Matlab Tutorial

Course web page: www.cis.udel.edu/~cer/arv

September 12, 2002

Announcements

- First paper presentations are allocated—two students per paper
- Homework assigned today is due next Thursday

Tues., Sept. 19	"Video Mosaics for Virtual Environments"	Instructor
Thurs., Sept. 26	"Stochastic Road Shape Estimation"	Instructor
Thurs., Oct. 10	"Automatic Mosaic Creation of the Ocean Floor"	Thommen Korah Bill Ulrich
Tues., Oct. 15	"Appearance-Based Place Recognition for Topological Localization"	Joe Kirk Chaitanya Ramineni
	"Using the Condensation Algorithm for Robust, Vision-based Mobile Robot Localization"	Wei Zhou Cunjie Zhu
Thurs., Oct. 17	"Robust Car Tracking Using Kalman Filtering and Bayesian Templates"	Min Li Chaitra Gowri Murthy
Tues., Oct. 22	"Precise Image-based Motion Estimation for Autonomous Small Body Exploration"	Vishal Arora Qi Li
Thurs., Oct. 24	"Vision-based Perception for an Autonomous Harvester"	Chris Haase Ozcan Koc
	"Vision-Guided Flight Stability and Control for Micro Air Vehicles"	Ibrahim Halil Saruhan Xiuman Zhu

About the First Paper

- Pairs work together on this one!
- Paper write-up and preliminary version of presentation must be turned in to and discussed with the instructor one week before scheduled date
- Oral presentation
 - 30 minutes long (divide speaking time)
 - Use visual aids
 - Be ready to lead discussion and field questions

Paper Write-Ups

- 3-4 pages of prose, jointly written
- Questions
 - What is the problem(s) the authors are trying to solve?
 - What technical methods do they use? Explain unfamiliar or novel techniques and cite sources
 - How well do they succeed? What limitations does their approach have? How might it be applied to other robot vision problems?
 - Are there interesting links to other papers and methods we are studying?
 - How could the work be extended or improved?

Looking up Sources

- UD library
 - Online: Subscriptions to many journals with full-text PDF (www.lib.udel.edu; go to "Subject Guides" and "Electronic Journals")
 - Hard-copy: Some journals, conference proceedings, vision & robotics texts (and of course related math)
- Citeseer
 - Best bet for conference papers
 - Useful for tracking citations (forward and backward)

citeseer.nj.nec.com/cs

Second paper

- You're on your own!
 - Pick something related to project
 - Must be substantially different from first paper topic
 - 1-2 page write-up, 15 minute presentation (on the paper—you will present your project results at the very end)
- Same order of presentation as first paper

Meet Matlab

- A high-level language for matrix calculations, numerical analysis, & scientific computing
- Mathematica: More concerned with symbolic math, but increasing overlap between the two
- Language features
 - No variable declarations
 - Automatic memory management (but preallocation helps)
 - Variable argument lists control function behavior
 - Vectorized: Can use for loops, but largely unnecessary (and less efficient)

Running Matlab at UD

- Unix: Installed on Strauss & Mahler (Ren & Stimpy, too)
 - X windows: Type "matlab" at a prompt
 - Terminal: "matlab -nodesktop"—but no graphics, of course
- PC: Should be able to get CDs and install on network-connected machine; contact Anita Schwartz (anita@udel.edu)
- More information on Matlab at UD: First two links on "Matlab links" page

How to Get Help

- In Matlab
 - Type "help" to get a listing of topics
 - "help <topic>" gets help for that topic. The information is at the level of a Unix man page
- On the web
 - "Matlab links" on course web page has pointers
 - Especially MathWorks help desk:

www.mathworks.com/access/helpdesk/help/helpdesk.shtml

- There's always Google...but be careful

Entering Variables

• Entering a vector, matrix

$$-V = [10, 4.5, 1];$$

-M = [3, 4; -6, 5];

- Without semi-colon, input is echoed (this is bad when you're loading images!)
- Comma to separate statements on same line
- size: Number of rows, columns

Constructing Matrices

- Basic built-ins:
 - All zeroes, ones: zeros, ones
 - Identity: eye
 - Random: rand (uniform), randn (unit normal)
- Ranges: m:n, m:i:n (i is step size)
- Composing big matrices out of small matrix blocks
- repmat(A, m, n): "Tile" a big matrix with m x n copies of A

Manipulations & Calculations

- Transpose ('), inverse (inv)
- Matrix arithmetic: +, -, *, /, ^
- Elementwise arithmetic: .*, ./, .^
- Functions
 - Vectorized
 - -sin, cos, etc.

Deconstructing Matrices

- Indexing individual entries by row, col:
 A(1, 1) is upper-left entry
- Ranges: e.g., A(1:10, 3), A(:, 1)
- Matrix to vector and vice versa by column: B = A(:), A(:) = B

– Transpose to use row order

• find: Indices of non-zero elements

Matrix Analysis

- Basics (by column)
 - norm
 - max, min
 - -sum
- More advanced
 - Linear systems: $A \ B \ A^*x = b$
 - QR decomposition: qr
 - Singular value decomposition: svd
 - Eigenvalues: eig
 - Etc.

Control Structures

- Expressions, relations (==, >, |, &, functions, etc.)
- if/while expression statements end
 - Use comma to separate expression from statements if on same line
 - if a == b & isprime(n), M = inv(K); else M = K; end
- for *variable* = *expression statements* end

- for i=1:2:100, s = s / 10; end

M-Files

- Any text file ending in ".m"
- Use path or addpath to tell Matlab where code is (non-persistent?)
- Script: Collection of command line statements
- Function: Take argument(s), return value(s). First line defines:
 - function y = foo(A)
 - -function [x, y] = foo2(a, M, N)
- Comment: Start line with %

Plotting

- 2-D vectors: plot(x, y)
 plot(0:0.01:2*pi, sin(0:0.01:2*pi))
- 3-D: plot3(x, y, z)(space curve)
- Surfaces
 - meshgrid makes surface from axes, mesh plots it
 - [X,Y] = meshgrid(-2:.2:2, -2:.2:2);

$$Z = X .* exp(-X.^2 - Y.^2);$$

mesh(Z)

- surf: Solid version of mesh

• Saving figures, plots: print -depsc2 filename

Miscellaneous

- Diary: Recording a session
 diary *filename* diary off
- tic, toc bracketing code to measure execution time

Image Processing Toolbox

- Loading, displaying images:
 I=imread(`im1.jpg'), imshow(I)
- Saving images: imwrite(I, 'newim.jpg')
- Image representation
 - Grayscale: Matrix of uint8
 - Color: Stack of 3 matrices for R, G, and B
- Conversion: I2 = double(I1)
- More in the next lecture

First Homework

- Implement DLT homography estimation in Matlab
- Rectify three test images
- Just map the points, but feel free to use bilinear interpolation for nicer looking output
- Use ginput for mouse clicks in Matlab to record correspondences

Unrectified Images

