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Announcements

• Homework 2 due next Tuesday 
• Project proposal due next Thursday, 

Oct. 10.  Please make an appointment 
to discuss before then



Computer Vision 
Review Outline

• Image formation
• Image processing
• Motion & Estimation 
• Classification



Outline

• Classification terminology
• Unsupervised learning (clustering)
• Supervised learning

– k-Nearest neighbors
– Linear discriminants

• Perceptron, Relaxation, modern variants
– Nonlinear discriminants

• Neural networks, etc.

• Applications to computer vision
• Miscellaneous techniques



Classification Terms

• Data: A set of N vectors x
– Features are parameters of x; x lives in feature space
– May be whole, raw images; parts of images; filtered 

images; statistics of images; or something else entirely

• Labels: C categories; each x belongs to some ci

• Classifier: Create formula(s) or rule(s) that will 
assign unlabeled data to correct category
– Equivalent definition is to parametrize a decision 

surface in feature space separating category members



• Feature vectors: 410 features/point over 32 x 20 grid
– Color histogram [Swain & Ballard, 1991] (24 features)

• 8 bins per RGB channel over surrounding 31 x 31 camera subimage
– Gabor wavelets [Lee, 1996] (384)

• Characterize texture with 8-bin 
histogram of filter responses for 
2 phases, 3 scales, 8 angles over 
15 x 15 camera subimage

– Ground height, smoothness (2)
• Mean, variance of laser height values

projecting to 31 x 31 camera subimage

• Labels derived from inside/
outside relationship of feature 
point to road-delimiting polygon

Features and Labels for 
Road Classification

0° even 45° even 0° odd

from Rasmussen, 2001



Key Classification Problems

• What features to use?  How do we 
extract them from the image?

• Do we even have labels (i.e., examples 
from each category)?

• What do we know about the structure 
of the categories in feature space?



Unsupervised Learning

• May know number of categories C, but not 
labels

• If we don’t know C, how to estimate?
– Occam’s razor (formalized as Minimum Description 

Length, or MDL, principle): Favor simpler 
classifiers over more complex ones

– Akaike Information Criterion (AIC)
• Clustering methods

– k-means
– Hierarchical
– Etc.



k-means Clustering

• Initialization: Given k categories, N points.  
Pick k points randomly; these are initial 
means µ1, …, µk

• (1) Classify N points according to nearest µi

• (2) Recompute mean µi of each cluster from 
member points

• (3) If any means have changed, goto (1)



Example: 3-means Clustering

from 
Duda et al.

Convergence in 3 steps



Supervised Learning:
Assessing Classifier Performance

• Bias: Accuracy or quality of classification
• Variance: Precision or specificity—how 

stable is decision boundary for different 
data sets?
– Related to generality of classification result 

→ Overfitting to data at hand will often 
result in a very different boundary for new 
data



Supervised Learning: 
Procedures

• Validation: Split data into training and test set
– Training set: Labeled data points used to guide 

parametrization of classifier
• % misclassified guides learning

– Test set: Labeled data points left out of training procedure
• % misclassified taken to be overall classifier error

• m-fold Cross-validation
– Randomly split data into m equal-sized subsets
– Train m times on m - 1 subsets, test on left-out subset
– Error is mean test error over left-out subsets

• Jackknife: Cross-validation with 1 data point left out
– Very accurate; variance allows confidence measuring



– For a new point, grow sphere in feature space 
until k labeled points are enclosed

– Labels of points in sphere vote to classify
– Low bias, high variance: No structure assumed

k-Nearest Neighbor Classification

from 
Duda et al.



Linear Discriminants

• Basic: g(x) = wT x + w0
– w is weight vector, x is data, w0 is bias or 

threshold weight
– Number of categories 

• Two: Decide c1 if g(x) < 0, c2 if g(x) > 0.  g(x) = 0 is 
decision surface—a hyperplane when g(x) linear

• Multiple: Define C functions gi(x) = wT xi + wi0.  Decide 
ci if gi(x) > gj(x) for all j ≠ i

• Generalized: g(x) = aT y
– Augmented form: y = (1, xT)T, a = (w0, wT)T

– Functions yi = yi(x) can be nonlinear—e.g., 
y = (1, x, x2)T



Separating Hyperplane in 
Feature Space

from Duda et al.



Computing Linear 
Discriminants

• Linear separability: Some a exists that classifies 
all samples correctly

• Normalization: If yi is classified correctly when 
aT yi < 0 and its label is c1, simpler to replace all 
c1-labeled samples with their negation
– This leads to looking for an a such that aT yi > 0 for 

all of the data
• Define a criterion function J(a) that is minimized 

if a is a solution.  Then gradient descent on J 
(for example) leads to a discriminant



Criterion Functions

• Idea: J = Number of misclassified data points.  
But only piecewise continuous → Not good for 
gradient descent

• Approaches
– Perceptron: Jp(a) = ∑y∈ Y (-aT y), where Y(a) is the 

set of samples misclassified by a
• Proportional to sum of distances between misclassified 

samples and decision surface

– Relaxation: Jr(a) = ½ ∑y∈ Y (aT y - b)2 / ||y||2, 
where Y(a) is now set of samples such that aT y ≤ b

• Continuous gradient; J not so flat near solution boundary
• Normalize by sample length to equalize influences



Non-Separable Data: 
Error Minimization

• Perceptron, Relaxation assume separability—
won’t stop otherwise 
– Only focus on erroneous classifications

• Idea: Minimize error over all data
• Try to solve linear equations rather than 

linear inequalities: aT y = b → Minimize      
∑i (aT yi – bi)2

• Solve batch with pseudoinverse or iteratively 
with Widrow-Hoff/LMS gradient descent

• Ho-Kashyap procedure picks a and b
together



Other Linear Discriminants

• Winnow: Improved version of Perceptron
– Error decreases monotonically
– Faster convergence

• Appropriate choice of b leads to Fisher’s Linear 
Discriminant (used in “Vision-based Perception for 
an Autonomous Harvester,” by Ollis & Stentz)

• Support Vector Machines (SVM)
– Map input nonlinearly to higher-dimensional space 

(where in general there is a separating hyperplane)
– Find separating hyperplane that maximizes distance to  

nearest data point 



Neural Networks

• Many problems require a nonlinear decision 
surface

• Idea: Learn linear discriminant and nonlinear 
mapping functions yi(x) simultaneously

• Feedforward neural networks are multi-layer 
Perceptrons
– Inputs to each unit are summed, bias added, put 

through nonlinear transfer function
• Training: Backpropagation, a generalization 

of LMS rule



Neural Network Structure



Neural Networks in Matlab

net = newff(minmax(D), [h o], {'tansig', 'tansig'}, 'traincgf');
net = train(net, D, L);
test_out = sim(net, testD);

where:
D is training data feature vectors (row vector)
L is labels for training data
testD is testing data feature vectors 
h is number of hidden units
o is number of outputs



Dimensionality Reduction

• Functions yi = yi(x) can reduce dimensionality of 
feature space → More efficient classification

• If chosen intelligently, we won’t lose much 
information and classification is easier 

• Common methods
– Principal components analysis (PCA): Maximize total 

“scatter” of data

– Fisher’s Linear Discriminant (FLD): Maximize ratio of 
between-class scatter to within-class scatter



Principal Component Analysis

• Orthogonalize feature vectors so that they 
are uncorrelated

• Inverse of this transformation takes zero 
mean, unit variance Gaussian to one 
describing covariance of data points

• Distance in transformed space is Mahalanobis 
distance

• By dropping eigenvectors of covariance 
matrix with low eigenvalues, we are 
essentially throwing away least important 
dimensions



PCA



Dimensionality Reduction: 
PCA vs. FLD

from Belhumeur et al., 1996



Face Recognition
(Belhumeur et al., 1996)

• Given cropped images {I} of faces with different 
lighting, expressions

• Nearest neighbor approach equivalent to 
correlation (I’s normalized to 0 mean, variance 1)
– Lots of computation, storage

• PCA projection (“Eigenfaces”)
– Better, but sensitive to variation in lighting conditions

• FLD projection (“Fisherfaces”)
– Best (for this problem)



Bayesian Decision Theory: 
Classification with Known 

Parametric Forms
• Sometimes we know (or assume) that the 

data in each category is drawn from a 
distribution of a certain form—e.g., a 
Gaussian

• Then classification can be framed as simply a 
nearest-neighbor calculation, but with a 
different distance metric to each category—
i.e., the Mahalanobis distance for Gaussians



Decision Surfaces for Various 
2-Gaussian Situations

from Duda et al.



Example:
Color-based Image Comparison
• Per image: e.g., histograms from Image 

Processing lecture
• Per pixel: Sample homogeneously-

colored regions…
– Parametric: Fit model(s) to pixels, 

threshold on distance (e.g., Mahalanobis) 
– Non-parametric: Normalize accumulated 

array, threshold on likelihood



Color Similarity: 
RGB Mahalanobis Distance

Sample

PCA-fitted
ellipsoid



Non-parametric Color Models

Skin chrominance points Smoothed, [0,1]-normalized

courtesy 
of G. Loy



Non-parametric Skin Classification

courtesy 
of G. Loy



Other Methods

• Boosting
– AdaBoost (Freund & Schapire, 1997)

• “Weak learners”: Classifiers that do better than chance
• Train m weak learners on successive versions of data set 

with misclassifications from last stage emphasized
• Combined classifier takes weighted average of m “votes”

• Stochastic search (think particle filtering)
– Simulated annealing
– Genetic algorithms


