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Announcements

• Readings for next Tuesday: Chapter 14-
14.4, 22-22.5 in Forsyth & Ponce



Main Contributions

• Robust estimation of road shape 80 
meters ahead on highways, plus car 
bearing, position within lane 
– Recovers from mistracking

• Handles variety of lane types in 
different lighting conditions

• Integrates camera with non-visual 
modalities



Primary Techniques

• Condensation algorithm (particle 
filtering) for lane line tracking

• Specialized image processing to detect 
lane lines despite significant changes in 
illumination conditions



Assumptions

• Internal camera calibration available
• Needs to initialize camera pitch, height 

on lane of known width
• Flat road
• Accelerometers provide velocity, yaw 

rates
• Scanning radar detects on-road 

obstacles
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Road Shape Function

• Cubic polynomial
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Measurement Model

• How to predict image coordinates of 
lane lines from road shape function (2), 
which is defined in the ground plane?

• Some trigonometry + applying 
perspective projection yields

where H is the camera height
• This is nonlinear



Handling Nonlinear Models

• Many system & measurement models can’t be 
represented by matrix multiplications (e.g., sine 
function for periodic motion)

• Kalman filtering with nonlinearities
– Extended Kalman filter

• Linearize nonlinear function with 1st-order Taylor series 
approximation at each time step

– Unscented Kalman filter
• Approximate distribution rather than nonlinearity
• More efficient and accurate to 2nd-order
• See http://cslu.ece.ogi.edu/nsel/research/ukf.html



Pitch, Height Estimation

• Users indicates edges of known-width lane to 
find vanishing point & hence horizon line

image height of horizon line
(limit of v term in (6) as x → ∞)



Measuring Pitch Change

• SSD comparison of locations above and 
below horizon between successive frames to 
estimate vertical shift dj

• Function: 
camera focal 
length (vertical) 



Finding Lane Markings

• Cross-correlation with triangular profile 
(e.g., kernel for line/roof edge 
detection) in red channel; threshold for 
candidates

• Must also exceed gray level threshold 
set dynamically depending on overall 
image brightness—helps with shadows

• Still have problems with false positives



Figs



Tracking as Estimation
• Image likelihood p (I | X) compares image to 

expectation based on state
• State prior p (X) summarizes domain 

knowledge, past estimates
• Bayesian approach: State posterior p (X | I) ∝∝∝∝

p (I | X) p (X) 
• Maximum a posteriori (MAP) estimate: argmax 

of this expression—i.e., the most probable state
• Maximum likelihood (ML) estimate: state which 

maximizes image likelihood (i.e., all states 
equally likely a priori)



Estimation Using Condensation
• Condensation: A particle filter developed for 

person tracking (Isard & Blake, 1996)
• Idea: Stochastic approximation of state posterior 

with a set of N weighted particles (s, π), where s
is a possible state and π is its weight

• Simulation instead of analytic solution—underlying 
probability distribution may take any form

• State estimate
– Mean approach

• Average particle
• Confidence: inverse variance

– Really want a mode finder



Condensation:
Estimating Target State

From Isard & Blake, 1998

State samples Mean of weighted 
state samples



Updating the Particle Set

• (1) Select: Randomly select N particles 
based on weights; same particle may be 
picked multiple times (factored sampling)

• (2) Predict: Move particles according to 
deterministic dynamics (drift), then perturb 
individually (diffuse)

• (3) Measure: Get a likelihood for each new 
sample by making a prediction about the 
image’s local appearance and comparing; 
then update weight on particle accordingly



Condensation:
Conditional density propagation
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Notes on Updating

• Enforcing plausibility: Particles that 
represent impossible configurations are 
discarded

• Diffusion modeled with a Gaussian
• Likelihood function: Convert “goodness of 

prediction” score to pseudo-probability
– More markings closer to predicted markings →

Higher likelihood



Condensation: State posterior

From Isard & Blake, 1998



Benefits of Particle Filtering

• Nonlinear dynamics, measurement 
model easily incorporated

• Helps deal with lots of false positives for 
lane markings—i.e., multi-modal 
posterior okay, whereas it contradicts 
Kalman filter assumptions



Estimation on Real Sequence



Extensions to Condensation

• Partitioned sampling (MacCormick & Isard, 2000)
– Split state up into low- (straight line) and high-

frequency (curvature) components and sample 
hierarchically for efficiency

• Importance sampling (Isard & Blake, 1998)
– Give “hints” by introducing samples at more likely 

spots in state space
• Hough transform to fit lines to lane markings (see Forsyth & 

Ponce, Chapter 16.1)
• Accelerometer data to get instantaneous curvature C0

• Initialization samples
– Importance samples drawn from prior to allow auto-

initialization and recovery



Connections

• MAV paper also estimates horizon line 
(using a Kalman filter)—but with a bit 
more variation!

• Car tracking paper by Dellaert et al. 
detects cars visually, tracks them with 
Kalman filter

• Condensation algorithm used by 
museum tour guide to track its position



Related Work

• Shape extraction 
– Edge-based [Dickmanns, 1997; Taylor et al., 1996]

– Texture curvature [Pomerleau, 1995]

• Region-based segmentation
– Color [Crisman & Thorpe, 1991; Fernandez & Casals, 1997]

– Texture [Zhang & Nagel, 1994]

– Structure from Motion [Smith, 1996]

• Sign finding
– Template-matching [Betke & Makris, 1995]

– Color [Piccioli et al., 1994; Lauzière et al., 2001]



Results

• Runs at 10.5 fps on PIII 867 MHz
• Good details on numbers of samples N in 

partitioned particle filter, percentage of 
importance samples and initialization samples, 
etc. 

• No ground truth—surely could use GPS/ 
differential GPS + map for some quantification

• Found that bright sunlight and specularities from 
wet roads are a problem

• Curve estimation lags because dynamical model 
(Eq. 4) “does not predict non-random changes 
of curvature”



Comments

• No comparison of performance with and 
without partitioned sampling, importance 
sampling, etc.  For that matter, there’s no 
comparison to Kalman filtering

• Image processing for illumination invariance 
fairly ad-hoc—isn’t there a better way than 
just using the red channel?

• No formula given for dynamic calculation of 
gray level threshold



Applications/Improvements

• Obviously, autonomous driving for transportation 
and cargo
– Driver assistance: Computer doesn’t steer, but it can 

warn, etc.  Or, a more advanced version of cruise control
• Put yaw rate, velocity into state, even if they are 

estimated non-visually
• Initialize pitch, height automatically—their 

procedure “requires the user to specify the lines”—
that’s not trying hard enough 

• Mean particle not a robust state estimation 
technique—what if multiple lanes are visible?  How 
about trying to find them all, or detecting whether 
there are none?



Questions?


