Vision Review: Miscellaneous

Course web page: www.cis.udel.edu/~cer/arv

October 8, 2002

Announcements

- Homework 2 due today by midnight. Remember to submit just one file, with your name in the filename.
- Project proposal due Thursday; meet with me first
- Thommen Korah & Bill Ulrich will present "Automatic Mosaic Creation of the Ocean Floor" on Thursday—you should have read it by then

Computer Vision Review Outline

- Image formation
- Image processing
- Motion & Estimation
- Classification
- Miscellaneous

Outline

- Radiometry
 - Image formation explained location of scene point in image, but what about its intensity?
- Sampling
 - Moving from the continuous to the discrete

Radiometry

• Radiance L: Energy at a point in space in a given direction, foreshortened $(Wm^{-2}sr^{-1})$

Ĥ

• Irradiance E: Arriving light from all directions (Wm^{-2})

X

BRDF

 Bidirectional Reflectance Distribution Function (BRDF): Ratio of energy radiated in one direction to energy received in another

$$f(\theta_i, \phi_i, \theta_e, \phi_e) = \frac{\delta L(\theta_e, \phi_e)}{\delta E(\theta_i, \phi_i)}$$

$$(\theta_i, \phi_i) \qquad n \qquad (\theta_e, \phi_e)$$

BRDF Properties

- Generally, only difference between incident and emitted angles is significant
 – Dependence on absolute φ → Anisotropy
- Lambertian (matte):

$$f(\cdot) = \frac{1}{\pi}$$

• Specular (shiny):

$$f(\cdot) = \frac{\delta(\theta_e - \theta_i)\delta(\phi_e - \phi_i - \pi)}{\sin \theta_i \cos \theta_i}$$

Image Irradiance

- Assume that Scene radiance = Image irradiance: $E(\mathbf{x}_{im}) = L(\mathbf{x}_{cam}) = L(\theta_e, \phi_e)$
- Lambertian surface:
 - Point light source: $L(\theta_e, \phi_e) = I_0 \cos \theta_s / \pi$
 - Brightest where n aligned with light direction
 - Uniform light: $L(\theta_e, \phi_e) = I_0$
- Specular reflectance: $L(\theta_e, \phi_e) = I(\theta_e, \phi_e - \pi)$

courtesy of L. Wolff

• Applications: Shape from shading, etc.

Color

- Radiance, irradiance, BRDF are all actually wavelength dependent
- Trichromacy: Where do R, G, and B come from?
 - Additive mixing of a few *primary* colors matches many arbitrary colors well
 - In a sense, RGB space is a PCA-reduced dimension version of true color space, where data is from natural world

courtesy of G. Loy

Analog \rightarrow Digital

- Sampling: Limited spatial resolution of capture devices results in visual artifacts (i.e., aliasing)
 - Nyquist theorem: Must sample 2x highest frequency component of signal to reconstruct adequately
- Quantization \rightarrow Banding
- Limited dynamic range \rightarrow Clipping
- Temporal integration \rightarrow Motion blur
- Noise

1/30th sec. exposure

Multi-sampling

- Image mosaics provide a way to overcome some sampling issues through multiple views of scene points
 - Different exposures \rightarrow High dynamic range
 - Subpixel registration \rightarrow Super resolution

High Dynamic Range Panoramas

Under- and over-exposed mosaic

HDR mosaic

courtesy of D. Lischinski

UAV-based Mosaicing

courtesy of S. Srinivasan

Super-Resolution from a UAV

Normal

courtesy of S. Srinivasan

Medium

- Vacuum is generally assumed
- Scattering, haze can have important effects
 - Attenuation
 - Airlight
- Medium's light absorption may affect color perception, refraction may affect perceived geometry, etc.

Depth from Airlight

(a)

from Nayar & Narasimhan

