
Towards Applying Machine Learning
to Adaptive Transactional Memory ∗

Qingping Wang†, Sameer Kulkarni‡, John Cavazos‡, Michael Spear†

†Lehigh University,‡University of Delaware
{qiw209, spear}@cse.lehigh.edu, {skulkarn, cavazos}@cis.udel.edu

Abstract
There is tremendous diversity among the published algorithms for
implementing Transactional Memory (TM). Each of these algo-
rithms appears to be well suited to certain workloads and architec-
tures. However, for programs that operate in distinct phases, exhibit
input-dependent behavior, or must run on many different classes of
machine, the best algorithm cannot be selected before the program
actually runs. We introduce a mechanism for dynamic profiling of
a running transactional program, and show how the profile can be
used with machine learning techniques to select a TM implemen-
tation at run-time. Our preliminary results on the STAMP bench-
mark suite show good performance, providing a baseline for future
research into adaptivity mechanisms for TM.

1. Introduction
Software Transactional Memory (STM) [15] algorithms differ in
how they detect conflicts (using ownership records, signatures, or
values), when they detect conflicts (on first write access to a lo-
cation or at commit time), how speculative writes are performed
(write-back with redo logs or write-through with undo logs), how
conflicts between readers and writers are detected (using visible
reads, invisible reads with validation, or invalidation), the granu-
larity of conflict detection, what features are supported (retry and
irrevocability), and what guarantees the STM makes to the pro-
gramming language (especially semantics/privatization).

Each dimension has a cost that is difficult to quantify. Privati-
zation seems to require either visible reads or program-wide syn-
chronization on transaction commits. For workloads with high con-
flict rates, encounter-time locking with write-through can livelock;
more expensive commit-time locking algorithms can be livelock-
free. Workload characteristics including read-only ratio, frequency
of irrevocable transactions, and nontransactional work between
(and within) transactions affect which algorithm performs best.
Furthermore, the cost of atomic operations and memory fences on a
particular chip, the number of threads, and the cost of sharing data
on multi-chip platforms all influence the choice of algorithm.

Even if a single algorithm could be “best” in all cases, perfor-
mance could still benefit from specializing the algorithm at run-
time, e.g., by adding a fast path for read-only transactions, opti-
mizing backoff parameters and contention management, and im-
plementing privatization barriers based on the number of chips and
threads. In short, STM implementations will need to adapt if they
are to deliver peak performance, and at least some of the adaptivity
must depend on the environment of the running program.
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We introduce a predictive mechanism and dynamic profiling
system to measure the behavior of a running program and change
the STM algorithm to improve performance. We take as inspiration
recent applications of machine learning (ML) to solve systems
problems [7, 17, 29, 38]. Previous studies developed novel ML-
based solutions for efficiently selecting compiler optimizations [2,
6, 7, 13], finding the best values for transformation parameters [5,
27, 37], and choosing the best algorithm to use for a particular
sequential task [20, 21], to name a few examples. While ML-based
solutions have shown much promise, they have not yet been used
to improve the performance of parallel programs.

This paper introduces a ML system that leverages off-line
learning to select an algorithm based on characteristics gathered
by dynamic profiling. Our evaluation on the STAMP benchmark
suite [4], shows good performance, though still 7% worse than
a perfect “oracle” policy. In some cases our policies can exploit
hard-to-find dynamic changes in program behavior (i.e., program
phases [16, 18, 30]) to achieve higher performance than possible
with any single algorithm.

After discussing previous adaptive STM systems in Section 2,
we present our dynamic profiling framework in Section 3. We then
describe our ML-based classifiers in Section 4, and discuss their
use in adaptive STM. We present experimental results in Section 5,
and then conclude with future research directions in Section 6.

2. Previous Adaptive STM Systems
Previous efforts to support adaptivity in STM either sought to
prevent pathologies, or to maximize performance. We highlight the
most relevant works below.

Worst-Case ProgressMany STMs support a “serial irrevocable”
(SI) mode, where one transaction runs at a time. While SI was
proposed as a way to support I/O in transactions that are known not
to use self-abort, it can also guarantee progress. In essence, after a
sufficient number of consecutive aborts, a thread may become serial
irrevocable (or perhaps only serial, if it might self-abort) to be sure
that it will commit [28, 40].

Location-Level Adaptivity Sonmez et al. dynamically change the
concurrency control mechanism forindividual variables, allow-
ing those involved in frequent transaction conflicts to be accessed
pessimistically [32]. This improves conflict detection and prevents
some pathologies, without requiring pessimism on all accesses.
However, supporting this mechanism requires some overhead on
every access, to identify the variable’s access mode.

Scalable Progress GuaranteesNi et al. proposed a “universal”
algorithm [28] built atop a high-performance orec-based STM.
They allowed concurrent “obstinate” transactions (using visible
reads), as well as switches to serial and serial-irrevocable modes.
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This system employed a novel indirection-based interface to pre-
vent overhead while supporting these mechanisms, and through
careful engineering, was able to also avoid global coordination
when switching the mode of a transaction. That is, the instrumenta-
tion for any transaction seamlessly handled the fact of other trans-
actions concurrently operating in other modes.

Performance Via Feature Monitoring ASTM [23] tracked when
a workload employed a special API call (“early release”, which
removes a location from the transaction’s read log), to indicate
whether locations should be locked on first access or at commit
time. This technique increased throughput and lowered latency for
transactions, but was reliant on the use of an uncommon feature.

Re-Parameterizing the STM Felber et al. dynamically selected
the number of orecs used for concurrency control [12]. This tech-
nique avoided false conflicts by increasing the number of avail-
able orecs, while workloads without concurrency could decrease
latency by restricting themselves to a small set of orecs. An auto-
matic mechanism, based on on-line analysis and simulated anneal-
ing, found the best number of locks for a workload.

Phased Execution PhTM [19] switched between hardware and
software modes on a machine with hardware TM support. PhTM
identified potential reasons to switch modes, including the presence
of transactions that are unsupported by the hardware, excessive
consecutive aborts, and periodic timers. Since its focus was on
hardware/software interaction, PhTM did not consider switching
among STM implementations, except for avoiding pathologies. In
addition, some variants required shared-memory communication at
the beginning of some transactions even when there was no mode
switch in progress, which could act as a bottleneck.

Selecting Locks or Transactions Usui et al. employed a com-
bination of static and dynamic analysis to identify workloads for
which locks outperformed STM, even when multiple threads were
available [39]. Clearly at one thread, the lower latency of a lock-
based runtime is best. Additionally, if transaction latency is too
high, and the cost of a lock moving between processors’ caches
is low, then at higher thread counts, the concurrency afforded by
STM may not be worth its cost.

Pathology Avoidance The latest version of RSTM [33] supports
adaptivity among different STM algorithms by combining the ideas
from PhTM [19] with the indirection-based interface of Ni et
al. [28]. The system selects from 10 algorithms, to react to bad
performance. Decisions are based on an algorithm’s likelihood of
pathology and precision of conflict detection.

3. Dynamic Profiling
To choose the best STM algorithm for a workload, the adaptivity
policy must understand the workload’s behavior. Past work focused
on measuring the incidence of API calls for I/O, condition synchro-
nization, and early release, as well as the detection of pathologies
(measured by consecutive aborts). While the first three of these
characteristics are properties of a workload, the last is a charac-
teristic of the combination of workload and STM algorithm.

In related work, Liu and Spear show that the abort rate of a
workload, as well as the peak consecutive abort count of trans-
actions in that workload, may have little relationship to through-
put [22]. Observing a high abort rate when workloadW runs under
STM algorithmA does not indicate that a switch to algorithmA′ is
justified. Likewise, observing a low abort rate forW + A does not
mean thatA′ shouldnot be chosen.

In order to devise a general framework that can accommodate
a plurality of fundamentally different STM algorithms, we include
dynamic characteristics that are not related to the choice of STM

algorithm. Since API calls for I/O, condition synchronization, and
early release may not be present in all workloads, we use the
following features instead:

Shared Memory AccessesWe count five types of shared-memory
accesses that affect STM latency:
• ROReads: These are reads performed by transactionT before

its first write. ROReads typically have the lowest latency (for
example, in buffered-update STM systems, these reads do not
require a write-set lookup).

• RAWReads: Reads to locations for whichT has a speculative
write often have low overhead.

• RWReads: With buffered update, reads performed byT after
it has performed at least one write must include the cost of a
write-set lookup that does not succeed.

• Writes: The number of distinct locations written byT .
• WAWWrites: A write to a location that has already been written

may have lower costs.
Since few STM implementations optimize for read-after-read and
write-after-read, we do not count these accesses separately.

Nontransactional Work When the gap between transactions is
large relative to the duration of transactions, the best STM algo-
rithm is typically one with low single-thread latency [39]. When
the nontransactional work within a transaction is high (this could
be due to accessing private or constant memory, or due to a high
rate of arithmetic), the best STM algorithm is typically one with
few implementation bottlenecks.

Writer Frequency For most STM algorithms, read-only trans-
actions do not modify shared metadata. When the rate of writer
transactions is low, these systems scale almost perfectly. As writers
increase in frequency, the point at which read-only optimizations
cease to be profitable varies with the STM algorithm.

3.1 Measurement Strategy

The above features all deal with the latency of individual transac-
tions. As discussed in Section 4, we use off-line training to learn
the relationship between these features and throughput. This sim-
plifies our system considerably: we can turn off concurrency during
profiling. This has the added effect of decreasing variance due to
memory contention.

To measure shared memory accesses, we created a simple run-
time, called ProfileTM. ProfileTM uses a fair ticket lock to prevent
concurrent execution, and there is no global per-access metadata.
Transactions buffer all writes until commit time, to ensure compati-
bility with code that uses self-abort and prevent some possible races
between self-aborting transactions and nontransactional code [31].
Read and write instrumentation counts the five access types de-
scribed above. ProfileTM also uses the hardware tick counter to
estimate transaction running time. Switching to the ProfileTM al-
gorithm and runningN consecutive transactions generates an ap-
proximation of the behavior of transactions in the current phase of
a running program. Since we use a ticket lock, these transactions
are likely to represent a sample across many threads.

To estimate work between transactions and read-only frequency,
we modified all of the STM algorithms in our system to count read-
only and writing transactions separately. In addition, on every trans-
action commit we log the value of the tick counter, and on every
transaction begin, we subtract that value from the tick counter, and
add the result to a per-thread accumulator.1 Dividing this value by
the total number of transactions approximates the work between
transactions. The nontransactional work within a transaction is de-
rived by comparing the transaction’s running time to a linear com-
bination of counts of the 5 types of memory accesses.

1 This count does not include time spent waiting to begin a transaction.
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Figure 1. Adaptivity Workflow: A policy is trained for a machine by measuring the running time of parameterized microbenchmarks for
all available STM algorithms at many thread levels. During program execution, a variety of events (“triggers”) cause the STM library to
profile a fixed number of transactions (using ProfileTM) and then use the policy to interpret the profile and select a new algorithm. Algorithm
selections must also incorporate application requirements, such as language-level semantics.

The cost to collect a dynamic profile is low. Transactions run
faster under ProfileTM than under traditional STM algorithms,
since ProfileTM forbids concurrency and avoids global metadata
accesses. Furthermore, the use of the tick counter makes timing
very fast, at the cost of some accuracy (sources of error include
thread migration and frequency scaling).

3.2 The Dynamic Profiling Process

Figure 1 presents the workflow of our adaptive system. We begin by
testing all available STM algorithms on a set of microbenchmarks,
and then building an adaptivity policy by training on that data (de-
tails appear in Section 4). This policy is linked to our STM library
so that it can be invoked during a workload’s execution. Note that
ProfileTM is included in the set of training algorithms, so that we
know the characteristics of transactions in each microbenchmark.
We assume that by including the output of ProfileTM in the learn-
ing process, the training routine will learn concurrency characteris-
tics of the STM algorithms.

When configuring the STM library during program initializa-
tion, the adaptivity policy selects an initial algorithm. This selec-
tion currently takes as input the required semantics of the applica-
tion (for the time being, we only select between Encounter-Time
Lock Atomicity (ELA) [26] and weak semantics), and whether the
application uses self-abort. Extension to include condition synchro-
nization, I/O, and other API calls is be straightforward.

During execution, three events (“triggers”) cause a reevaluation
of the current STM algorithm: when a thread is created, when any
thread aborts more than 16 consecutive times, or when a thread
blocks for more than 2048 cycles when trying to start a transaction,2

we switch to ProfileTM. Whenever we switch to ProfileTM, in-
flight transactions, including transactions waiting to acquire a lock,
are not interrupted. Once these transactions complete, ProfileTM
measures the nextN consecutive transactions. Note that triggers
occur off the critical path.

On every trigger,N transactions run, one at a time. Thus
the sheer existence of our adaptivity mechanism ensures forward
progress. An important consideration is how the system should
handle repeated recommendations of the same algorithm when con-
secutive aborts are frequent. Some workloads perform best with an
algorithm that admits frequent aborts, and thus forbidding repeat
selections is unacceptable. Instead, a repeat selection causes our
system to record the total number of commits across all threads.
On the next trigger, the same algorithm can be chosen only if the

2 This applies to mutex-based STM systems and TML.

total commit count has increased. In this case the abort threshold
for causing another trigger doubles.

4. Learning Algorithms
In the workflow and system described in Section 3, any classifica-
tion algorithm can be used to guide ProfileTM’s decision on which
algorithm to select. We introduce two mechanisms, based on ei-
ther case-based reasoning (CBR) [1] or neural networks using the
neuro-evolution of augmenting topologies (NEAT) algorithm [36].
In Figure 1, the left hand side depicts how learning is performed:
we measure microbenchmarks off-line, analyze them, and produce
an executable policy. During execution, ProfileTM invokes this pol-
icy (after measuringN transactions) to select an algorithm.

4.1 Off-Line Training Data: Strategy

In a production environment, it is acceptable to tailor training data
to the common-case for the target application. For the purposes
of this paper, such an option is unfair. Instead, we train using
parameterized microbenchmarks, and thus measure what should
serve as a lower bound on the effectiveness of our adaptive system.

For each microbenchmark, we ran ProfileTM in single-threaded
mode to describe the behavior (e.g., read-only ratio, transactional
and nontransactional work, and the counts of the 5 types of mem-
ory accesses). We also measured throughput (averaged over five
5-second trials) at many thread levels using each of the STM algo-
rithms supported by our library.3 These two datasets were input to
the learning tool. Since the collection of profiles at run-time is per-
formed in a single-threaded environment, approximating a work-
load’s behavior based on a single-threaded run is acceptable.

There are weaknesses in this approach. Our microbenchmarks
(described below) are all homogeneous workloads with one pro-
gram phase. We also assumed the per-feature average of roughly
15M profiled transactions for a workload is a fair approximation of
the behavior of the workload. Furthermore, we considered feature
magnitudes (e.g., number of reads from a read-only context), with-
out quantization or normalization. For our proof-of-concept, these
choices are acceptable, but we intend in future work to develop a
more robust set of experiments and normalization strategies.

4.2 Off-Line Training Data: Workloads

In previous literature, differences in the configuration of mi-
crobenchmarks led to different STM algorithms offering maximum

3 For each application feature requirement scenario, only a subset of algo-
rithms are considered.
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throughput. By profiling these microbenchmarks to characterize
their behavior, and then running them with every STM algorithm,
at every thread level that does not cause preemption, we produced
descriptions of how and when different characteristics may favor a
particular algorithm on a particular architecture. We measured 103
benchmark configurations, using 15 different STM algorithms:
• Red-Black Trees: On our parameterized RBTree benchmark,

we varied both the key range and the read-only ratio. Our trees
hold 4-bit, 8-bit, 10-bit, 16-bit, or 20-bit keys, and have a mix
of 0, 33, 50, 80, or 90% lookup transactions (the remaining
transactions are equally split between inserts and removals).
These experiments mirror workloads in which there is true
concurrency, but real and false conflicts can occur.

• Linked Lists: We also considered linked lists storing 4-bit, 8-bit,
and 10-bit keys, with the same 5 ratios of lookup/insert/remove
transactions as in the RBTree experiments. These tests represent
situations in which conflicts are frequent, but transactions have
a large number of reads before any writes.

• HashTable: We included a hashtable microbenchmark with 8-
bit keys, 256 buckets, and an equal lookup/insert/remove ratio.
This workload has tiny transactions and few conflicts, and thus
identifies bottlenecks in the STM algorithm. It also can indicate
when the granularity of conflict detection is too coarse.

• Counter: In this workload, all transactions increment a single
shared counter. This workload highlights the latency of transac-
tion boundaries.

• WWPathology: This workload causes livelock under eager ac-
quisition, and starvation in most other STMs [34].

• Disjoint: Transactions read and write to thread-private arrays.
The workload should scale perfectly, with no aborts. When
it does not, it indicates that conflict granularity is too coarse,
that there are metadata bottlenecks in the STM implementation,
or that polling for conflicts is too expensive or frequent. We
parameterize so threads read either 10 or 100 locations per
transaction, and write to 0, 10, 50, or 100% of the locations
they read. There are also read-only transactions, which occur at
a frequency of 0, 33, 50, 80, or 90%.

• Forest: A transaction accesses randomly-chosen RBTrees. The
benchmark is parameterized by the number of trees in the forest
(4 or 64), the key range of each tree (8-bit or 20-bit), the lookup
likelihood of each tree operation (0% or 90%), and the number
of tree operations per transaction (8 or 16). These workloads
have unpredictable conflicts, but often with good scalability.

4.3 Case-Based Reasoning

The concept behind case-based reasoning (CBR) is that a system
can learn from experience, and apply past experiences to make
good decisions in the future [1]. During training, the system records
every program behavior that it observed, the environment (e.g.,
thread count), and the best response (e.g., STM algorithm with the
highest throughput). This collection of data is called the case base.

During program execution, our CBR policies scan the case base
for entries that have the same number of threads as the workload.
Among these entries, we select the one that is most similar to
the average of the collected transactional profiles. The algorithm
named by that entry, which corresponds to a peak performer for
some microbenchmark configuration, is returned. We discuss can-
didate similarity metrics below.

CBR can support continuous learning, where decisions made
during program execution are logged, along with the program be-
havior that led to that decision. We do not apply such techniques
in our system, for two reasons. First, the quality of the descriptions
of experiences is much more precise in our off-line training than it
is when the case base is in use: this is because we never measure
the full application with ProfileTM, but we do run each training

microbenchmark with ProfileTM. Secondly, since we are trying to
optimize a running program, we wish to avoid any overhead related
to updating training data.

Similarity There are a total of 8 features that may be of use (av-
erage RORead, RWRead, RAWRead, Write, WAWWrite, and exe-
cution time; read-only ratio; and percentage of time spent of trans-
actions). In our experiments, we evaluate each of these features in
isolation. We also consider combinations of features. When com-
paring two rows in the case base, we use ratios instead of absolute
numbers (e.g., the difference between 10 and 12 reads is the same as
the difference between 100 and 120 cycles of execution time). We
also normalize sums of features, so that a policy comparing reads
(the sum of 3 distances) has the same weight as a policy comparing
writes (the sum of 2 distances).

4.4 NEAT Classification

Neural network classifiers operate in a fundamentally different
manner than CBR. For these systems, the training data is treated
ask tuples, where the first field of each tuple is an output (ok), and
the remaining fields are a corresponding input vector (Ik). Through
off-line analysis, the network learns to implement a function that,
for each vectorIk, computes the correct outputok. The learned
function is of very high dimension and complexity. The expectation
is that if there is some mathematical relationship between program
behaviors and the corresponding best choice of algorithm, then the
network will learn that relationship, and for any new input vector,
will be able to output the best choice.

Among neural network classifiers, the most promising and pow-
erful to date are based on augmented topologies [41]. These sys-
tems apply concepts of evolution to the creation of a network: a
small graph serves as a starting point. Successive iterations of the
unsupervised learning algorithm may add or remove nodes from
the graph, may add or remove edges, and may change the weights
of edges. Of those neural network algorithms that augment graphs,
we use NEAT (Neuro Evolution of Augmenting Topologies) [36],
which neither bounds the complexity of the output network, nor
requires a complex starting point.

Unlike CBR, NEAT is a black box classifier. We cannot pre-
cisely explain why a particular input produces a particular output,
nor can we explain which characteristics of an input favor a partic-
ular output. This property is both a strength and a weakness: while
we cannot explain cases where NEAT fails to identify trends that
we might think are obvious, NEAT has the potential to find rela-
tionships that are substantially more complex, nuanced, and robust
than those that we specify for CBR.

5. Evaluation
We built our STM codes and adaptive policies on top of the adaptive
version of RSTM [33]. The baseline adaptive RSTM provides 10
algorithms, and we added 5 more (marked with “*”). Unpublished
algorithms are marked “(new)”.
• Mutex: One test-and-test-and-set lock protects transactions.
• TML: A single-writer, multi-reader protocol [8].
• TMLLazy: TML with buffered update.
• OrecEager: Uses orecs, eager locking, and undo logs [12].
• OrecLazy: Uses orecs and commit-time locking [34].
• OrecFair: OrecLazy, with starvation avoidance and priority [34].
• OrecELA: Uses orecs but provides ELA semantics [25].
• NOrec: Uses values for conflict detection [9].
• NOrecPrio: Extends NOrec with a weak form of priority.
• RingSTM: Uses signatures for conflict detection [35].
• LLT*: The orec-based TL2 algorithm [10].
• ByteEager*: Uses byte locks for visible reads as in TLRW [11].
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• BitLazy* (new): Similar to ByteEager, but with bitlocks [24],
and commit-time locking.

• Inval*: InvalSTM [14] (signatures and visible reads).
• OptInval* (new): Inval, but with lock-free visible reads.

All experiments were performed on an HP z600 with 6GB RAM
and a 2.66GHz Intel Xeon X5650 (Nehalem) processor with six
cores (12 hardware threads). Code was compiled with g++ version
4.5.1, in 32-bit mode with –O3 optimizations. To evaluate NEAT-
based prediction, we used the ANJI toolkit [3].

To train our adaptive policies, we tested all of the microbench-
marks from Section 4 using all of the above STM algorithms, at all
thread levels that would not cause preemption. We input this data
into our training algorithms to produce our adaptive policy com-
ponents. We repeated this training, but without microbenchmark
experiments for algorithms that offer weak semantics, in order to
be able to assess the impact of language-level semantics on our
adaptivity policies.

5.1 Baseline: Expert Adaptivity Policies

We measured the four policies that are included with RSTM [33],
even though they are not expected to offer good performance, only
pathology avoidance.4 We also created several policies based on
intuition about which algorithms are best at different thread levels.
Two of these policies had strong performance: when no language-
level semantics are required, ThrOrecEager uses Mutex at 1 thread
and OrecEager otherwise. When language-level semantics (e.g.,
privatization safety, or “ELA” semantics) are required, ThrNOrec
chooses Mutex at 1 thread, and NOrec at all other thread levels.

5.2 Evaluation Criteria

To evaluate our adaptive policies, we used the STAMP benchmark
suite [4]. For each benchmark, we tested each of the 15 STM algo-
rithms at 1, 2, 4, and 8 threads (these are the only supported thread
levels that will not cause preemption on our 12-threaded system),
and measured all of the recommended benchmark configurations.5

All experiments are the average of 5 trials. Using this information,
we created an “Oracle” dataset consisting of the best performer for
each benchmark at each thread level.

Next, we ran ProfileTM on each of the STAMP benchmarks,
and we collected the average counts for the 8 training features.
For each of the CBR and NEAT adaptivity policies, we created
a “predicted” dataset by determining what algorithm the policy
would choose if given that whole-program profile, and selecting the
corresponding running time. Finally, we ran each of the CBR and
NEAT adaptivity policies on each benchmark, and measured the
actual running time. To compare different policies, we summarize
their performance using the harmonic mean speedup. Since this
“average” speedup is over 36 benchmark/thread combinations, we
also report the “best” and “worst” speedup observed across the 36
tests for each STM algorithm or adaptive policy.

Differences Between Measured and Predicted PerformanceWe
hope that a policy’s predicted behavior is close to the oracle predic-
tion, and its measured performance is close to its predicted behav-
ior. Since the actual performance is based on adaptivity decisions
driven by a small dynamic sample of the program’s transactions,
it is possible for it to differ in both directions from the predicted
behavior. For example, if the dynamic sample differs from the av-
eraged sample, then it could lead to selecting the same algorithm as
the oracle predicts even though the average sample would predict a
worse algorithm, or vice-versa.

4 Only two of these policies support ELA semantics.
5 We omitted the “yada” benchmark, since the released code intermittently
crashes.

More interestingly, an adaptive policy can outperform the ora-
cle. The oracle and the prediction assume that a workload’s be-
havior is homogeneous. For workloads with multiple program
phases [18, 30], or for which the amount of parallelism varies dur-
ing execution [16], a policy might pick different algorithms at dif-
ferent points in the execution, and thus find a better overall strategy
than can be achieved by predicting (even with perfect knowledge)
a single algorithm for the whole workload. Note that it is not pos-
sible, in general, to statically detect the points at which algorithm
re-selection should occur. Unpredictable dynamic properties, such
as the length of the work queue or the number of completed mu-
tations of a data structure, are often the best indicator of whether
concurrent operations will conflict.

5.3 Early Results and Adjustments

On the STAMP labyrinth benchmark, our adaptivity policies per-
formed poorly at 2 threads. They always picked a good algorithm,
but they did not do so until the workload was more than 85% com-
plete. Until that time, they used “Mutex”, with thread one perform-
ing all of the work. This outcome was due to our implementation
of Mutex with exponential backoff. While waiting “too long” when
acquiring the lock is an effective adaptivity trigger, the bound was
too large for this particular workload. Substituting a FCFS ticket
lock led to adaptivity occurring much earlier.

Additionally, we found that the Inval and OptInval algorithms
never performed as well as their peers on STAMP. In retrospect,
this makes sense: Inval is designed to provide fairness on workloads
where different threads execute different types of transactions, but
in STAMP, all threads execute the same mix of transactions.

5.4 Adaptivity Configuration and Costs

Most of the transactions within each STAMP workload have similar
behavior. As a result, running several transactions when collecting
a profile had little to no impact on the performance of our systems.
For STAMP, a profile of one transaction sufficed in most cases.
Rather than consider different profile sizes for different workloads
(which arguably might have helped Bayes, since it has 15 different
transaction call sites), we opted to run all tests using a profile size
of 1.

Given this profile size, the cost of collecting a profile was
uniformly small. Since ProfileTM has minimal instrumentation, a
profiled transaction runs 6% faster than NOrec, though 30% slower
than Mutex. The main cost of collecting profiles comes from the
global synchronization: when a profile is initiated, all in-flight
transactions must finish first, then the profiled transaction runs,
and then concurrency is turned back on. We counted the number
of profiles collected for each workload. For all but Labyrinth, the
total number of transactions was well over 1M, and the largest
number of profiles gathered was 72. For Labyrinth, the largest
number of profiles gathered was 3, with just over 500 transactions
total. These numbers suggest that the cost of profiling is small.
In additional tests, we confirmed this observation: inducing 100
profile collections in a workload with 1M transactions and 8 threads
leads to negligible overhead.

5.5 Performance with No Semantics Requirements

Our first set of experiments explores the effectiveness of our adap-
tivity mechanisms in a setting where no language-level semantics
are required, and all STM algorithms can be chosen. This scenario
models a program phase where static analysis or programmer anno-
tations ensure that no shared datum is accessed both with transac-
tions and with nontransactional (uninstrumented) loads and stores.
Figure 2 compares the best algorithms and adaptive policies in this
setting.

5 2011/5/16



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

OrecEager Thr-

OrecEager

R NEAT TxTime TxTime +

Writes

TxTime +

RO%

Sp
ee

du
p

Average Speedup Predicted Speedup Worst Speedup Best Speedup

Figure 2. Performance of adaptivity policies on STAMP for 1/2/4/8 threads, using all 15 STM algorithms. The three rightmost columns are
CBR policies, identified by the set of features they used.

The OrecEager algorithm (also known as LSA or TinySTM [12])
is best out of the 15 algorithms we evaluate. Its speedup, normal-
ized to the oracle, is 0.895, with a worst speedup of 0.678. More
impressively, at 4 and 8 threads, OrecEager’s performance is above
0.95. Thus the ThrOrecEager policy (achieved by choosing the
Mutex runtime at one thread, and OrecEager otherwise) achieves a
harmonic mean speedup over oracle of 0.952.

The best prior adaptivity policy in this setting, Spear’s “R” pol-
icy [33], only achieves a 0.85 speedup. Our NEAT policy fares
worse, achieving only a 0.823 (we predicted it would achieve a
0.816). Our CBR policies fare better: the best single feature, trans-
action execution time (TxTime), achieves a 0.870 speedup; when
we combine this with other features, we reach as high as 0.907.

We conclude that for the thread counts we were able to test,
OrecEager is simply the best algorithm. Across 36 experiments,
the OrecEager policy is best 18 times, and within 3% of the best
choice in another 6 cases. It seems that our policies try too hard
to find a complex policy, when a simple one is best. Whether this
continues to hold at higher thread counts, or for workloads that are
more diverse than STAMP, is left for future work.

5.6 Performance with ELA Semantics

When we require strong semantics from our STM algorithm, we
lose the ability to choose OrecEager, OrecLazy, OrecFair, and LLT
(TL2). We removed the data for these algorithms from the training
dataset and trained new policies. Their performance, compared to
an oracle that is given the same restricted set of algorithms, is
reported in Figure 3.

In this setting, NOrec is the best performer, with a mean speedup
of 0.861 compared to the oracle. The ThrNOrec policy increases
performance to 0.904. The worst performance for both is 0.577 on
KMeans (high contention) at 2 threads. NEAT delivers worse per-
formance than ThrNOrec, scoring only a 0.823 (we predicted a per-
formance of 0.813). NEAT’s worst performance, also on KMeans
(high contention) at 2 threads, was 0.505.

For CBR, again TxTime was the best single metric, achiev-
ing a speedup of 0.904 (we predicted 0.893), with a worst per-
formance of 0.653 (on Bayes, at 8 threads). Performance on the

troubling KMeans workload was 0.70. Furthermore, some combi-
nations (always including TxTime) performed even better. By eval-
uating workloads using the transaction’s running time, the average
number of writes per transaction, and the percentage of time spent
between transactions, the speedup compared to an oracle increased
to 0.936.

While we used brute force across all combinations of our CBR
metrics to come to this result, in retrospect it is quite obvious. To
provide ELA semantics, many STM algorithms require blocking
and polling to ensure a correct order between transactions and
nontransactional accesses. Of the STM algorithms that block to
provide ELA semantics, NOrec is usually fastest. Of those that
do not require program-wide blocking to provide ELA semantics,
ByteEager and BitLazy are fastest, but they have high single-thread
latency. When writers are infrequent, transactions are long, or most
threads are in nontransactional code, our best CBR policies choose
NOrec. When these conditions do not hold, our policies are more
likely to choose BitLazy and ByteEager.

5.7 Cost of Lookup

If a workload experiences frequent triggers, then it must frequently
shut off concurrency and perform a global barrier to switch to
the profiling mode. While this cost is unavoidable (and perhaps
necessary for avoiding pathologies), an important related cost deals
with how long the NEAT and CBR techniques take to compute
the new algorithm. In our tests, NEAT decisions took 99K cycles
on average, while CBR decisions averaged 150K cycles. NEAT
variance was low, but CBR decisions could take up to 302K cycles.

Some of these differences in running time are due to implemen-
tation details, as NEAT processing uses floating point arithmetic,
whereas we coded our CBR to use only integer math. Other differ-
ences relate to how training data is used during program execution.
CBR systems must iterate through a large training set during execu-
tion to pick a new algorithm; the quality of predictions is typically
proportional to the size of the set that is queried. NEAT, in contrast,
processed a network with only 27 internal nodes and 108 connec-
tions. Typically, this is faster than scanning through more than a
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Figure 3. Performance of adaptivity policies on STAMP for 1/2/4/8 threads, using only STM algorithms with ELA semantics. The three
rightmost columns are CBR policies, identified by the set of features they used.

hundred elements in a vector. It also is likely to cause fewer cache
evictions.

5.8 Impact of Training Data

We selected our training data early in the process, and did not
tailor it to our benchmarks. This led to an over emphasis on read-
only transactions, even though many STAMP workloads consist
exclusively of writing transactions. More significantly, we did not
include training microbenchmarks where nontransactional work
was a parameter. Consequently, for some STAMP benchmarks,
there was no close training microbenchmark. When we added the
STAMP benchmarks to our NEAT training data and performed
leave-one-out cross validation, NEAT’s performance rose by 4%.

5.9 Outperforming the Oracle

We were surprised to find several occasions where our adaptive
policies outperformed the oracle by a large margin. The easiest
benchmark for this outcome was Bayes, where the order in which
transactions complete has a significant effect on total execution
time. We saw a speedup of as much as 37% for some policies,
which we attribute to those policies inducing a good order for
threads to make progress.

In other cases, we observed consistent speedups in the range
of 1% to 5%, compared to the oracle. We attribute this result
to the program executing in phases, where each phase favors an
STM algorithm with slightly different performance characteristics.
This result was previously observed by Kulkarni et al. for worklist
algorithms [16], where short periods at the beginning and end of
the program have different characteristics than the middle, due to
work becoming more, and then less, abundant. As STAMP contains
many worklist algorithms, our results seem to support Kulkarni’s
observation.

6. Conclusions and Future Work
In this paper, we introduced a low-overhead system for dynamically
profiling the behavior of memory transactions. We also proposed
two adaptivity mechanisms based on machine learning that can

exploit dynamic profiles to predict the STM algorithm that will
maximize a workload’s performance. By operating in this manner,
our system is robust to program behaviors that are input-dependent,
or that vary during distinct phases of execution.

We evaluated our system on the STAMP benchmark suite, con-
sidering both the case where STM algorithms must provide strong
language-level semantics, and the case when relaxed semantics are
acceptable. Our best policies performed within 10% of an oracle
that always chooses the best algorithm. In the strong semantics
case, our system was within 7% of the oracle.

Given that our system can exploit dynamic program phases to
outperform the selection of a single STM algorithm, we can hardly
claim that our current performance is at an acceptable level: for
STAMP, it should be possible to outperform the oracle some of the
time, and match its performance the rest of the time. To reach that
end state will require better training benchmarks and more training
features (especially nontransactional work).

In addition, we are not confident that our current strategy of
learning the concurrency characteristics of STM algorithms from
the training data is sufficient. We measured characteristics that af-
fect latency, and expected the ML policies (especially NEAT) to
infer properties related to throughput, such as metadata bottlenecks
and conflict granularity. We were too optimistic. By incorporating
(normalized) abort information directly into the training and profil-
ing mechanisms, we hope to improve the accuracy of our prediction
systems.

In the longer term, we believe that many more questions in TM
research will be easier to address given our results, our mecha-
nisms, and our framework (which will be released open-source).
Opportunities include testing new ML algorithms, adapting in re-
sponse to other STM feature requests (such as I/O), adapting on ar-
chitectures for which hardware TM support is available, handling
stronger language level semantics (especially for Java), and choos-
ing among lock mechanisms for workloads that do not, or cannot,
use transactions. Farther afield, we hope our profiling mechanism
will simplify the task of building more general-purpose transac-
tional profilers and debuggers.
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[20] X. Li, M. J. Garzaŕan, and D. Padua. A Dynamically Tuned Sorting
Library. In Proceedings of the International Symposium on Code
Generation and Optimization, Palo Alto, CA, Mar. 2004.
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