it might be more ap-
propriate to display several alternative paths, correspond-
ing to the modes of the posterior probability density.

7 Conclusion and Future Work
In this paper, we have shown that CONDENSATION type

algorithms can be used in a novel way to perform global
and local localization for mobile robots. The ability of
these Monte Carlo methods to deal with arbitrary likeli-
hood densities is a crucial property in order to deal with
highly ambiguous sensors, such as the vision-based sen-
sor used here. In addition, the ability to represent multi-
modal posterior densities allows them to globally localize
the robot, condensing an initiallyuniform prior distribution
into one globally localized peak over time.

Based on these properties, the resultingMonteCarlo
Localization approach has been shown to address one of
the fundamental and open problems in the mobile robot
community. In order to support this claim, we have shown
results within the context of a challenging robot applica-
tion. Our method was able to both globally localize and
locally track the robot within a highly dynamic and un-
modified environment, and this with the robot traveling at
high speeds.

The results in this paper were obtained using a single
brightness measurement of the ceiling directly above the
robot’s position. In part, this is done to investigate how lit-
tle sensing one can get away with. In future work, this can
be further developed in two opposite directions: one can



envision building robots with even less sensory input, e.g.,
by omitting wheel encoders that provide odometry mea-
surements. This shifts the burden towards the development
of even more powerful paradigms for probabilistic reason-
ing. In the other direction, it is clear that integrating more
complex measurements will provide more information at
each iteration of the algorithm, resulting in faster global
localization and more accurate tracking than shown here.
In future work, we hope to investigate both these possibil-
ities in more depth.
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