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Announcements

omewor gue nNexXt 1uesday

e Papers: Students without partners
should go ahead alone, with the write-
up only 2 pages and the presentation
15 minutes long
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Computer Vision

Review Qutline

e Image processing
e Motion & Estimation
e Classification
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Outline

— Epipolar geometry
— Structure estimation
e Optical flow

e Temporal filtering
— Kalman filtering for tracking
— Particle filtering
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Two View Geometry

e Fundamental Matrix
— Properties
— Estimating
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Epipolar Geometry

o Epipolar line: Intersection of epipolar plane with
image plane
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Example: Epipolar Lines

2, il |
from Hartley

Left VleW ng ht VleW & Zisserman

Known epipolar geometry constrains
search for point correspondences [ﬁ’gﬁ%ﬁ



Focus of Expansion

e Not the same as vanishing point




The Fundamental Matrix F

epipolar lines in another image for
uncalibrated cameras

o Definition: X'TFX — 0 ; 3x 3, rank 2,
not invertible

e Essential matrix E, : Fundamental matrix
when calibration matrices known:

E = K/!{FK



Estimating F

e Need 8 point correspondences for linear method

e Normalization/denormalization

— Translate, scale image so that centroid of paoints is at
origin, RMS distance of points to origin is /2

e Enforce singularity constraint
e Degeneracies

— Points related by homography

— Points and camera on ruled quadric (one hyperboloid,
two planes/cones/cylinders) WE%SVHA%



Structure from Motion (SFM)

e Limits & Zisserman
— Uncalibrated camera(s): Best we can do is
reconstruction up to a projection

— Calibrated camera(s): Can reconstruct up to a
similarity transform (i.e., could be a house 10 m

away or a dollhouse 1 m away) WVS\%{%



Reconstruction Ambiguities

Projective reconstruction

\

pd

Afﬁne reconstructlon

from artley & Zisserman

Two views




More Than Two Views

— Quadrifocal tensor: 4 views

e Reconstruction methods

— Bundle adjustment: Projective
reconstruction from n views taking all into
account simultaneously

— Factorization: Affine reconstruction for n
affine cameras (Tomasi & Kanade, 1992@%%%

" from Hartley & Zisserman



SFM from Sequences

e Problems

— Small baseline between successive images—only
compute structure at intervals

— Forward translation not good for structure
estimation because rays to points nearly parallel

— Many methods batch — Must have all frames
before computing
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Szeliski’s Projective
Depth, Revisited

— Plane- mduced parallax A
e Signed distance p along e
epipolar line from point to \//a A

where it would be on

homography plane is I
parallax relative to H _
e Parallax is proportional to °

3-D distance from plane— A
the projective depth 'Wﬁ/ﬁ&sm




Plane-Induced Parallax

from Hartley & Zisserman

Left view superimposed
Left view Right view on right using homo-
graphy induced by plane

of paper
o SITYor
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Differential Motion:

Dense Flow

between views with respect to time

e Motion field: 2-D projection of scene
flow

o Optical flow: Approximation of motion
field derived from apparent motion of
image points
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Brightness Constancy

Assumption

dI(x,y,t)/dt = O, which by the chain
rule ylelds

e Caveats
— Lighting may change
— Objects may reflect differently at different angles
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Optical Flow

ponent in gradlent dlrectlon

e Brightness constancy insufficient to solve for
general optical flow vector field O , so other
constraints necessary:

— Assume flow field is smoothly varying (Horn, 1986)

— Assume low-dimensional function describes motion

e Swinging arm, leg (Yamamoto & Koshikawa, 1991; Bregler,
1997)
e Turning head (Basu, Essa, & Pentland, 1996)
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Example: Optical Flow

from Russell & Norvig

Best estimates where there are "corners”  Flow field
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Optical Flow for

Time-to-Collision

C If ob]ect is at depth Zob;j and the 7

component of the robot’s translational velocity
is tz,then TTC = Zy,;/tz

e Divergence of a vector field O is defined as

div(0) =v.0 = 24 4 9
dy

ox
e From motion field definition, we can show that

div(O) = 2/TTC (Coombs et al., 1995)
= p)eiana



Sparse Differential Motion:

Feature Tracking

e Feature detection, disappearance

e Tracking = Estimation over time +
correspondence

e Tracking

— Kalman Filter
o Data association techniques: PDAF, JPDAF, MHF

— Particle Filters
e Stochastic estimation
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Optimal Linear Estimation

— State X
— Dynamical (system) model: x = Px;_1 + &
— Measurement model: z = Hx + u

— &, |4 indicate white, zero-mean, Gaussian
noise with covariances (Q, R respectively

e \WWant best state estimate at each instant
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Estimation variables

smooth
— Time variables: Velocity, acceleration
— Derived quantities: Depth, shape, curvature
e Measurement Z : What can be seen in one
image
— Position, orientation, scale, color, etc.
e Noise
- QQ, R : Set from real data if possible, but ad-hoc

numbers may work -
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Kalman Filter

X = dx;_1 Predicted state

7 — HX Predicted measurement

P = ®P; ®! + Q State prediction covariance

S = HPH? + R Measurement prediction covariance
vV =17—17 Innovation

K = PH”S! Filter gain

x =X+ Kv State estimate

P=(I-KHP State covariance estimate
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Example: 2-D position, velocity

R ORFRO
N

OO0k

e Dynamics P = (

RO oo~ O
OO oOror

@oN®
N——"

e Measurement H = ( cl)
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Example: 2-D position, velocity
Kalman-estimated states




Finding Measurements in Images

omasi, ; Terzopoulos &
Szeliski, 1992]

— Identifies nearby, good hypothesis
— May pick incorrectly when there is ambiguity
— Vulnerable to agile motions

e Random sampling [Isard & Blake, 1996]
— Approximates local structure of image likelihood
— Identifies alternatives
— Resistant to agile motions
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Handling Nonlinear Models

function for periodic motion)
e Kalman filtering with nonlinearities

— Extended Kalman filter

e Linearize nonlinear function with 1st-order Taylor series
approximation at each time step

— Unscented Kalman filter
o Approximate distribution rather than nonlinearity
e More efficient and accurate to 2"d-order
e See http://cslu.ece.ogi.edu/nsel/research/ukf.html
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Particle Filters

o Efficient, easy to implement, adaptively
focuses on important areas of state
space

e More on Thursday
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Homework 2

CICKC 9 ¢ = IN\C C - U
estimate homography at each time step

e Given a sequence of a street sign in
motion and a picture of it as a template

e Manually initialize first frame, but must
automatically extract measurements
thereafter
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Template & Sequence
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Kalman Filter Toolbox

kalman.html
e Just need to plug correct parameters
into the kalman update function

= )AL



Nonlinear Minimization in Matlab

e Must write evaluation function func ftor
1sgnonlin to call that returns a scalar

(smaller numbers better)
e Example:

% define ‘func’ with two parameters a & b

s set XO
opts = optimset ('LevenbergMarquardt', 'on');

X = lsgnonlin(‘func', X0, [], [], opts, a, b);

- SITYor
l@ﬁgﬁ§mm




