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Announcements

Oct. 10. Please make an appointment
to discuss before then
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Computer Vision

Review Outline

e |mage processing
e Motion & Estimation
e Classification
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Outline

e Supervised learning
— k-Nearest neighbors

— Linear discriminants
e Perceptron, Relaxation, modern variants

— Nonlinear discriminants
e Neural networks, etc.

e Applications to computer vision
e Miscellaneous techniques
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Classification Terms

— May be whole, raw images; parts of images; filtered
Images; statistics of images; or something else entirely

e Labels: C categories; each X belongs to some ¢

e Classifier: Create formula(s) or rule(s) that will
assign unlabeled data to correct category

— Equivalent definition is to parametrize a decision
surface in feature space separating category members
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Features and Labels for
Road Classification

oINS per RGb Channel over surrounding camera supimage

— Gabor wavelets [Lee, 1996] (384) J
 Characterize texture with 8-bin /
histogram of filter responses for
2 phases, 3 scales, 8 angles over 0°even  45°even  0° odd

15 x 15 camera subimage
— Ground height, smoothness (2) ;

» Mean, variance of laser height values i
projecting to 31 x 31 camera subimage &

e | abels derived from inside/

outside relationship of feature
point to road-delimiting polygon




Key Classification Problems

e Do we even have labels (i.e., examples
from each category)?

 \What do we know about the structure
of the categories in feature space?
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Unsupervised Learning

e If we don’'t know C, how to estimate?

— Occam’s razor (formalized as Minimum Description
Length, or MDL, principle): Favor simpler
classifiers over more complex ones

— Akaike Information Criterion (AIC)

e Clustering methods
— k-means
— Hierarchical
— Etc.
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k-means Clustering

means L, ..., H
* (1) Classify N points according to nearest |

* (2) Recompute mean L of each cluster from
member points

e (3) If any means have changed, goto (1)
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Example: 3-means Clustering

Convergence in 3 steps P[]J_’Jj??iﬁ[ﬂa}



Supervised Learning:

Assessing Classifier Performance

e Variance: Precision or specificity—how
stable Is decision boundary for different
data sets?

— Related to generality of classification result
- Overfitting to data at hand will often
result in a very different boundary for new
data
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Supervised Learning:
Procedures

e 9% misclassified guides learning
— Test set: Labeled data points left out of training procedure
e % misclassified taken to be overall classifier error
e m-fold Cross-validation
— Randomly split data into /m equal-sized subsets
— Train mtimes on m - 1 subsets, test on left-out subset
— Error is mean test error over left-out subsets

e Jackknife: Cross-validation with 1 data point left out

— Very accurate; variance allows confidence measuring
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k-Nearest Neighbor Classification

— Labels of points in sphere vote to classify
— Low bias, high variance: No structure assumed
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Linear Discriminants

threshold weight
— Number of categories
e Two: Decide ¢, if g(x) <0, ¢, ifg(x) > 0. g(x) =0is
decision surface—a hyperplane when g(x) linear
e Multiple: Define C functions g,(x) = w’ x. + w,. Decide
¢ if g(x) > g(x) forall j #1i
e Generalized: g(x) =a’y
— Augmented form: y = (1, x")7, a = (g, w’)7
— Functions y, = y,(X) can be nonlinear—e.g.,

y=(@1,x x)"
o NIVERSIT Y e
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Separating Hyperplane In
Feature Space

from Duda et al. "*-']":"]'ZEL"&[I"T':[
J EIAWARE

|
—



Computing Linear

Discriminants

 Normalization: If y; Is classified correctly when
a’y, < 0 and its label is ¢;, simpler to replace all
¢,-labeled samples with their negation

— This leads to looking for an a such that a’ y; > 0 for
all of the data
e Define a criterion function J(a) that is minimized
If a Is a solution. Then gradient descent on J
(for example) leads to a discriminant
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Criterion Functions

gradient descent
e Approaches

— Perceptron: J,(a) = ZyDY (-a’y), where Y(a) is the
set of samples misclassified by a

e Proportional to sum of distances between misclassified
samples and decision surface

~ Relaxation: J(a) = ¥ X,y (@7y - b)2 / ||yl
where Y (a) is now set of samples suchthata’y <b
e Continuous gradient; J not so flat near solution boundary

 Normalize by sample length to equalize influences -
F. IVERSITY o
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Non-Separable Data:

Error Minimization

— Only focus on erroneous classifications
e |dea: Minimize error over all data

e Try to solve linear equations rather than
linear inequalities: a’y = b - Minimize
Zi (@’y;—b)?

e Solve batch with pseudoinverse or iteratively
with Widrow-Hoff/LMS gradient descent

 Ho-Kashyap procedure picks a and b
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Other Linear Discriminants

— Faster convergence

e Appropriate choice of b leads to Fisher’s Linear
Discriminant (used in “Vision-based Perception for
an Autonomous Harvester,” by Ollis & Stentz)

e Support Vector Machines (SVM)

— Map input nonlinearly to higher-dimensional space
(where in general there Is a separating hyperplane)

— Find separating hyperplane that maximizes distance to

nearest data point

HIVERSITY o
™ TELAWARE



Neural Networks

e |dea: Learn linear discriminant and nonlinear
mapping functions y;(x) simultaneously

e Feedforward neural networks are multi-layer
Perceptrons
— Inputs to each unit are summed, bias added, put
through nonlinear transfer function
e Training: Backpropagation, a generalization
of LMS rule
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Neural Network Structure
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FIGURE 6.4. A d-ny-c fully connected three-layer network and the notation we shall
wse. During feedforward operation, a d-dimensional input pattern x is presented to the
input layer; each input unit then emils its corresponding component x;. Each of the ny
hidden units computes ils net activation, net;, as the inner product of the inpul layer sig-
nals with weights wy; at the hidden unit. The hidden unit emits y; = f(nel;), where f1-)
is the nonlinear activation function, shown here as a sigmoid. Each of the ¢ output units
functions in the same manner as the hidden units do, computing nel; as the inner prod-
uct of the hidden unit signals and weights at the output unit. The final signals emitted by
the network, 2. = finely), are used as discriminant functions for classification. During
network training, these output signals are compared with a teaching or target vector I, NIVERSITY cs
and any difference is used in training the weights throughout the network. From: Richard ., FIAWARE,
0. Duda, Peter E. Harl, and David G. Stork, Fattern Classification. Copyright © 2001 A



Neural Networks in Matlab

net
net

newff (m nmax(D), [h o], {'tansig', 'tansig'}, 'traincgf');

train(net, D, L);

test out = simnet, testD);

where:

D is training data feature vectors (row vector)
L is labels for training data

t est Dis testing data feature vectors

h i1s number of hidden units

0 IS number of outputs
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Dimensionality Reduction

e If chosen intelligently, we won’t lose much
Information and classification Is easier

e Common methods

— Principal components analysis (PCA): Maximize total

“scatter” of data
St =) (e — p)(aer — p)"
k=1
— Fisher’s Linear Discriminant (FLD): Maximize ratio of
between-class scatter to within-class scatter
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Principal Component Analysis

e |nverse of this transformation takes zero
mean, unit variance Gaussian to one
describing covariance of data points

e Distance in transformed space is Mahalanobis
distance

e By dropping eigenvectors of covariance
matrix with low eigenvalues, we are
essentially throwing away least important
dimensions
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FIGURE 2.8. The action of a linear transformation on the feature space will con-
vert an arbitrary normal distribution into another normal distribution. One transforma-
tion, A, takes the source distribution into distribution N{A'w, A'XA). Another linear
transformation—a projection P onto a line defined by vector a—leads to N(jz, a?) mea-
sured along that line. While the transforms vield distributions in a different space, we
show them superimposed on the original x; x;-space. A whitening transform, A,,, leads
to a circularly symmetric Gaussian, here shown displaced. From: Richard O. Duda, Pe-
ter E. Hart, and David C. Stork, Paftern Classification. Copyright @© 2001 by John Wiley
& Sons, Inc.
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Dimensionality Reduction:
PCA vs. FLD

f e et i e e e e immma e e atiagem i m e e e e ey ]

feature 2
+
",

] from Belhumeur et al., 1996 "~.']":-']-I-L‘-§.[I"‘r':t
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Face Recognition
(Belhumeur et al., 1996)

. Nearest nelghbor approach equivalent to
correlation (I's normalized to 0 mean, variance 1)

— Lots of computation, storage
e PCA projection (“Eigenfaces”)
— Better, but sensitive to variation in lighting conditions

 FLD projection (“Fisherfaces”)
— Best (for this problem)

IVERSTT Y e
™ TELAWARE



Bayesian Decision Theory:
Classification with Known

Parametric Forms

data in each category is drawn from a
distribution of a certain form—e.g., a
Gaussian

e Then classification can be framed as simply a
nearest-neighbor calculation, but with a
different distance metric to each category—
l.e., the Mahalanobis distance for Gaussians
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Decision Surfaces for Various
2-Gaussian Situations




Example:
Color-based Image Comparison

e Per pixel: Sample homogeneously-
colored regions...

— Parametric: Fit model(s) to pixels,
threshold on distance (e.g., Mahalanobis)

— Non-parametric: Normalize accumulated
array, threshold on likelihood
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Color Similarity:
RGB Mahalanobis Distance

v(I)

' PCA-fitted
O\ ellipsoid

B
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Non-parametric Color Models
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Skin chrominance points Smoothed, [0,1]-normalized
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Non-parametric Skin Classification

For every pixel p, in I,

est

* Determine the chrominance values (a,b;) of I__(p;)
* Lookup the skin likelthood for (a,b;) using the skin

chrominance model.

 Assign this likelihood to I, (p;)

l courtesy
skin of G. Loy NIVERSITY ce
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Other Methods

e “Weak learners”: Classifiers that do better than chance

e Train m weak learners on successive versions of data set
with misclassifications from last stage emphasized

e Combined classifier takes weighted average of m “votes”

e Stochastic search (think particle filtering)
— Simulated annealing
— Genetic algorithms
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