CIS 849: Autonomous Robot Vision

Instructor: Christopher Rasmussen

Course web page:

www.cis.udel.edu/~cer/arv

Purpose of this Course

 To provide an introduction to the uses of visual sensing for mobile robotic tasks, and a survey of the mathematical and algorithmic problems that recur in its application

What are "Autonomous Robots"?

- Mobile machines with power, sensing, and computing on-board
- Environments
 - Land (on and under)
 - Water (ditto)
 - Air
 - Space
 - **-**???

What Can/Will Robots Do?

- Near-term: What People Want
 - Tool analogy
 - Never too far from human intervention, whether physically or via tele-operation
 - Narrow tasks, limited skills
 - "3-D": <u>Dirty</u>, <u>Dangerous</u>, and <u>Dull jobs</u>

What Can/Will Robots Do? Task Areas

- Industry
- Transportation & Surveillance
- Search & Science
- Service

What Might Robots Do?

- Long-term: What They Want
 - "Mechanical animal" analogy may become appropriate
 - Science fiction paradigm
 - On their own
 - Self-directed generalists

Industry

- Ground coverage
 - Harvesting, lawn-mowing (CMU)
 - Snow removal
 - Mine detection
- Inspection of other topologies
 - MAKRO (Fraunhofer): Sewer pipes
 - CIMP (CMU): Aircraft skin

MAKRO

CIMP

CMU Demeter

Transportation & Surveillance: Ground

- Indoors
 - Clodbusters (Penn)
 - Many others
- Highways, city streets
 - VaMoRs/VaMP (UBM)
 - NAVLAB/RALPH (CMU)
 - StereoDrive (Berkeley)
- Off-road
 - Ranger (CMU)
 - Demo III (NIST, et al.)

VaMoRs

Ranger

Penn Clodbuster

Obstacle avoidance with omnidirectional camera

UBM VaMoRs

Detecting a ditch with stereo, then stopping

Transportation & Surveillance: Air

- Fixed wing (UBM, Florida)
- Helicopters (CMU, Berkeley, USC, Linkoping)
- Blimp (IST, Penn)

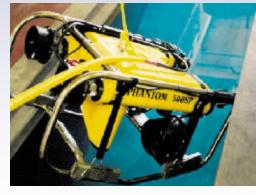
UBM autonomous landing aircraft

Florida MAV

USC Avatar

Landing on target (mostly)

Search & Science


- Urban Search & Rescue
 - Debris, stairs
 - Combination of autonomy& tele-operation

Dante II

Sojourner

- Hazardous data collection
 - Dante II (CMU)
 - Sojourner (NASA)
 - Narval (IST)

Narval

USF at the WTC

courtesy of CRASAR

Urbot & Packbot reconnoiter surrounding structures

Service

• Grace (CMU, Swarthmore, et al.): "Attended"

Al conference


- Register, interact with other participants
- Navigate halls, ride elevator
- Guides
 - Polly (MIT): AI lab
 - Minerva (CMU): Museum
- Personal assistants
 - Nursebot (CMU): Eldercare
 - Robotic wheelchairs

Grace

CMU Minerva

In the Smithsonian

What Skills Do Robots Need?

- Identification: What/who is that?
 - Object detection, recognition
- Movement: How do I move safely?
 - Obstacle avoidance, homing
- Manipulation: How do I change that?
 - Interacting with objects/environment
- Navigation: Where am 1?
 - Mapping, localization

Why Vision?

Pluses

- Rich stream of complex information about the environment
- Primary human sense
- Good cameras are fairly cheap
- Passive ? stealthy

Minuses

- Line of sight only
- Passive ? Dependent on ambient illumination

Aren't There Other Important Senses?

- Yes—
 - The rest of the human "big five" (hearing, touch, taste, smell)
 - Temperature, acceleration, GPS, etc.
 - Active sensing: Sonar, ladar, radar
- But...
 - Mathematically, many other sensing problems have close visual correlates

The Vision Problem

How to infer salient properties of 3-D world from time-varying 2-D image projection

Computer Vision Outline

- Image formation
- Image processing
- Motion & Estimation
- Classification

Outline: Image Formation

- 3-D geometry
- Physics of light
- Camera properties
 - Focal length
 - Distortion
- Sampling issues
 - Spatial
 - Temporal

Outline: Image Processing

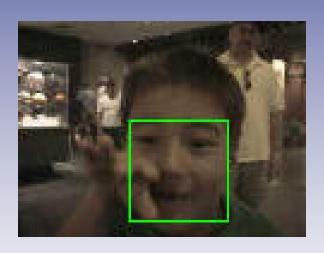
- Filtering
 - Edge
 - Color
 - Shape
 - Texture
- Feature detection
- Pattern comparison

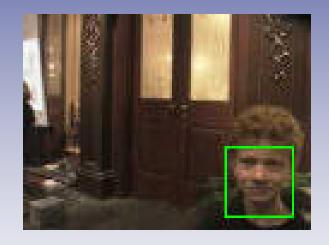
Outline: Motion & Estimation

- Computing temporal image change
 - Magnitude
 - Direction
- Fitting parameters to data
 - Static
 - Dynamic (e.g., tracking)
- Applications
 - Motion Compensation
 - Structure from Motion

Outline: Classification

- Categorization
 - Assignment to known groups
- Clustering
 - Inference of group existence from data
 - Special case: Segmentation




Visual Skills: Identification

- Recognizing face/body/structure: Who/what do I see?
 - Use shape, color, pattern, other static attributes to distinguish from background, other hypotheses
- Gesture/activity: What is it doing?
 - From low-level motion detection & tracking to categorizing high-level temporal patterns
- Feedback between static and dynamic

Minerva Face Detection

Finding people to interact with

Penn MARS project

Blimp, Clodbusters

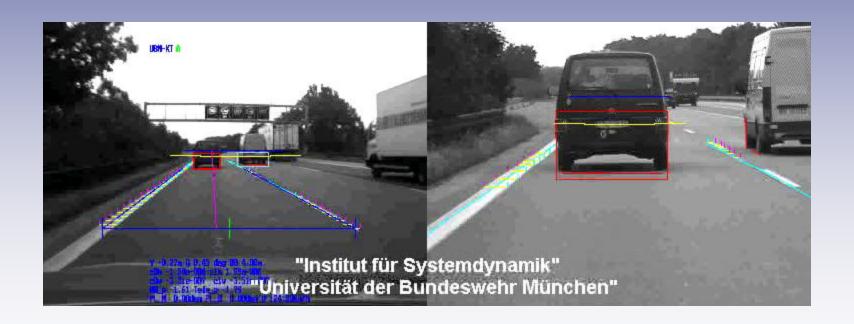
Airborne, color-based tracking

Visual Skills: Movement

 Steering, foot placement or landing spot for entire vehicle

MAKRO sewer shape pattern

Demeter region boundary detection


Florida Micro Air Vehicle (MAV)

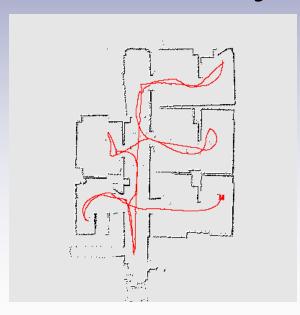
Horizon detection for self-stabilization

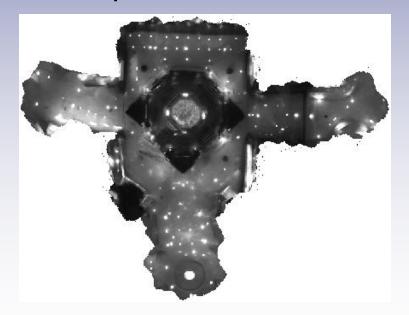
UBM Lane & vehicle tracking (with radar)

Visual Skills: Manipulation

- Moving other things
 - Grasping: Door opener (KTH)
 - Pushing, digging, cranes

KTH robot & typical handle





Clodbusters push a box cooperatively

Visual Skills: Navigation

- Building a map [show "3D.avi"]
- Localization/place recognition
 - Where are you in the map?

Laser-based wall map (CMU)

Minerva's ceiling map

Course Prerequisites

- Strong background in/comfort with:
 - Linear algebra
 - Multi-variable calculus
 - Statistics, probability
- Ability to program in:
 - C/C++, Matlab, or equivalent

Course Details

- First 1/3 of classes: Computer vision review by professor
- Last 2/3 of classes: Paper presentations, discussions led by students
- One major programming project
- Grading
 - 10%: Two small programming assignments
 - 30%: Two oral paper presentations + write-ups
 - 10%: Class participation
 - 50%: Project

Readings

- All readings will be available online as PDF files
- Textbook: Selected chapters from prepublication draft of Computer Vision: A Modern Approach, by D. Forsyth and J. Ponce
- Web page has other online vision resources
- Papers: Recent conference and journal articles spanning a range of robot types, tasks, and visual algorithms

Presentations

- Each student will submit short written analyses of two papers, get feedback, then present them orally
- Non-presenting students should read papers ahead of time and have some questions prepared. I will have questions, too:)

Project

- Opportunity to implement, test, or extend a robot-related visual algorithm
- Project proposal due in October; discuss with me beforehand
- Data
 - I will provide "canned" data, or gather your own
 - We will have a small wheeled robot to use for algorithms requiring live feedback
- Due Wednesday, November 27 (just before Thanksgiving break)

More questions?

Everything should be on the web page:

www.cis.udel.edu/~cer/arv

or e-mail me at

cer@cis.udel.edu

