Vision Review: Motion & Estimation

Course web page: <u>www.cis.udel.edu/~cer/arv</u>

September 24, 2002

Announcements

- Homework 1 graded
- Homework 2 due next Tuesday
- Papers: Students without partners should go ahead alone, with the writeup only 2 pages and the presentation 15 minutes long

Computer Vision Review Outline

- Image formation
- Image processing
- Motion & Estimation
- Classification

Outline

- Multiple views (Chapter on this in Hartley & Zisserman is online)
 - Epipolar geometry
 - Structure estimation
- Optical flow
- Temporal filtering
 - Kalman filtering for tracking
 - Particle filtering

Two View Geometry

- Stereo or one camera over time
- Epipolar geometry
- Fundamental Matrix
 - Properties
 - Estimating

Epipolar Geometry

- **Epipoles**: Where baseline intersects image planes
- Epipolar plane: Any plane containing baseline
- **Epipolar line**: Intersection of epipolar plane with image plane

Example: Epipolar Lines

Left view

Right view

from Hartley & Zisserman

Known epipolar geometry constrains search for point correspondences

Focus of Expansion

- Epipoles coincide for pure translation along optical axis
- Not the same as vanishing point

from Hartley & Zisserman

The Fundamental Matrix F

- Maps points in one image to their epipolar lines in another image for uncalibrated cameras
- Definition: $\mathbf{x}^{T}\mathbf{F}\mathbf{x} = \mathbf{0}$; 3 x 3, rank 2, not invertible
- Essential matrix \mathbf{E} : Fundamental matrix when calibration matrices known:

$$\mathbf{E} = \mathbf{K}'^T \mathbf{F} \mathbf{K}$$

Estimating F

- Same general approach as DLT method for homography estimation
- Need 8 point correspondences for linear method
- Normalization/denormalization
 - Translate, scale image so that centroid of points is at origin, RMS distance of points to origin is $\sqrt{2}$
- Enforce singularity constraint
- Degeneracies
 - Points related by homography
 - Points and camera on ruled quadric (one hyperboloid, two planes/cones/cylinders)

Structure from Motion (SFM)

• Camera matrices \mathbf{P}, \mathbf{P}' can be computed from \mathbf{E} , from which we can *triangulate* to deduce 3-D locations

- Limits
 - Uncalibrated camera(s): Best we can do is reconstruction up to a projection
 - Calibrated camera(s): Can reconstruct up to a similarity transform (i.e., could be a house 10 m away or a dollhouse 1 m away)

Reconstruction Ambiguities

from Hartley & Zisserman

Two views

Projective reconstruction

Affine reconstruction

More Than Two Views

- Analogues of the fundamental matrix:
 - Trifocal tensor: 3 views
 - Quadrifocal tensor: 4 views

- from Hartley & Zisserman
- Bundle adjustment: Projective reconstruction from *n* views taking all into account simultaneously
- Factorization: Affine reconstruction for *n* affine cameras (Tomasi & Kanade, 1992)

SFM from Sequences

- Feature tracking makes point correspondences easier
- Problems
 - Small baseline between successive images—only compute structure at intervals
 - Forward translation not good for structure estimation because rays to points nearly parallel
 - Many methods batch \rightarrow Must have all frames before computing

Szeliski's Projective Depth, Revisited

- Approach: Decompose motion of scene points into two parts:
 - 2-D homography (as if all points coplanar)
 - Plane-induced parallax
- Signed distance ρ along epipolar line from point to where it would be on homography plane is parallax relative to H
- Parallax is proportional to 3-D distance from plane the *projective depth*

Plane-Induced Parallax

from Hartley & Zisserman

Left view

Right view

Left view superimposed on right using homography induced by plane of paper

Differential Motion: Dense Flow

- Scene flow: 3-D velocities of scene points: Derivative of rigid transformation between views with respect to time
- Motion field: 2-D projection of scene flow
- **Optical flow**: Approximation of motion field derived from apparent motion of image points

Brightness Constancy Assumption

• Assume pixels just move—i.e., that they don't appear and disappear. This is equivalent to dI(x, y, t)/dt = 0, which by the chain rule yields:

$$\mathbf{I}_x u + \mathbf{I}_y v + \mathbf{I}_t = \mathbf{0}$$

- Caveats
 - Lighting may change
 - Objects may reflect differently at different angles

Optical Flow

• Aperture problem: Can only determine optical flow component in gradient direction

courtesy of S. Sastry

- Brightness constancy insufficient to solve for general optical flow vector field O, so other constraints necessary:
 - Assume flow field is smoothly varying (Horn, 1986)
 - Assume low-dimensional function describes motion
 - Swinging arm, leg (Yamamoto & Koshikawa, 1991; Bregler, 1997)
 - Turning head (Basu, Essa, & Pentland, 1996)

Example: Optical Flow

from Russell & Norvig

Best estimates where there are "corners"

Flow field

Optical Flow for Time-to-Collision

- When will object we are headed toward (or one headed toward us) be at Z = 0 ?
- If object is at depth Z_{obj} and the Z component of the robot's translational velocity is t_Z , then $TTC = Z_{obj}/t_Z$
- Divergence of a vector field **O** is defined as $\operatorname{div}(\mathbf{O}) = \nabla \cdot \mathbf{O} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$
- From motion field definition, we can show that div(O) = 2/TTC (Coombs et al., 1995)

Sparse Differential Motion: Feature Tracking

- Idea: Ignore everything but "corners"
- Feature detection, disappearance
- Tracking = Estimation over time + correspondence
- Tracking
 - Kalman Filter
 - Data association techniques: PDAF, JPDAF, MHF
 - Particle Filters
 - Stochastic estimation

Optimal Linear Estimation

- Assume: Linear system with uncertainties
 - State X
 - Dynamical (system) model: $\mathbf{x} = \mathbf{\Phi}\mathbf{x}_{t-1} + \xi$
 - Measurement model: $\mathbf{z} = \mathbf{H}\mathbf{x} + \mu$
 - ξ,μ indicate white, zero-mean, Gaussian noise with covariances Q,R respectively
- Want best state estimate at each instant

Estimation variables

- Typical parameters in state **x** :
 - Measurement-type parameters that we want to smooth
 - Time variables: Velocity, acceleration
 - Derived quantities: Depth, shape, curvature
- Measurement **Z** : What can be seen in one image
 - Position, orientation, scale, color, etc.
- Noise
 - $-\mathbf{Q},\mathbf{R}$: Set from real data if possible, but ad-hoc numbers may work

Kalman Filter

- Essentially an online version of least squares
- Provides best linear unbiased estimate
- $\hat{\mathbf{x}} = \Phi \mathbf{x}_{t-1}$ Predicted state $\hat{z} = H\hat{x}$ Predicted measurement $\hat{\mathbf{P}} = \mathbf{\Phi}\mathbf{P}_{t-1}\mathbf{\Phi}^T + \mathbf{Q}$ State prediction covariance $\mathbf{S} = \mathbf{H}\hat{\mathbf{P}}\mathbf{H}^T + \mathbf{R}$ Measurement prediction covariance $\nu = \mathbf{z} - \hat{\mathbf{z}}$ Innovation $\mathbf{K} = \hat{\mathbf{P}} \mathbf{H}^T \mathbf{S}^{-1}$ Filter gain $\mathbf{x} = \hat{\mathbf{x}} + \mathbf{K}\nu$ State estimate $P = (I - KH)\hat{P}$ State covariance estimate

Example: 2-D position, velocity

- State $\mathbf{x} = [x, y, \dot{x}, \dot{y}]'$
- Observation $\mathbf{z} = [x, y]'$
- Dynamics $\Phi = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$
- Measurement $\mathbf{H} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$

Example: 2-D position, velocity Kalman-estimated states

Finding Measurements in Images

- Look for peaks in template-match function; most recent state estimate suggests where to search
- Gradient ascent [Shi & Tomasi, 1994; Terzopoulos & Szeliski, 1992]
 - Identifies nearby, good hypothesis
 - May pick incorrectly when there is ambiguity
 - Vulnerable to agile motions
- Random sampling [Isard & Blake, 1996]
 - Approximates local structure of image likelihood
 - Identifies alternatives
 - Resistant to agile motions

Handling Nonlinear Models

- Many system & measurement models can't be represented by matrix multiplications (e.g., sine function for periodic motion)
- Kalman filtering with nonlinearities
 - Extended Kalman filter
 - Linearize nonlinear function with 1st-order Taylor series approximation at each time step
 - Unscented Kalman filter
 - Approximate distribution rather than nonlinearity
 - More efficient and accurate to 2nd-order
 - See http://cslu.ece.ogi.edu/nsel/research/ukf.html

Particle Filters

- Stochastic sampling approach for dealing with non-Gaussian posteriors
- Efficient, easy to implement, adaptively focuses on important areas of state space
- More on Thursday

Homework 2

- Implement a planar SSD template tracker using the Kalman filter to estimate homography at each time step
- Given a sequence of a street sign in motion and a picture of it as a template
- Manually initialize first frame, but must automatically extract measurements thereafter

Template & Sequence

Kalman Filter Toolbox

• Web site:

www.cs.berkeley.edu/~murphyk/Bayes/ kalman.html

• Just need to plug correct parameters into the kalman_update function

Nonlinear Minimization in Matlab

- Function lsqnonlin
- Must write evaluation function func for lsqnonlin to call that returns a scalar (smaller numbers better)

• Example:

% define `func' with two parameters a & b
% set X0

opts = optimset('LevenbergMarquardt', 'on');

X = lsqnonlin(`func', X0, [], [], opts, a, b);

