Vision Review: Classification

Course web page: www.cis.udel.edu/~cer/arv

October 3, 2002

Announcements

- Homework 2 due next Tuesday
- Project proposal due next Thursday, Oct. 10. Please make an appointment to discuss before then

Computer Vision Review Outline

- Image formation
- Image processing
- Motion & Estimation
- Classification

Outline

- Classification terminology
- Unsupervised learning (clustering)
- Supervised learning
 - k-Nearest neighbors
 - Linear discriminants
 - Perceptron, Relaxation, modern variants
 - Nonlinear discriminants
 - Neural networks, etc.
- Applications to computer vision
- Miscellaneous techniques

Classification Terms

- Data: A set of N vectors x
 - Features are parameters of x; x lives in *feature space*
 - May be whole, raw images; parts of images; filtered images; statistics of images; or something else entirely
- Labels: C categories; each x belongs to some c_i
- Classifier: Create formula(s) or rule(s) that will assign unlabeled data to correct category
 - Equivalent definition is to parametrize a *decision* surface in feature space separating category members

Features and Labels for Road Classification

- Feature vectors: 410 features/point over 32 x 20 grid
 - Color histogram [Swain & Ballard, 1991] (24 features)
 - 8 bins per RGB channel over surrounding 31 x 31 camera subimage
 - Gabor wavelets [Lee, 1996] (384)
 - Characterize *texture* with 8-bin histogram of filter responses for 2 phases, 3 scales, 8 angles over 15 x 15 camera subimage

- Mean, variance of laser height values projecting to 31 x 31 camera subimage
- Labels derived from inside/ outside relationship of feature point to road-delimiting polygon

Key Classification Problems

- What features to use? How do we extract them from the image?
- Do we even have labels (i.e., examples from each category)?
- What do we know about the structure of the categories in feature space?

Unsupervised Learning

- May know number of categories C, but not labels
- If we don't know *C*, how to estimate?
 - Occam's razor (formalized as Minimum Description Length, or MDL, principle): Favor simpler classifiers over more complex ones
 - Akaike Information Criterion (AIC)
- Clustering methods
 - k-means
 - Hierarchical
 - Etc.

k-means Clustering

- Initialization: Given k categories, N points.
 Pick k points randomly; these are initial means μ₁, ..., μ_k
- (1) Classify N points according to nearest μ_i
- (2) Recompute mean μ_i of each cluster from member points
- (3) If any means have changed, goto (1)

Example: 3-means Clustering

ELAWARE

Supervised Learning: Assessing Classifier Performance

- Bias: Accuracy or quality of classification
- Variance: Precision or specificity—how stable is decision boundary for different data sets?
 - Related to generality of classification result
 → Overfitting to data at hand will often
 result in a very different boundary for new
 data

Supervised Learning: Procedures

- Validation: Split data into training and test set
 - Training set: Labeled data points used to guide parametrization of classifier
 - % misclassified guides learning
 - Test set: Labeled data points left out of training procedure
 - % misclassified taken to be overall classifier error
- *m*-fold Cross-validation
 - Randomly split data into *m* equal-sized subsets
 - Train *m* times on *m* 1 subsets, test on left-out subset
 - Error is mean test error over left-out subsets
- Jackknife: Cross-validation with 1 data point left out
 - Very accurate; variance allows confidence measuring

k-Nearest Neighbor Classification

- For a new point, grow sphere in feature space until k labeled points are enclosed
- Labels of points in sphere vote to classify
- Low bias, high variance: No structure assumed

Linear Discriminants

- Basic: $g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + W_0$
 - w is weight vector, x is data, w₀ is bias or threshold weight
 - Number of categories
 - **Two**: Decide c_1 if $g(\mathbf{x}) < 0$, c_2 if $g(\mathbf{x}) > 0$. $g(\mathbf{x}) = 0$ is decision surface—a hyperplane when $g(\mathbf{x})$ linear
 - Multiple: Define C functions g_i(x) = w^T x_i + W_{i0}. Decide C_i if g_i(x) > g_j(x) for all j ≠ i
- Generalized: $g(\mathbf{x}) = \mathbf{a}^T \mathbf{y}$
 - Augmented form: $\mathbf{y} = (1, \mathbf{x}^T)^T, \mathbf{a} = (W_0, \mathbf{w}^T)^T$
 - Functions $\mathbf{y}_i = y_i(\mathbf{x})$ can be nonlinear—e.g., $\mathbf{y} = (1, x, x^2)^T$

Separating Hyperplane in Feature Space

Computing Linear Discriminants

- Linear separability: Some **a** exists that classifies all samples correctly
- Normalization: If y_i is classified correctly when a⁷ y_i < 0 and its label is c₁, simpler to replace all c₁-labeled samples with their negation
 - This leads to looking for an a such that a^T y_i > 0 for all of the data
- Define a criterion function J(a) that is minimized if a is a solution. Then gradient descent on J (for example) leads to a discriminant

Criterion Functions

- Idea: J = Number of misclassified data points. But only piecewise continuous → Not good for gradient descent
- Approaches
 - Perceptron: $J_p(a) = \sum_{y \in Y} (-a^T y)$, where Y(a) is the set of samples misclassified by a
 - Proportional to sum of distances between misclassified samples and decision surface
 - Relaxation: $J_r(a) = \frac{1}{2} \sum_{y \in Y} (a^T y b)^2 / ||y||^2$, where Y(a) is now set of samples such that $a^T y \le b$
 - Continuous gradient; J not so flat near solution boundary
 - Normalize by sample length to equalize influences

Non-Separable Data: Error Minimization

 Perceptron, Relaxation assume separability won't stop otherwise

Only focus on erroneous classifications

- Idea: Minimize error over all data
- Try to solve linear equations rather than linear inequalities: $\mathbf{a}^T \mathbf{y} = \mathbf{b} \rightarrow \text{Minimize}$ $\sum_i (\mathbf{a}^T \mathbf{y}_i - \mathbf{b}_i)^2$
- Solve batch with pseudoinverse or iteratively with Widrow-Hoff/LMS gradient descent
- Ho-Kashyap procedure picks a and b together

Other Linear Discriminants

- Winnow: Improved version of Perceptron
 - Error decreases monotonically
 - Faster convergence
- Appropriate choice of b leads to Fisher's Linear Discriminant (used in "Vision-based Perception for an Autonomous Harvester," by Ollis & Stentz)
- Support Vector Machines (SVM)
 - Map input nonlinearly to higher-dimensional space (where in general there is a separating hyperplane)
 - Find separating hyperplane that maximizes distance to nearest data point

Neural Networks

- Many problems require a nonlinear decision surface
- Idea: Learn linear discriminant and nonlinear mapping functions y_i(x) simultaneously
- Feedforward neural networks are multi-layer Perceptrons
 - Inputs to each unit are summed, bias added, put through nonlinear *transfer* function
- Training: *Backpropagation*, a generalization of LMS rule

Neural Network Structure

FIGURE 6.4. A d- n_{H} -c fully connected three-layer network and the notation we shall use. During feedforward operation, a d-dimensional input pattern \mathbf{x} is presented to the input layer; each input unit then emits its corresponding component x_i . Each of the n_H hidden units computes its net activation, net_j , as the inner product of the input layer signals with weights w_{ji} at the hidden unit. The hidden unit emits $y_j = f(net_j)$, where $f(\cdot)$ is the nonlinear activation function, shown here as a sigmoid. Each of the c output units functions in the same manner as the hidden units do, computing net_k as the inner product of the hidden unit signals and weights at the output unit. The final signals emitted by the network, $z_k = f(net_k)$, are used as discriminant functions for classification. During network training, these output signals are compared with a teaching or target vector \mathbf{t} , and any difference is used in training the weights throughout the network. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001

Neural Networks in Matlab

```
net = newff(minmax(D), [h o], {'tansig', 'tansig'}, 'traincgf');
net = train(net, D, L);
test_out = sim(net, testD);
```

where: D is training data feature vectors (row vector) L is labels for training data testD is testing data feature vectors h is number of hidden units o is number of outputs

Dimensionality Reduction

- Functions $y_i = y_i(x)$ can reduce dimensionality of feature space \rightarrow More efficient classification
- If chosen intelligently, we won't lose much information and classification is easier
- Common methods
 - Principal components analysis (PCA): Maximize total "scatter" of data $\sum_{n=1}^{N} \sum_{n=1}^{N} (n-n)^{T}$

$$S_T = \sum_{k=1}^{N} (x_k - \mu)(x_k - \mu)^T$$

 Fisher's Linear Discriminant (FLD): Maximize ratio of between-class scatter to within-class scatter

Principal Component Analysis

- Orthogonalize feature vectors so that they are uncorrelated
- Inverse of this transformation takes zero mean, unit variance Gaussian to one describing covariance of data points
- Distance in transformed space is *Mahalanobis distance*
- By dropping eigenvectors of covariance matrix with low eigenvalues, we are essentially throwing away least important dimensions

PCA

FIGURE 2.8. The action of a linear transformation on the feature space will convert an arbitrary normal distribution into another normal distribution. One transformation, **A**, takes the source distribution into distribution $N(\mathbf{A}^t \boldsymbol{\mu}, \mathbf{A}^t \boldsymbol{\Sigma} \mathbf{A})$. Another linear transformation—a projection **P** onto a line defined by vector **a**—leads to $N(\mu, \sigma^2)$ measured along that line. While the transforms yield distributions in a different space, we show them superimposed on the original x_1x_2 -space. A whitening transform, **A**_w, leads to a circularly symmetric Gaussian, here shown displaced. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

Dimensionality Reduction: PCA vs. FLD

Face Recognition (Belhumeur et al., 1996)

 Given cropped images {I} of faces with different lighting, expressions

- Nearest neighbor approach equivalent to correlation (I's normalized to 0 mean, variance 1)
 Lots of computation, storage
- PCA projection ("Eigenfaces")
 - Better, but sensitive to variation in lighting conditions
- FLD projection ("Fisherfaces")
 - Best (for this problem)

Bayesian Decision Theory: Classification with Known Parametric Forms

- Sometimes we know (or assume) that the data in each category is drawn from a distribution of a certain form—e.g., a Gaussian
- Then classification can be framed as simply a nearest-neighbor calculation, but with a different distance metric to each category i.e., the Mahalanobis distance for Gaussians

Decision Surfaces for Various 2-Gaussian Situations

Example: Color-based Image Comparison

- Per image: e.g., histograms from Image Processing lecture
- Per pixel: Sample homogeneouslycolored regions...
 - Parametric: Fit model(s) to pixels, threshold on distance (e.g., Mahalanobis)
 - Non-parametric: Normalize accumulated array, threshold on likelihood

Color Similarity: RGB Mahalanobis Distance

T

Sample

Non-parametric Color Models

Non-parametric Skin Classification

For every pixel \mathbf{p}_i in \mathbf{I}_{test}

- Determine the chrominance values (a_i, b_i) of $\mathbf{I}_{\text{test}}(\mathbf{p}_i)$
- Lookup the skin likelihood for (a_i, b_i) using the skin chrominance model.
- Assign this likelihood to $I_{skin}(p_i)$

lskin

I_{test}

Other Methods

- Boosting
 - AdaBoost (Freund & Schapire, 1997)
 - "Weak learners": Classifiers that do better than chance
 - Train *m* weak learners on successive versions of data set with misclassifications from last stage emphasized
 - Combined classifier takes weighted average of *m* "votes"
- Stochastic search (think particle filtering)
 - Simulated annealing
 - Genetic algorithms

