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Announcements

• Homework due by midnight
• Next homework will be assigned Tuesday, 

due following Tuesday.  It will involve 
tracking, specifically the Kalman filter, so look 
at Chap. 18-18.2 and handout for head start

• Some calendar changes
– Project proposal due Oct. 10—details soon
– Second paper presentations pushed back slightly

• Software for grabbing images
– OS-based screen dump -> Crop
– Software: SnagIt (Windows), scrot (Linux), etc. 



Main Contributions

• Automatically construct image mosaics 
of…
– Planar surfaces under general camera 

motion
– General scene when camera motion is 

rotation about camera center

• Recover dense 3-D depth map (up to 
projective ambiguity)



Mosaicing: Big Issues

• Estimating homography without manually 
selecting point correspondences
– Find displacement that best “registers” one 

image with the other

• Drawing overlapping images in a visually 
pleasing way



Primary Techniques

• Nonlinear minimization of SSD error function 
to estimate homography parameters

• Fourier phase correlation to estimate large 
camera motions

• Multiple planes/cylindrical coordinates to 
counteract large angle distortion for panoramic 
mosaicing

• Projective depth variables estimated for 
parallax motions



What We Want to Minimize

• Let u’ = H u represent homography transformation 
of a point u (Szeliski uses M for H).  As shorthand, 
write transformation of all image points as H I = I’

• This is a linear system of equations; HW 1 was 
about solving the minimal form of it for known 
correspondences

• If we don’t know any correspondences, what can we 
do?  Idea: hypothesize H, transform image (using 
bilinear interpolation), see how good match is

• Szeliski uses SSD image similarity measure



Nonlinear Minimization

• The SSD error function is nonlinear, so we can’t 
use linear least-squares (e.g., SVD from 
homework) to solve for H

• Approach: Nonlinear least-squares to find the 
parameters of H which minimize the error function

• Levenberg-Marquardt is a standard technique 
(see Chap. 15.5 of Numerical Recipes for details)

• Initial guess: Identity homography
• Matlab: Pass error function to lsqnonlin after 
optimset('LevenbergMarquardt','on')



Image Compositing

• With homography computed, how to render 
combined image?

• Simply putting one image on top of the other, 
even with bilinear interpolation, may result in a 
“seam” due to different brightness levels
– Auto-iris can change overall lightness of images
– Vignetting can make image edges darker

• Bilinear blending: Use “hat” function w indicating 
weight of contributions of both images to mosaic
– w maximal at source image center, falls linearly to 0 

at edges



Planar Mosaic: Whiteboard

Raw images Final mosaic



Dealing with 
Large Displacements

• For small overlaps, gradient descent/LM have 
problem with local minima in SSD error 
function.  Possible solutions:
– Hierarchical matching (i.e., image pyramid)
– Phase correlation (for even less overlap)—uses 

Fourier transform

• Also, geometry of panoramic mosaicing 
invalidates single plane assumption over large 
angular changes



Fourier Transform

• Given a function              , its Fourier 
transform                is defined by:

• Invertible decomposition of function 
(image) into waves of different 
frequencies (sines & cosines)

• Takes function from spatial domain to 
(complex) frequency domain



Fourier Theorem
• The convolution of two functions is the same 

as the product of their Fourier transforms
– Given                                               , we have 

that

• Helpful way to convolve efficiently (less so 
for small kernels)

• Fast Fourier Transform (FFT): Numerical 
method for computing Fourier transform; 
computational complexity = n log n.  
– Matlab: fft2; also, C library at fftw.org



What We Want To Know

• Need to estimate shift              
between two images.  This is like 
computing cross-correlation and finding 
peak

• Cross-power spectrum: Fourier 
transform of cross-correlation function



Fourier Shift Theorem

• Suppose                                          
and                                .  Then:



Estimating Shift

• Equivalently:

where the LHS is the cross-power 
spectrum

• The inverse Fourier transform of the 
RHS is                  , so find the location 
of the maximum and we are done



Extensions

• The preceding analysis can be extended 
to handle rotation and scaling
– See B. Reddy and B. Chatterji, “An FFT-

Based Technique for Translation, Rotation, 
and Scale-Invariant Image Registration,”
IEEE Trans. Image Processing, Vol. 5, pp. 
1266-1271, August, 1996.



Panoramic Mosaics

• Rotation around camera center does not induce 
parallax → Locally, images are coplanar

• However, just one plane becomes bad 
approximation over large angles

• Techniques
– Tile sphere with planes, register images to local 

plane
– Register images to base frame; choose new base 

frame periodically
– Map to cylindrical coordinates before registering



Results: Multiple Base Frames



Results: Cylindrical Coordinates

Office

River



Depth Recovery

• Want to estimate Z (depth) values for 
scene points

• Benefits of 3-D structure
– Obstacle detection without recognition
– More information for recognition 

• Approaches
– Piecewise planar: suggested but not explained
– Dense (per pixel)



Dense 3-D Depth Maps

• Calculating depths
– Known camera motion → Stereo reconstruction
– Unknown camera motion → Structure from 

motion
• Projective depth

– Definition: Parallax, or image shift, of point 
between two views after accounting for 
homography.  Proportional to relative depth 
from scene plane inducing homography

– Not the same as traditional Euclidean depth



Projective Depth: Details
• Approach: Decompose motion of scene points 

into two parts:
– 2-D homography (as if all points coplanar)
– Parallax: Discrepancy

proportional to distance 
from plane

• Apply nonlinear minimiz-
ation as before to estimate 
new variables

• More next week in 
“Motion” lecture

from Hartley & Zisserman



Results: 
Desktop Depth Recovery

Raw
image

Estimated
depths

Synthesized
view (texture-

mapped)

Synthesized
view (wire-
frame)



Results: 
Tree Depth Recovery

Raw image Estimated depths



Results

• Looks good qualitatively, but no 
quantitative analysis 

• Could mosaic large, known poster to 
compare pixel by pixel accuracy

• Projective depth recovery could have 
imaged known scene to measure 
accuracy



Limitations

• Need scene to be highly-textured for accurate 
registration, projective depth estimation

• Sensitive to illumination variations, 
departures from pinhole model (i.e., radial 
distortion)

• Hat function for blending is ad-hoc—could we 
actually calibrate images photometrically (i.e., 
for exposure, vignetting) and compensate 
precisely?



More Limitations

• What if something in the scene is 
moving?

• Images only adjusted pairwise → errors 
propagate.  How about a global 
algorithm estimates alignments of all 
images simultaneously?



Connections

• Techniques have wide applicability
– Image registration useful for tracking, recognition
– Fourier phase correlation can be used for audio 

localization—i.e., shift is in time of sound’s arrival 
at different microphones, which is proportional to 
distance, allowing triangulation, etc. 

• Related things we’re reading… 
– Making panoramic mosaics for recognition (instead 

of using omnidirectional camera)
– Mosaicing of sea floor by submersible
– Building ceiling mosaic for museum robot



Robotics Applications/
Possible improvements

• Tracking planar patterns (e.g., signs, 
building facades, the ground from a 
UAV) over time

• Super-resolution for higher fidelity 
pictures—Can we make face 
recognition, OCR, etc. more accurate? 

• Acquiring piecewise-planar 3-D building 
models automatically


