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Announcements

• Homework 1 graded
• Homework 2 due next Tuesday
• Papers: Students without partners 

should go ahead alone, with the write-
up only 2 pages and the presentation 
15 minutes long



Computer Vision 
Review Outline

• Image formation
• Image processing
• Motion & Estimation
• Classification



Outline

• Multiple views (Chapter on this in Hartley & 
Zisserman is online)
– Epipolar geometry
– Structure estimation

• Optical flow
• Temporal filtering

– Kalman filtering for tracking
– Particle filtering



Two View Geometry

• Stereo or one camera over time
• Epipolar geometry
• Fundamental Matrix

– Properties
– Estimating



Epipolar Geometry

• Epipoles: Where baseline intersects image planes
• Epipolar plane: Any plane containing baseline
• Epipolar line: Intersection of epipolar plane with 

image plane

baseline

c c’



Example: Epipolar Lines

from Hartley 
& ZissermanLeft view Right view

Known epipolar geometry constrains 
search for point correspondences



Focus of Expansion

• Epipoles coincide for pure translation 
along optical axis

• Not the same as vanishing point

from Hartley & Zisserman



The Fundamental Matrix F

• Maps points in one image to their 
epipolar lines in another image for 
uncalibrated cameras

• Definition:                      ; 3 x 3, rank 2, 
not invertible 

• Essential matrix     : Fundamental matrix 
when calibration matrices known:



Estimating F

• Same general approach as DLT method for 
homography estimation

• Need 8 point correspondences for linear method
• Normalization/denormalization

– Translate, scale image so that centroid of points is at 
origin, RMS distance of points to origin is 

• Enforce singularity constraint
• Degeneracies

– Points related by homography
– Points and camera on ruled quadric (one hyperboloid, 

two planes/cones/cylinders)



Structure from Motion (SFM)

• Camera matrices            can be computed from   
, from which we can triangulate to deduce 

3-D locations 

• Limits
– Uncalibrated camera(s): Best we can do is 

reconstruction up to a projection
– Calibrated camera(s): Can reconstruct up to a 

similarity transform (i.e., could be a house 10 m 
away or a dollhouse 1 m away)

from Hartley 
& Zisserman



Reconstruction Ambiguities

from Hartley & Zisserman

Projective reconstruction

Affine reconstruction

Metric reconstructionTwo views



More Than Two Views

• Analogues of the fundamental matrix:
– Trifocal tensor: 3 views
– Quadrifocal tensor: 4 views 

• Reconstruction methods
– Bundle adjustment: Projective 

reconstruction from n views taking all into 
account simultaneously

– Factorization: Affine reconstruction for n
affine cameras (Tomasi & Kanade, 1992)

from Hartley & Zisserman



SFM from Sequences

• Feature tracking makes point correspond-
ences easier

• Problems
– Small baseline between successive images—only 

compute structure at intervals
– Forward translation not good for structure 

estimation because rays to points nearly parallel
– Many methods batch → Must have all frames 

before computing



Szeliski’s Projective 
Depth, Revisited

• Approach: Decompose motion of scene points 
into two parts:
– 2-D homography (as if all points coplanar)
– Plane-induced parallax 

• Signed distance ρ along 
epipolar line from point to 
where it would be on 
homography plane is 
parallax relative to H

• Parallax is proportional to 
3-D distance from plane—
the projective depth

from Hartley & Zisserman



Plane-Induced Parallax

from Hartley & Zisserman

Left view Right view
Left view superimposed 
on right using homo-
graphy induced by plane 
of paper



Differential Motion: 
Dense Flow

• Scene flow: 3-D velocities of scene 
points: Derivative of rigid transformation 
between views with respect to time

• Motion field: 2-D projection of scene 
flow

• Optical flow: Approximation of motion 
field derived from apparent motion of 
image points



Brightness Constancy 
Assumption

• Assume pixels just move—i.e., that they don’t 
appear and disappear.  This is equivalent to    

, which by the chain 
rule yields:

• Caveats
– Lighting may change
– Objects may reflect differently at different angles



Optical Flow

• Aperture problem: Can only
determine optical flow com-
ponent in gradient direction

• Brightness constancy insufficient to solve for 
general optical flow vector field      , so other 
constraints necessary:
– Assume flow field is smoothly varying (Horn, 1986)
– Assume low-dimensional function describes motion 

• Swinging arm, leg (Yamamoto & Koshikawa, 1991; Bregler, 
1997)

• Turning head (Basu, Essa, & Pentland, 1996) 

courtesy of S. Sastry



Example: Optical Flow

from Russell & Norvig

t = 0

t = 1

Flow field

t = 0

Best estimates where there are “corners”



Optical Flow for 
Time-to-Collision

• When will object we are headed toward (or 
one headed toward us) be at ? 

• If object is at depth          and the     
component of the robot’s translational velocity 
is      , then 

• Divergence of a vector field      is defined as

• From motion field definition, we can show that
(Coombs et al., 1995)



Sparse Differential Motion:
Feature Tracking

• Idea: Ignore everything but “corners”
• Feature detection, disappearance
• Tracking = Estimation over time + 

correspondence
• Tracking

– Kalman Filter
• Data association techniques: PDAF, JPDAF, MHF

– Particle Filters
• Stochastic estimation



Optimal Linear Estimation

• Assume: Linear system with uncertainties
– State 
– Dynamical (system) model: 
– Measurement model:
– indicate white, zero-mean, Gaussian 

noise with covariances              respectively

• Want best state estimate at each instant



Estimation variables

• Typical parameters in state     :
– Measurement-type parameters that we want to 

smooth
– Time variables: Velocity, acceleration
– Derived quantities: Depth, shape, curvature

• Measurement     : What can be seen in one 
image
– Position, orientation, scale, color, etc.

• Noise
– : Set from real data if possible, but ad-hoc 

numbers may work



Kalman Filter

• Essentially an online version of least squares
• Provides best linear unbiased estimate



Example: 2-D position, velocity

• State
• Observation

• Dynamics 

• Measurement



Example: 2-D position, velocity 
Kalman-estimated states

courtesy of K. Murphy



Finding Measurements in Images
• Look for peaks in template-match function; most 

recent state estimate suggests where to search
• Gradient ascent [Shi & Tomasi, 1994; Terzopoulos & 

Szeliski, 1992]
– Identifies nearby, good hypothesis
– May pick incorrectly when there is ambiguity
– Vulnerable to agile motions

• Random sampling [Isard & Blake, 1996]
– Approximates local structure of image likelihood
– Identifies alternatives
– Resistant to agile motions



Handling Nonlinear Models

• Many system & measurement models can’t be 
represented by matrix multiplications (e.g., sine 
function for periodic motion)

• Kalman filtering with nonlinearities
– Extended Kalman filter

• Linearize nonlinear function with 1st-order Taylor series 
approximation at each time step

– Unscented Kalman filter
• Approximate distribution rather than nonlinearity
• More efficient and accurate to 2nd-order
• See http://cslu.ece.ogi.edu/nsel/research/ukf.html



Particle Filters

• Stochastic sampling approach for 
dealing with non-Gaussian posteriors

• Efficient, easy to implement, adaptively 
focuses on important areas of state 
space 

• More on Thursday



Homework 2

• Implement a planar SSD template 
tracker using the Kalman filter to 
estimate homography at each time step

• Given a sequence of a street sign in 
motion and a picture of it as a template

• Manually initialize first frame, but must 
automatically extract measurements 
thereafter



Template & Sequence



Kalman Filter Toolbox

• Web site:
www.cs.berkeley.edu/~murphyk/Bayes/
kalman.html

• Just need to plug correct parameters 
into the kalman_update function



Nonlinear Minimization in Matlab

• Function lsqnonlin
• Must write evaluation function func for 
lsqnonlin to call that returns a scalar 
(smaller numbers better)

• Example:
% define ‘func’ with two parameters a & b
% set X0
opts = optimset('LevenbergMarquardt', 'on');
X = lsqnonlin(‘func', X0, [], [], opts, a, b);


