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ABSTRACT

AUTOMATICALLY CONSTRUCTING COMPILER
OPTIMIZATION HEURISTICS USING SUPERVISED LEARNING

FEBRUARY 2005

JOHN CAVAZOS

B.S., TEXAS A&M UNIVERSITY-CORPUS CHRISTI

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor J. Eliot B. Moss

Optimizing compilers use heuristics to control different aspects of compilation and to

construct approximate solutions to hard compiler problems. Finding a heuristic that is ef-

fective for a broad range of applications is time-consuming and one of the most difficult

tasks faced by compiler writers. In this dissertation, I introduce a new methodology called

LOCO (Learning for Optimizing COmpilers) for constructing compiler heuristics automat-

ically. In the context of Java JIT compilation, the efficiency of an optimization algorithm is

important because time spent optimizing a program is part of the total running time of that

program. We apply LOCO to construct new compiler heuristics that improve the efficiency

of two classical compiler optimizations: instruction scheduling and register allocation.

Instruction scheduling is one of the most effective compiler optimization algorithms,

sometimes improving program speed by 10% or more—but it can also be expensive. We

vi



found that instruction scheduling often does not produce significant benefit and sometimes

degrades speed. Using LOCO, we induced heuristics to predict which blocks benefit from

scheduling. These ”filters” choose whether or not to schedule each block. Using filters,

we can dramatically reduce scheduling effort while only slightly degrading the benefit of

scheduling.

Like instruction scheduling, register allocation is an important and expensive optimiza-

tion. However, unlike instruction scheduling, register allocation is a mandatory phase of

compilation. We use LOCO to construct a ”hybrid” register allocator, that controls the ap-

plication of two different register allocation algorithms. One algorithm is expensive, but

sometimes more effective. The other is more efficient, but sometimes less effective. A

hybrid allocator chooses which algorithm to apply for each method. Using hybrid alloca-

tors we can dramatically reduce register allocation effort while still obtaining much of the

additional benefit of the more expensive algorithm.
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CHAPTER 1

INTRODUCTION

1.1 My Thesis

The central thesis of this dissertation is: we can design a new technique for automati-

cally constructing compiler optimization heuristics that has several benefits and no signifi-

cant drawbacks over other methods of constructing heuristics.

1.2 The Problem Statement

Most compiler optimizations are controlled through functions called heuristics. A

heuristic for a particular optimization uses different properties of the code being optimized

and of the target architecture to control the optimization algorithm. Optimization heuristics

make a difference as to whether the optimization improves or degrades the performance of

a program. Unfortunately, constructing compiler heuristics is difficult and tedious.

Compiler writers are expected to find effective and efficient heuristics to compute ap-

proximate solutions to NP-hard problems, such as instruction scheduling and register al-

location. Further complicating the construction of good heuristics is that other compiler

phases may interact with the optimization adversely affecting its effectiveness. This makes

it difficult to construct sets of compiler heuristics that mesh well together.

As computer architectures become increasingly complex, we need ever more sophisti-

cated compiler optimizations to exploit new features of the architecture. Previous archi-

tectures were simple enough that it was easy to discern the relevant details that affect per-

formance, but today’s architectures are intractably complex. Also, the fast-paced develop-

ment of new processor technology precludes spending a large amount of time hand-crafting
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these optimizations. Hand-crafting back-end optimizations means that the compiler writer

has less time to spend on other parts of the compiler. Further, computer engineers desire

the ability to experiment with many different designs of an architecture to measure gains

of architectural alternatives over one another. This requires not only quick prototyping of

the architectures in question, but also quick prototyping of optimizing compilers for those

architectures. Hand tuning any part of the compiler, including the back end, is ineffective

at supporting quick prototyping of optimizing compilers.

Compiler writers not only must learn what features of the problem affect a particular

optimization, they need to discover the relative importance of the features and the combi-

nations of these features that work well. The compiler writer first decides upon a set of

features they think are important to the problem and constructs an initial heuristic based on

those features. The programmer then tests this heuristic by compiling a suite of benchmarks

and measuring the performance of these benchmarks. If the performance after applying the

optimization meets the compiler writer’s desires, they stop iterating the loop and the heuris-

tic can be included in the production version of the compiler. However, this feedback loop

is typically iterated several times until either the compiler writers are satisfied with the

performance of the heuristic or give up because they were unable to achieve acceptable

performance.

Because today’s architectures appear intractably complex and new architectures are

rapidly being introduced, the timely construction of good heuristics is difficult. Techniques

for automating and simplifying the process of constructing heuristics have become neces-

sary.

1.3 State of the Art

Over the last ten years, new techniques have emerged that automate the process of con-

structing compiler heuristics, namely genetic algorithms [52, 21, 22, 28, 8] and reinforce-

ment learning [36, 37]. These techniques work by performing a massive search over the
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parameter space of features of a particular optimization heuristic. In effect, they automate

the process of a heuristic construction feedback loop, blindly testing thousands of heuris-

tics to find ones that perform well. These techniques have the advantage over manually

constructing heuristics, that they automate the process of constructing and testing heuris-

tics. However, there are several drawbacks to these approaches. The search can take hours

or days, even on multi-processor machines. Additionally, because these techniques employ

randomization in their search, they are not guaranteed to converge to the same solution ev-

ery time. This can be frustrating to a compiler writer, who is looking for a stable heuristic.

These systems are also hard to get working right and the form of the heuristics they pro-

duce can be hard to interpret. This thesis reports on a new technique that also automates

the process of constructing compiler heuristics, but does not have these drawbacks.

1.4 Overview of the Solution

We introduce a new technique called LOCO, Learning for Optimizing COmpilers.

LOCO uses supervised learning to automate and simplify the construction of compiler

heuristics. Supervised learning refers to a wide variety of algorithms that can “induce”

(automatically construct) general functions from training data.

With LOCO, we were successful at inducing heuristic functions for two back end com-

piler optimization algorithms, namely instruction scheduling and register allocation. Find-

ing optimal solutions for these optimizations is also known to be NP-hard, so one requires

heuristics to solve them efficiently. These compiler optimizations are among the most

important compiler optimizations for most architectures. It is therefore essential that the

heuristic be effective. Where possible we compare the heuristics produced by LOCO to

hand-crafted heuristics, and found that they perform equally well.

LOCO also offers the following benefits over the traditional methods of manually con-

structing heuristics:
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1. LOCO speeds up heuristic construction. Using supervised learning we can construct

competent heuristics in a matter of minutes. On the other hand, manual construc-

tion of heuristics can take days and even weeks to construct and fine tune compiler

heuristics.

2. LOCO discovers the relative importance of the different properties of an optimiza-

tion problem automatically. In contrast, the manual technique of discovering what

features is done through tedious and complicated trial-and-error experimentation.

3. LOCO’s heuristic inducing algorithms have a firm theoretical foundations. Thus,

the relative importance of features used in the heuristics is developed using sound

principles. The relative importance of features in manually constructed heuristics is

often derived through ad hoc experimentation, often based on intuition or inadequate

fine-tuning, which can lead to sub-par effectiveness of an optimization.

LOCO has the following important advantages over other automated techniques of con-

structing heuristics:

1. LOCO is more efficient at constructing compiler heuristics than these other tech-

niques. As mentioned, LOCO can construct heuristics in minutes. Other automated

techniques can take hours to days, even on multi-processor machines.

2. LOCO is easier to use successfully than these techniques. The supervised learning al-

gorithms used in LOCO are easily tuned to the particular problem. These techniques

are more difficult to get working and often require expert tuning.

3. LOCO produces heuristics that are more readable. Unsupervised learning algorithms

and reinforcement learning algorithms use representations that are generally less

readable.
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4. LOCO’s learning algorithms always produce the same result for the same set of train-

ing data. The other automated techniques use randomization, thus the output of their

searches can differ from one run to the next.

The other automated techniques are effective in certain situations, such as when the

underlying architecture is constantly changing, thus requiring an adaptive learning solution.

However, in most situations, LOCO is suitable for constructing compiler heuristics and the

other methods should be used only after attempts to use LOCO are unsuccessful.

1.5 Contributions

Heuristics are found throughout compilers. They control how a program is compiled—

controlling everything from the order in which to apply certain optimizations, to whether

an optimization is applied at all, or even how an optimization is applied.

I describe four different categories of compiler optimization heuristics. We used LOCO

to construct compiler heuristics for three of the four categories of this taxonomy, and it

should be applicable to the fourth as well (left for future work).

The first category of heuristic controls whether to apply an optimization or not. Typi-

cally a compiler writer decides a priori whether or not to apply an optimization to all parts

of a program or to none. However, an optimization can have a large impact on some parts

of a program while having little or no impact on other parts. If an optimization is expensive

and only partially effective, it would be useful to apply it selectively. We developed a novel

technique, called filtering, that uses features of the code to predict whether to apply an opti-

mization. Instruction scheduling is one optimization, in particular, that can be expensive to

apply and effective only some of the time. We developed filter heuristics to control whether

to apply instruction scheduling. Filters uses features of a block to predict whether the block

will benefit from instruction scheduling.

The second category of heuristics are ones that control which optimization algorithm

to apply. This kind of decision is typically decided beforehand and often hard-coded into

5



the compiler. Instead we used LOCO to construct heuristics for a new kind of optimiza-

tion strategy, which we call hybrid optimization. A hybrid optimization chooses among

different implementations of the same optimization to find the best tradeoff between effec-

tiveness and efficiency of those various implementations.

The third category of heuristics are ones that control decisions within an optimization

algorithm. These decision functions are sometimes called priority functions because they

prioritize different properties of interest. Some researchers have applied machine learning

to construct these kinds of heuristics automatically. We discuss this related work in Chapter

7. We used LOCO to construct heuristics to control how to schedule instructions in an

instruction scheduler.

Finally, the fourth category of heuristic controls the ordering of transformations in a

compiler. This heuristic is referred to as a phase-ordering heuristic in the compiler liter-

ature. Cooper et al. [21] successfully apply genetic algorithms to this class of heuristics.

It would be interesting to apply LOCO to this class of heuristics, but this is left to future

work.

Compilers also require optimizations that are efficient. Efficient optimizations are ones

that consume little resources to perform. Efficient optimizations are especially important

in just-in-time (JIT) compilers because they compile programs at run time, thus the time

spent compiling and optimizing a program is a percentage of the total running time of the

program. In JIT compilers, it is essential that optimizations not only produce good quality

code, but also execute as fast as possible.

Most previous work in compiler optimization research has focused on the effectiveness

of compiler optimizations. In contrast, the efficiency of optimizations has received little

attention. As JIT compilers have become more popular, some research in efficient opti-

mizations has begun to emerge [56, 41, 18, 16]. Still, there remains an important gap in

the study of efficient optimization algorithms. The first two categories of heuristics control

compiler optimizations to improve an optimization’s efficiency.
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The first three categories of heuristics use models to evaluate their effectiveness. These

models are used in the construction of learning data. Models are simplified estimators of a

program’s performance on a real machine. We show that a technique, we call thresholding,

is essential to inducing the best performing heuristics.

1.5.1 Learning Whether to Optimize

We use LOCO to construct heuristics for filtering, a new technique for controlling

whether to apply compiler optimizations.

Optimizations are most commonly applied in an all-or-nothing fashion—either they

are always applied or not at all. However, an optimization doesn’t always have a positive

impact on a program’s performance, and in some cases can have a negative impact. There

may be parts of a program where an optimization will have a positive effect and other parts

of the program where it will have negative or no effect. Applying an optimization when it

produces no benefit unnecessarily increases compilation time.

If applying an optimization is costly and not always beneficial, a program’s compilation

time (and therefore a program’s running time under a JIT compiler) could be reduced by

applying the optimization selectively. Thus, we desire the ability to predict effectively

which parts of a program will benefit from an optimization, and then apply the optimization

only to those parts. This will reduce compilation time while still retaining most or all of

the benefit of an optimization.

We use filtering to control the application of instruction scheduling. Filtering uses

features of the block of code about to be scheduled to predict whether scheduling will

benefit that piece of code, and schedules the code only if it is deemed beneficial.

Instruction scheduling is an expensive optimization, the overall performance of which

is usually dominated by the time spent constructing the data structures required to perform

scheduling [40] and by the costly modeling of the target processor’s timing. We constructed

cheap-to-compute features that we believed were predictive of whether scheduling would
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benefit a block of code. We then used LOCO to construct our filter heuristics. Then we

used the resultant filters to select when to apply instruction scheduling, namely to those

blocks the filter predicted would benefit from scheduling.

We used filtering to control instruction scheduling for several Java benchmarks. We

were able to reduce scheduling time by as much as 75% while still retaining most of the

benefit of always scheduling.

1.5.2 Learning Which Algorithm To Use

We also used LOCO to construct heuristics automatically for a new compiler optimiza-

tion that we call hybrid optimization.

For many optimization, there are several different algorithms that differ in efficiency

and effectiveness. Some of these algorithms are more efficient, but not always as effective

as their slower counterparts. For some parts of a program, the faster, less effective opti-

mization algorithm are often sufficient, but for other parts, we would achieve a significant

benefit by applying a slower, but more effective algorithm. It would be desirable to apply

the slow algorithm selectively only on the parts of the program that will benefit from it.

We developed predictive heuristics that chooses when to apply the slower more effective

algorithm over the faster, less effective one.

Specifically, we develop a hybrid allocator that chooses between two register allocation

algorithms, graph coloring and linear scan. Graph coloring is an effective allocation al-

gorithm, but can very expensive. On the other hand, linear scan, while often effective, is

sometimes less effective than graph coloring, but is generally more efficient(in one com-

piler more than 80% faster).

We used LOCO to construct heuristics that control our hybrid register allocator. This

hybrid allocator chooses between an implementation of graph coloring and an implemen-

tation of linear scan. Our hybrid allocator was able to reduce the running time of register
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allocation so that it is competitive with the faster linear scan algorithm, while still achieving

much of the effectiveness of graph coloring.

1.5.3 Learning How to Optimize

Finally, we use LOCO to construct heuristics for a popular instruction scheduling al-

gorithm called list scheduling. The heuristic in list scheduling dictates the order in which

to add available instructions to a schedule under construction. List scheduling has been

well-studied for several decades and there are now excellent heuristics for this algorithm.

Stefanović [51] has shown that one popular heuristic used for list scheduling is almost al-

ways optimal for blocks that he could feasibly explore for its optimality. Using LOCO, we

induced heuristics automatically for list scheduling, whose performance was comparable

to that of hand-tuned list scheduling heuristics for two different architectures.

1.5.4 Summary of Contributions

We summarize our contributions:

1. We introduce a technique for automatically constructing compiler optimization

heuristics that has many benefits over traditional and state of the art methods of con-

structing heuristics.

2. We introduce a new optimization technique, called filtering, that significantly reduces

the effort of instruction scheduling while still obtaining most of the benefit.

3. We introduce a new optimization technique, called hybrid optimization, that automat-

ically chooses between two different register allocation algorithms. By using hybrid

optimization, we achieve most of the efficiency of the faster linear scan register al-

location algorithm, while still obtaining much of the benefit of the slower but more

effective graph coloring algorithm.

4. We show that LOCO can induce heuristics automatically that are comparable in ef-

fectiveness as hand-tuned heuristics.
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5. We show that a technique, we call thresholding is essential to obtaining the best

performing heuristics out of LOCO.

1.6 Organization

We organize the remainder of this dissertation as follows. Chapter 2 provides back-

ground information. In the first part, it presents the JIT compilation model that is the foun-

dation of today’s typical Java JIT compilers, and the two back end compiler algorithms we

worked with, instruction scheduling and register allocation. In the second part, it discusses

supervised learning algorithms in general, and also the specific algorithms we used.

Chapter 3 describes the main components of our solution, called LOCO, and gives an

example to illustrate the technique. It compares that solution to traditional methods as well

as new state of the art methods aiming to provide similar services to heuristic construction.

Chapters 4, 5, and 6 describe three important heuristics we developed using LOCO: (1)

whether to optimize, (2) which optimization algorithm to use, and (3) how to optimize. Our

solution is the first one automatically and quickly to induce effective and efficient heuristics

for these three problems.

Finally, Chapter 9 concludes the dissertation, discusses the limitations of our work, and

suggests directions for future work.
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CHAPTER 2

BACKGROUND

2.1 Introduction

Because this research is a synthesis of two different areas of computer science, compil-

ers and machine learning, we give background in both of these areas to help in understand-

ing the research described in this dissertation. We describe the Java compilation process

and then the Jikes Research Virtual Machine (RVM), the particular system we used for this

research. We also describe instruction scheduling and register allocation, the two optimiza-

tions we used for our experiments. Finally, we describe machine learning algorithms in

general and elaborate on the specific learning algorithms we used. We discuss related work

pertaining to these different areas throughout this chapter. Chapter 7 discusses related work

pertaining to machine learning applied to compiler heuristics.

2.2 The Java Compilation Process

Programs written in Java are first compiled into machine-independent bytecodes using

a Java bytecode compiler, such as javac. These bytecodes are stored in class files to be

later read by a Java Virtual Machine (JVM). The process of executing a Java method is

as follows: A JVM reads in the bytecodes for each method as each method is invoked.

The JVM transforms the bytecodes into an intermediate representation (IR) and a variety

of optimizations are applied. The IR is then transformed into assembly code which is

then transformed into machine code and executed. The core of a JVM implementation

contains an execution engine that executes the bytecodes. There are two popular ways of

implementing the execution engine, interpretation and Just-In-Time (JIT) compilation.
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In interpretation, a loop repeatedly fetches, decodes, and executes the next bytecode.

The interpreter has code to interpret, i.e., to accomplish the effect of each form of byte-

code instruction. Many Java JIT systems provide an interpreted mode as the initial mode of

execution or for infrequently invoked methods. For hot (frequently executed) methods, typ-

ically JVMs also provide a JIT that compiles those methods to native codes, possibly with

optimizations. Jikes RVM is unusual among JVMs in that it does not include a bytecode

interpreter, but always compiles to native code any method that gets invoked. Therefore,

we do not discuss interpretation further.

2.2.1 Jikes Research Virtual Machine (RVM)

Jikes RVM, formerly known as Jalapeño, is a Java virtual machine (JVM) for servers,

written in the Java language [4, 13, 3, 2]. As previously mentioned, Jikes RVM takes a

compile-only approach to program execution. That is, the first time a method is invoked,

Jikes RVM compiles it into executable machine code. It then caches the method’s compiled

code so that it can execute this code on subsequent invocations of that method. Jikes RVM

currently runs on the PowerPC and Intel x86 architectures.

Jikes RVM currently offers two compilers: the Baseline compiler, which makes little

attempt to produce high quality code, but runs very quickly, and the Opt compiler, which

has a large number of optimizations available to be applied. We are only interested in the

optimization compiler so we do not discuss the Baseline compiler further.

When a method is Opt compiled, Jikes RVM converts its bytecodes to an internal rep-

resentation (IR). An IR pertains to the particular data structures and techniques for repre-

senting each Java method being compiled. Jikes RVM has multiple IRs that are used to

support various levels of optimizations. Figure 2.1 depicts the three different phases in the

Opt compiler and some of the different optimizations that can be applied in each phase.

During each phase, the code is represented by a different IR, though these IRs are similar.

Each phase applies optimizations and continually lowers the IR from a high-level IR (HIR)
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Jikes RVM

Class Files (Bytecode)

Back end

LIR to MIR

MIR Optimizer

Final Assembly
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Front end

Bytecode to HIR

HIR Optimizer

HIR to LIR

LIR Optimizer

Tail Recursion Elimination
Escape Analysis
Load Elimination
Loop Unrolling

Copy Propagation
Constant Propagation
Constant Subexpression Elimination
Basic Block Reordering

Live Analysis
Instruction Scheduling
Register Allocation

Figure 2.1. Jikes Research Virtual Machine (RVM) System.
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to a low-level IR (LIR), and finally to a machine-level IR (MIR). The research in this dis-

sertation involves optimizations applied in the final phase of compilation while the code

is in MIR.1 Even though this research restricts itself to the last phase of compilation, we

believe the concepts and techniques presented here are relevant to optimizations applied in

other phases.

Later we offer some comparison with compilation techniques that identify and optimize

only frequently executed (hot) methods.

2.2.2 Related Work on JVMs

The HotSpot JVM [53] begins by interpreting all code, but it monitors the execution

of that code. Most programs spend a large percentage of their time executing a small

percentage of the code. By monitoring program execution, HotSpot can figure out which

methods represent the program’s ”hot spots”- that small percentage of code that is executed

most of the time. When HotSpot decides that a particular method is a hot spot, it fires off

a background thread that compiles those bytecodes to native code and heavily optimizes

that native code. Meanwhile, the program can still execute that method by interpreting its

bytecodes. Because the program isn’t held up and because HotSpot is only compiling and

optimizing the ”hot spots” (perhaps 10 to 20 percent of the code), HotSpot has more time

than a JIT only system does to perform optimizations.

BEA WebLogic JRockit [7] is a JVM that operates in a similar fashion to HotSpot with

its selective optimizations of “hot spots.” We discuss the research JRockit later in Chapter

7. Here we discuss its compilation process. JRockit continuously monitors applications

and uses the application’s ongoing characteristics to adapt and upgrade performance. Its

JIT compiles all methods it encounters during startup, continuously optimizing application

code at run time to improve performance. A “bottleneck detector” runs in the background

1This final phase is generally known as the back-end and the optimizations applied during this phase are
called back-end optimizations.
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and collects run time statistics to detect frequently executed methods. Then the system

aggressively optimizes these methods even as the system runs to deliver on-the-spot im-

provements.

OpenJIT [35] is a reflective Just-In-Time compiler, allowing various language extension

and compiler optimizations to be added in as Plug-ins written in Java. OpenJIT allows

customization of the JIT compiler for dynamic adaptation to the computing environment.

Similar to Jikes RVM, almost all of OpenJIT is written in Java, save for a small amount

of native code for runtime support and adding APIs to the JVM. The back end of OpenJIT

uses the JIT interface API to convert the Java bytecodes into SPARC V8 native code, and

controls the execution between the JDK and the native code. The back end currently does

not perform extensive optimizations performing only economical optimizations such as

good code generation and effective peephole optimizations.

2.3 Experimental Infrastructure

We ran the experiments in this dissertation on two different platforms. We ran exper-

iments for Chapters 4 and 5 primarily on an Apple PowerPC Macintosh system with two

533 MHz G4 processors, model 7410. This is an aggressive superscalar architecture and

represents the current state of the art in processor implementations.

For the PowerPC, all measurements are elapsed (wall clock) times. The compiler in-

frastructure also measures elapsed time spent in the compiler, broken down by phase and

individual optimization. These measurements use the bus clock rate time counter and thus

give sub-microsecond accuracy; this clock register is also cheap to read, so there is little

overhead in collecting the information.

For instruction scheduling, the 7410 implementation of the PowerPC is interestingly

complex, having two dissimilar integer functional units and one each of the following func-

tional units: floating point, branch, load/store, and system (handles special system instruc-
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Program Description
compress Java version of 129.compress from

SPEC 95
jess Java expert system shell
db Builds and operates on an in-

memory database
javac Java source to bytecode compiler

in JDK 1.0.2
mpegaudio Decodes an MPEG-3 audio file
raytrace A raytracer working on a scene

with a dinosaur
jack A Java parser generator with lexi-

cal analysis

Table 2.1. Characteristics of the SPECjvm98 benchmarks.

tions). It can issue one branch and two non-branch instructions per cycle, if a complicated

set of conditions holds. Instructions take from one to many tens of cycles to execute.

In Chapter 6 we report on experiments on instruction scheduling heuristics done on an

Alpha 21064 (in-order issue) processor. It is widely thought that instruction scheduling has

more effect on in-order processors, so it makes sense to report numbers for both an in-order

and an out-of-order processor.

2.3.1 Benchmarks

We examine 7 programs drawn from the SPECjvm98 suite [50] for most of the ex-

periments in this dissertation. We detailed these benchmarks in Table 2.1. We ran these

benchmarks with the largest data set size (called 100).

For Chapter 4 we gathered another suite of programs where scheduling gives more of

an improvement in running time. Table 2.2 offers details about these benchmarks. Note

that this suite of benchmarks consists solely of numerically intensive (floating-point) com-

putations. For this architecture, instruction scheduling is an important optimization for

removing stalls caused by floating point instructions having long latencies.
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Program Description
linpack A numerically intensive floating

point kernel
power Power pricing optimization prob-

lem solver
bh Barnes and Hut N-body physics al-

gorithm
voronoi Computes Voronoi diagram of a

set of points recursively on the tree
aes Tests vectors from the NIST en-

cryption tests
scimark A scientific and numerical compu-

tation

Table 2.2. Characteristics of a set of benchmarks that benefit from scheduling.

In Chapter 6 we develop the heuristic used for deciding how to schedule instructions. In

this chapter, we examine C and FORTRAN programs from the SPEC95 benchmark suite.

Since these benchmarks were only used in this chapter, we describe these benchmarks in

more detail there.

2.4 Instruction Scheduling

In Chapters 4 and 6, we experiment with instruction scheduling. Instruction scheduling

is used to tolerate instructions with a latency of more than one cycle. Latency refers to the

number of clock cycles after an instruction has begun execution until its result can be used.

The latency of memory and floating point instructions is often multiple cycles, and can

cause the processor to stall if instructions follow too closely that depend on their results or

use the same resources. We tolerate long latencies by scheduling other instructions between

the issue of a long latency instruction and the issue of any dependent instructions.

Scheduling reorders instructions in a block. However, two instructions cannot be re-

ordered if there is a dependence relation between them. There are several different types
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of dependence relations including dependences on a register, on memory, control flow, and

possible exception conditions. The appendix discusses these dependences in more detail.

Compilers represent this dependence information in a directed acyclic graph (DAG);

each instruction is a node in the graph, and each dependence relationship is an edge in the

graph. If node j depends on node i, there must be an edge in the DAG from i to j. Node

i is called a predecessor of j and node j is called the successor of i. Nodes in the DAG

that do not have predecessors are called root nodes and nodes that do not have successors

are called leaf nodes. Edges are assigned weights, giving to the latency of the functional

units for register def-use edges and memory true dependence edges; otherwise the weight

is zero. These weights give an estimate of how long the dependent instruction will have to

wait before it can execute after its predecessor has been issued.

2.4.1 Instruction Scheduling in Jikes RVM

Here we are concerned with prepass instruction scheduling, which takes place after

the code has been transformed into MIR (machine-dependent IR) but before final regis-

ter assignments have been made. After register allocation another round of scheduling

is sometimes performed (called postpass scheduling), but this is currently not supported

by Jikes RVM. A previous study [33] has shown that prepass scheduling extracts more

instruction-level parallelism than postpass scheduling on wide-issue machines.

The scheduler we are working with in Jikes RVM is a top-down scheduler. A top-down

scheduler works by constructing a dependence DAG, then considering first the instructions

that are roots, working down the DAG towards the leaves. A bottom-up scheduler works

in the opposite direction. These algorithms can produce different results. The top-down

approach is conceptually easier to understand and is the more common implementation.

The traditional method of performing instruction scheduling, and the method used in

this research, is called list scheduling. The algorithm starts by constructing the dependence

DAG. Each node (instruction) in the DAG is given a priority; there are a number of ways
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listScheduler(block)
Ready � DAG roots
While (Ready not empty)
// i will contain best candidate so far

i := instruction in Ready;
for (j in Ready) do

if (prefer-candidate(j, i))
// j preferred over i
i := j;

endif
endfor
schedule(i)
remove i from Ready
Ready � any new candidates

end

Figure 2.2. High level view of List Scheduling

to assign these priorities. Instructions are scheduled only when all their predecessors in the

DAG have been scheduled. The instructions that are available to be scheduled are kept in

a ready list. The roots of the DAG are used to initialize the ready list. At each step, the

list scheduling algorithm evaluates the quality of each instruction in the ready list based on

some preference function, then chooses to schedule next the one with the highest priority.

When there is more than one instruction with the highest priority, some disambiguation

rule is used.

Also, we are concerned with local or basic block scheduling. Basic blocks are straight-

line sequences of code with a single entry point and exit point. Local list scheduling has

been the dominant instruction scheduling algorithm for 20 years. It is a greedy, heuristic,

local technique that works well for many processors. There are other scheduling algorithms

that employ backtracking [1], but these algorithms are expensive and would typically not

be appropriate for JIT environments.

As mentioned previously, we apply our technique to local (basic block) scheduling, not

global scheduling. We have investigated superblock scheduling in our compiler setting, and
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with it one can get slight (1-2%) additional improvement over local scheduling. However,

superblock formation requires detailed profiling information and we did not want to require

that. Also, it is in a way beside the point: we are not trying to build a better scheduler, but

trying to decide whether to apply whatever scheduler we have. We could apply our same

procedure to the superblock case, and it might provide additional evidence that we can

induce heuristics that greatly reduce scheduling effort while preserving most of the benefit.

Instruction scheduling is a well-known issue and others have proposed a variety of

heuristics and techniques. It is also known that optimal instruction scheduling for today’s

complex processors is generally NP-hard. There has been some recent work on trying

to find optimal schedules [62] using integer programming. The scheduling problem is

posed as an integer programming problem and it is solved using an off-the-shelf integer

programming package. Again, these techniques are expensive and not practical for most

JIT compilation systems.

We are interested in Java compilation environments that strive for for efficient JIT com-

piler optimization. In Chapter 6 we show how to construct heuristics automatically that

are as efficient and effective as hand-tuned heuristics. Chapter 4 focuses on drastically

improving the efficiency of an instruction scheduler, while not degrading the effectiveness

much.

2.4.2 Related Work on Instruction Scheduling

This section describes some prior work on instruction scheduling. We describe related

work on applying machine learning to instruction scheduling in Section 6.10.

Muchnick [40] presents a comprehensive look at the design of real-world compilers

for a broad range of architectures. He presents the design of several categories of both

local and global instruction schedulers. He devotes one chapter to code scheduling. In the

beginning of this chapter he states:
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“methods for scheduling or reordering instructions to improve performance, an opti-

mization that is among the most important for most programs on most machines.”

This statement lends further support to the importance of constructing good heuristics

for this optimization.

A classic paper by Gibbons et al. [26] describes an algorithm for instruction scheduling

for a pipelined architecture that significantly reduces the number of run time pipeline stalls.

The algorithm is effective in practice while having an O(n2) worst-case run time.

A survey paper by Smotherman et al. [47] describes several categories of heuristics and

DAG construction techniques for instruction scheduling. The heuristics are categorized

based on different features, such as difficulty of implementation, what kind of pass (forward

or backward) through the block is required to compute the heuristic, and how costly the

heuristic is to compute.

Joseph Fisher [25] introduced a global scheduling technique called trace scheduling.

John Ellis [24] also experimented with trace scheduling and showed its utility in a static

compiler called Bulldog. In trace scheduling, a function is divided into a set of traces.

These traces represent the most frequently executed loop-free paths through the function,

and are treated like large basic blocks during scheduling. Instructions are scheduled within

each trace ignoring control-flow transitions. After scheduling, some tricky adjustments are

required (compensation code) to ensure the correct execution of off-trace code.

Richard E. Hank et al. [29] introduce another technique for global scheduling, called

superblock scheduling, that reduces the amount of bookkeeping required compared with

trace scheduling. A superblock is a trace which has no side entrances. Control may enter

only from the top, but may leave at one or more exit points. Eliminating side entrances sim-

plifies the bookkeeping needed to ensure the correctness of off-trace code. The construction

of superblocks consists of two steps. First, traces are identified using static program anal-

ysis or profile information as in trace scheduling. Second, a process called tail duplication

is performed to eliminate any side entrances to the trace. A copy is made of the tail portion
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of the trace from the first side entrance to the end. All those side entrances into the trace

are then redirected to the corresponding duplicate basic block. Duplicating code can lead

to greater opportunity for instruction-level parallelism (ILP) at the expense of increasing

static code size.

2.5 Register Allocation

Instructions that access operands in registers are usually cheaper than those that access

operands from memory. Also (especially in RISC architectures), many instructions cannot

access operands from memory. In either case, it is usually advantageous to have the most

frequently used operands in registers. However, there are often a smaller number of avail-

able registers than there are candidates to place in registers. Register allocation is the phase

of a compiler that specifies which candidates will go into registers and at what points in a

piece of code. It is easy to estimate the benefit of allocating a value to a register; however,

it is difficult to estimate how a specific allocation will affect subsequent allocations. Most

previous approaches have focused on casting register allocation as a graph coloring prob-

lem. Because of the expense of building and coloring a graph and because of the current

popularity of generating code at run time (due in part to Java JIT compilers) there has been

a recent trend in faster ways of allocating registers, such as linear-scan allocation. This

register allocation algorithm is sometimes less effective than graph coloring, but is usu-

ally more efficient, since it does not require an interference graph for its execution. We

present results in Chapter 5 that show the performance difference between graph coloring

and linear scan register allocation algorithms for a small register set size (8 registers) on

two different optimization levels. The appendix contains more results for different register

set sizes.
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2.5.1 Register Allocation and Spilling

Jikes RVM performs register allocation for each method, using intra-procedural alloca-

tion.2 Before register allocation the intermediate representation uses an unbounded number

of registers, called symbolic registers. The task of the register allocator is to pack symbolics

into available machine registers, while satisfying some important constraints:

� If two symbolics are live at the same time, i.e., both have been loaded or computed
and both have possible future uses, then the allocator must assign them to different
machine registers.

� Integers and pointers must go into integer registers and floating point numbers into
floating point registers.

� Some values are bound to specific machine registers, notably arguments to a method
and the method’s result if any. Also, some registers are reserved for special use (e.g.,
the frame pointer).

It is not always possible to assign every symbolic to a register while satisfying these con-

straints. In that case some symbolics are spilled, i.e., assigned a location in memory. Spilled

symbolics must be fetched from memory (into one of two registers reserved specifically for

holding spilled operands) each time they are used, and immediately written to memory each

time their value is updated.

2.5.2 Linear Scan Register Allocation

Linear scan register allocation [41] is part of the standard Jikes RVM optimizing (Opt)

compiler. The basic algorithm processes the code of each method as follows.3 First it

determines, for each symbolic register, the instructions at which that register is live. We

define the live range of a symbolic to be from the first instruction (in linear sequence) at

which the symbolic is live to the last instruction at which it is live. Next, the algorithm scans

2This is often called “global” allocation in the literature, to distinguish it from “local” allocation, which
treats each basic block separately. However, now, since some compilers perform inter-procedural or even
whole-program allocation, “global” might be confusing.

3Linear scan requires a linear form of the code, as opposed to, say, a control flow graph.
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the instructions of the method from beginning to end, maintaining a set of live symbolics as

it goes. (This set is initially empty.) At a given instruction, if the live range of any symbolic

ends, it drops that symbolic from the live set, and any register allocated to that symbolic

is made free. Then, if any symbolic’s live range begins at the instruction, the algorithm

attempts to allocate a suitable register to that symbolic.

If a symbolic’s live range includes a call, then we will not allocate that symbolic to a

volatile (caller-save) register (one the callee is allowed to overwrite without preserving).

Given this constraint, the algorithm determines, based on the current live set of symbolics

and the registers allocated to them, whether there is a suitable register available for the

new symbolic. If there is, the algorithm allocates that register to the symbolic, adds the

symbolic to the live set, and continues.

If there is no suitable register available, then the algorithm must spill some symbolic.

We describe this process with the following pseudo-code:

// s will contain best spill candidate so far

s := new-symbolic;

for (o in live-set) do

if (prefer-to-spill(o, s))

// gives o’s register to s

register(s) := register(o);

s := o;

spill(s);

if (s != new-symbolic)

add new-symbolic to live-set;

remove s from live-set;

The prefer-to-spill call in the pseudo-code marks where we use a spill heuristic.
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2.5.3 Graph Coloring Register Allocation

In addition to the linear scan algorithm already available in Jikes RVM, we imple-

mented a version of Brigg’s graph coloring algorithm [12]. This works as follows. First

the algorithm builds an interference graph. This has one node for each symbolic register,

and an undirected edge between each pair of symbolics that are live at the same time. The

goal is to assign registers (“colors”) to the nodes in such a way that the same color does not

appear at both ends of any edge in the interference graph.

Given the interference graph, the algorithm makes passes over the graph, removing

certain nodes (and the edges incident to those nodes). In particular, it removes a node if the

node’s degree (number of incident edges) is less than the number of registers suitable for

that node. Note that such a node can always be assigned a non-conflicting register (color).

When the algorithm removes a node in this way, it pushes it on a coloring stack. This

overall process is called simplifying the interference graph.

It is possible that simplification produces an empty graph, in which case one moves on

to coloring. But if simplification leaves a non-empty graph, then every node in that graph

has degree higher than the number of registers suitable for that node, so some node must

be spilled. We apply the spilling pseudo-code shown for linear scan, with new-symbolic

being an arbitrary node in the remaining interference graph, and live-set being the rest of

the nodes. Once we choose a node, we mark it for spilling and permanently remove it from

the graph. We then iterate the entire process by rebuilding the graph without any nodes

marked as spilled. We then attempt to simplify the graph again.

Eventually, the interference graph is empty and we proceed to coloring. In this phase

the algorithm pops from the coloring stack each node that it pushed (in the opposite order,

of course) and colors the node (i.e., assigns it a suitable register). By design of the algorithm

a suitable register will always be available. As it pops each node, it adds it back to the

interference graph, along with any of its incident edges that connect to nodes currently in

25



the graph. It uses the edges to check for conflicting registers and thus determine which

available register to allocate to the node.

2.5.4 Liveness Analysis

Without getting into low-level implementation details of the algorithms, we observe that

both linear scan and graph coloring require calculation of where each symbolic register is

live. A symbolic is live at a program point if there is an execution path forward from

that point on which the symbolic is used before it is assigned. Liveness is a data flow

problem, readily solved with well known techniques. Solving the data flow problem may

be computationally expensive, but both algorithms pay this cost, and in Jikes RVM it is

calculated in another part of the compiler for other purposes, so we do not include its

computation costs in any of our register allocation measurements.

We also do not include the cost of computing some of the information used in some

of the heuristics, such as loop nesting depth. Again, this is computed elsewhere in the

compiler for other purposes, so we do not charge “extra” for using it in register allocation

spill heuristics.

2.5.5 Related Work on Register Allocation

The first to implement a graph coloring algorithm to solve register allocation was

Chaitin [15]. The approach builds an interference graph that represents the interferences

or overlaps between the live ranges of the variables in the code for which one is allocat-

ing registers. The live range of a variable is the contiguous region of the program where

definitions flow to uses of that live variable. Formally, a variable, V � is live at point P if

there exists a control path that includes P consisting of a definition of V before P which

reaches a use of V after P� The algorithm then tries to find a k-coloring for the interference

graph where k represents the number of registers available on the processor being targeted.

Determining whether a k-coloring exists is known to be an NP-complete problem for k
�

3,

therefore Chaitin’s algorithm, as in all global register allocation algorithms, uses heuristics
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to find a k-coloring or to change the graph in order to make it k-colorable. The algorithm

proceeds by repeatedly removing all those nodes (and their corresponding edges) that have

degree less than k and placing them in a stack to be colored later. If nodes remain after

this graph reduction phase, the graph cannot easily be k-colored. The algorithm therefore

spills, i.e., copies values to memory, one or more live ranges in order to transform the graph

into one that has a simple k-coloring. Thus, each spill causes a successive graph to be built.

The cost of the algorithm is dominated by the building and processing of these successive

graphs, which is in the worst case quadratic in the number of register candidates.

Briggs et al. [12] use the same order as Chaitin to remove nodes, but they continue

removing nodes and pushing them on the stack even if they have � k neighbors. This

optimistic algorithm hopes some neighbors will get the same color so that this node can

still trivially get a color. During coloring if there is not a color available (for a node with

� k neighbors), Briggs et al. spill, rebuild the interference graph, and try again. It has the

same worst case complexity as Chaitin but tends to perform better in practice.

Recently Omri Traub et al. [56] formulated the register allocation problem as a bin-

packing problem. This algorithm allocates registers for a code sequence by traversing the

sequence in a linear scan. When a temporary variable is encountered it is placed in a bin.

The constraint on a bin is that it can contain only one valid value at any given point in

a program’s execution. If a new temporary is encountered and all bins are full, one of

the values in a bin must be spilled. The spilled value marks a split in the temporary’s

live range. Picking a spill candidate employs a heuristic that looks at the distance to the

candidate’s next reference. This algorithm improves on a previous bin-packing allocation

implementation [10] by being able to allocate and rewrite the instruction stream in a single

pass.

Vegdahl [61] describes a modification to Chaitin’s algorithm that leads to a reduction

in the number of colors (and therefore number of registers needed) to color an interference

graph. Chaitin’s coloring algorithm blocks during the simplification stage, that is after all
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nodes that have degree less than K have been removed from the graph. At this point, the

algorithm splits a live range (which introduces spilling), or (in Briggs’s algorithm) opti-

mistically continues hoping K-coloring will still be found. Vegdahl observed that merging

two nodes in the graph that are not neighbors, but that share common neighbors, causes

a reduction in the degree of any node that had been adjacent to both. In some cases, this

reduction can allow simplification to continue without introducing spilling. Also, Vegdahl

noticed that there were two aspects in Chaitin’s algorithm that were non-deterministic.

First, during simplification there may be many nodes that have less than degree K, and

the order of their removal indicates what color they will get. Second, during coloring,

there may be more than one color to choose from when coloring a node. Thus, there are

many different colorings of the same graph and these colorings can differ in the number

of colors that are used. This led to the insight of applying Chaitin’s algorithm repeatedly

to the interference graph, and using random choices whenever a non-deterministic choice

was available. Node merging colors interference graphs with fewer colors than Chaitin’s

algorithm and applying Chaitin’s algorithm repeatedly by 8% and 0.6% respectively. The

fact that node merging and applying Chaitin’s algorithm repeatedly produce improvements

over Chaitin’s original algorithm are evidence that applying heuristics in several phases of

the original algorithm proves beneficial.

2.6 Model and Empirical-driven Optimization Feedback

There are two methods of evaluating the transformations performed by an optimization.

Typically, compilers use simple architectural models that are abstractions of the complex

hardware of modern processors. This approach is known as model-driven optimization.

Recently, another approach, called empirically-driven optimization, has gained popularity.

This approach evaluates the performance of optimizations by generating different program

versions for each transformation and running the resulting code on the actual hardware.

This is the approach taken by Monsifrot et al. [38] (discussed in Chapter 7). Although
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LOCO could be adapted to use an empirically-driven approach, we have used only a model-

driven approach in our methodology.

A recent study [63] showed that using a model to evaluate the performance of an op-

timization can be equally as effective as evaluating its performance on a real machine.

From our experience working with compilers and profiling tools, we feel it is easier to

use a model-driven approach than an empirical-driven approach. Since the model-driven

approach works well for the problems in this dissertation and is easy to use, we feel it is

preferable.

For our instruction scheduling research in Chapters 4 and 6, we use a basic block sim-

ulator that is described in the next section. For Chapter 5, we use the number of spill

loads and stores added through register allocation as an estimate of the register allocator’s

performance.

We emphasize that a model’s estimates need not be precise in an absolute sense. The

estimates need only be good in a relative sense. For example, our basic block simulator

need not return precisely how many cycles a block will take to execute. However, it should

accurately predict whether one particular schedule is better than another schedule.

2.6.1 Basic Block Simulation

We need a fair comparison for the different schedules that each scheduler outputs as

well as the ability to evaluate quickly different derived heuristics. While actual execution

times are more accurate than simulation results, they are more difficult to obtain because

the blocks of instructions are so small that accurate and meaningful cycle times are difficult

to extract from the hardware. For Chapter 4 we implemented a basic block simulator within

Jikes RVM. For Chapter 6 we used a simulator provided by the target’s manufacturer.

A block simulator gives a predicted execution time for a given sequence of instruc-

tions on a particular architecture implementation. The simulators we used assume that all

resources and functional units are available at the start of simulating a block and that all
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memory instructions take a constant amount of time. Although these assumptions are not

realistic for actual executions of the program, it has been previously demonstrated that the

results obtained from these simulators are comparable to actual execution times [37]. Block

simulators do not simulate actual execution of the code, but instead rely on the known tim-

ings for each machine instruction on the different architectures. The dependence DAG is

used to enforce constraints between the instructions.

At the start of a sequence of instructions, each functional unit is assumed to be empty

and available for executing new instructions. The block timer then iterates through the

instructions and sends them to the appropriate functional unit. The simulator keeps an

overall cycle count and sends a parameterized number of instructions to the functional

units on each cycle. This simulates the ability to fetch and decode multiple instructions in

one clock cycle. Once an instruction is ready to be issued to a functional unit, the simulator

chooses the functional unit from the instruction’s preferred functional unit list with the

minimum time before the instruction will be executed.

Once the instruction has been passed to a functional unit, that unit accesses the timings

for the current instruction. Each instruction has two cycle counts associated with it. The

first is the number of cycles that the instruction takes to issue completely. The second

is the number of cycles until the instruction has completed its execution and the results

are available to the other instructions. The functional unit checks the DAG to ascertain at

which cycle all of the constraints will be satisfied. If that time is later than the current clock

time, then the functional unit is stalled until the instruction can execute. The functional

unit keeps track of when it can issue new instructions as well as when all instructions in its

pipeline will be completed. All children of the current instruction in the DAG are updated

with the earliest time that they can begin to execute.

At the end of each issue cycle, each of the functional units is notified that a clock tick

has occurred. Once all of the instructions have been processed, the simulator returns the

total number of clock cycles that the sequence of instructions took to execute. This can
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be used by the schedulers or the learning methods to evaluate the performance of different

sequences.

2.7 Machine Learning

Machine learning is the study of computer algorithms that learn (improve their behav-

ior) through experience. There are many successful applications of machine learning, rang-

ing from data mining programs that discover interesting properties from large databases, to

programs that learn how to play world-class backgammon, to systems that learn to recog-

nize spoken words. Machine learning algorithms are useful in complicated, poorly under-

stood, or new application domains where humans might not have the knowledge needed to

develop effective algorithms. The complexity of today’s processors, the poorly understood

interaction between different compiler optimizations, and the development of new opti-

mization algorithms that require new, highly-tuned heuristics make compiler construction

a domain appropriate for the application of machine learning. We used a specific class of

machine learning algorithms called supervised learning algorithms.

There are many machine learning algorithms that are suitable for inducing compiler

heuristics. We describe several algorithms that we used in this research. We also describe

a few algorithms used by other researchers for automating the construction of compiler

heuristics, briefly noting their advantages and disadvantages over the algorithms we used.

2.7.1 Supervised Learning Algorithms

The problem of inducing a general function (hypothesis4) from specific training ex-

amples is central to supervised learning. Supervised learning algorithms involve search:

searching through a predefined space of potential hypotheses for the hypothesis that best

fits the set of training examples and generalizes to new examples. The chosen hypothesis

representation implicitly defines the space of hypotheses that the learning algorithm can

4In machine learning parlance, the induced function that we use as our heuristic is called a “hypothesis”.
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represent and therefore can learn. The learning algorithms differ in the way they represent

the hypotheses and in the way they search through the hypothesis space. It is important to

note that several of the programs we used contain techniques (called pruning) for simpli-

fying their output, with the aim of improving accuracy on unseen data (generalization, i.e.,

avoiding over-specialization, also called over-fitting).

Decision tree learning is a widely used and practical method of learning that induces

heuristic functions and is robust in handling noisy data (that is, the data may contain errors).

Decision trees represent a disjunction of conjunctions of constraints on the attribute values

of instances. Each path from the root of the tree to a leaf corresponds to a conjunction of

attribute tests; the tree is a disjunction of these conjunctions. Learned trees can be converted

to sets of if-then rules, allowing them to be human readable and to be converted easily

into executable heuristic functions. However, even simplified trees can grow to unwieldy

proportions. The induced trees can be extremely accurate, but too complex to be understood

by anyone. Also decision tree methods tend to be unstable, that is they tend to have high

variance in that small perturbations in their training sets or in construction may result in

large changes in the constructed predictor. We used the decision tree induction packages

(C4.5 [42] and ITI [58]) for some of our research.

Another method we experimented with is table lookup (TLU), using a table indexed

by the feature values. The table has one cell for every possible combination of feature

values, with continuous-valued features suitably discretized. Each cell records the number

of positive and negative instances from a training set that map to that cell. The table lookup

function returns the most frequently seen value associated with the corresponding cell. It

is useful to know that the data set used is large and generally covers all possible table cells

with multiple instances. Thus, table lookup is “unbiased” and one would expect it to give

the best predictions possible for the chosen features, assuming the statistics of the training

and test sets are consistent.
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We also experimented with artificial neural networks (ANNs). ANNs provide an ap-

proach to learning real-valued, discrete-valued, and vector-valued functions from examples.

They are inspired from biological learning systems that are connected through a complex

interconnected web of neurons. ANNs are typically represented as directed acyclic graphs

of nodes (perceptrons, linear units, and sigmoid units). Learning corresponds to choosing

weights for the edges that connect these nodes. ANNs are well-suited to problems where

the training examples may contain errors or where the function being learned is highly

nonlinear. However, ANNs require long training times (typically longer than other super-

vised learning algorithms) and the induced function, consisting of the edge weights in the

network, is often difficult for humans to interpret.

Another method that we experimented with is called the ELF function approxima-

tor [57]. It uses a multi-layer network similar to ANNs. ELF constructs additional features

(much like a hidden unit) as necessary while it updates its representation of the function

that it is learning. The function is represented by two layers of mapping. The first layer

maps the features of a training example (which must be boolean for ELF) to a set of boolean

feature values. The second layer maps those features to a single scalar value by combining

them linearly with a vector of real-valued coefficients called weights. Though the second

layer is linear in the features of a training example, the boolean features are nonlinear in

the example’s features.

Finally, the last method we experimented with is rule induction. Rule induction learns

sets of rules that contain variables5 from a set of training examples. Many rule learning

systems generate hypotheses using a greedy method in which rules are added to the rule set

one by one in an effort to form a small cover of the positive examples. This approach to

building rule sets is termed separate and conquer, by analogy with the divide and conquer

5The rules are expressed as first-order Horn clauses
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approach commonly used in top-down decision tree induction. The particular rule induction

package we used is the Ripper [20] program.

We initially tried all the supervised learning algorithms described above on the problem

of learning how to schedule. We noticed that all these algorithms performed equally well

at solving that learning task. We also tried some of these algorithms for the other problems

and found that the error rates were not significantly different.

However, rule induction had the following benefits over the other supervised learning

algorithms we tried. It is easy and fast to tune Ripper’s parameters (typically an impor-

tant part in obtaining the best result). Ripper generates sets of if-then rules that are more

expressive, more compact, and more human readable (hence good for compiler writers)

than the output of other learning techniques, such as neural networks and decision tree in-

duction algorithms. Also, rule sets are representationally more powerful than competing

representations such as decision trees, which is reflected in the fact that rule induction sys-

tems significantly outperform standard decision tree induction systems on many problems

[42]. Finally, the time to induce a heuristic (i.e., the learning time) was faster than the other

algorithms. We settled on using Ripper to solve the learning problems in Chapters 6 and 5.

There are other machine learning algorithms that have been used to construct compiler

heuristics. We introduce these algorithms in Section 6.10 and describe the related work

that uses these algorithms in Section 6.10 and Chapter 7. We now describe three concepts

important in machine learning: overfitting, pruning, and stopping criteria.

2.7.2 Overfitting, Pruning, and Stopping Criteria

If a learning algorithm adapts so well to a training set that random disturbances in the

training set end up being treated as significant rather than as noise, the learned heuristic is

said to overfit the data, similar to fitting curves with too many parameters to too few points.

In the presence of overfitting, performance on test sets, which have their own, but definitely

other, random variations, suffers. Thus a heuristic that has been overfit to training data is
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specialized to that data and will not generalize well to unseen data (i.e., data not used for

training).

There are several approaches to avoid overfitting. We can choose to stop learning early,

before it reaches the point where it perfectly classifies the training data. Alternatively, we

can allow training to proceed until the data is overfit, and then prune the induced hypothesis.

Typically, one takes the latter approach because of the difficulty of estimating when to stop

growing the learned hypothesis. Regardless of the approach taken, a key question is what

stopping criterion to use to determine the final hypothesis size. One popular approach (the

one used by Ripper) is to use a separate set of examples, called a validation set, that is

distinct from the training examples, to evaluate the utility of pruning the hypothesis. The

process involves the following steps:

1. Infer a rule set from the training data, growing the rules until the training data is fit

as well as possible, allowing overfitting to occur.

2. Prune (generalize) each rule by removing any attribute test whose removal results in

improving the rule set’s estimated accuracy (performance on the validation set).

3. Sort the pruned rules by estimated accuracy, and consider them in this sequence when

classifying subsequent instances.
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CHAPTER 3

THE LOCO METHODOLOGY

The previous chapter discussed background in compilation and machine learning. This

background will assist in understanding a new methodology, called LOCO, that we intro-

duce in this chapter. LOCO provides a simple systematic approach for generating heuristics

to control optimizations. We now describe the steps involved in applying LOCO to a com-

piler problem.

3.1 LOCO Methodology Description

LOCO involves six distinct steps, illustrated in Figure 3.1: phrasing the learning prob-

lem, constructing features, generating training instances, training, integrating the heuris-

tic, and evaluating its effectiveness. The LOCO methodology involves a feedback loop.

After each step is performed, the compiler writer’s feedback involves the performance of

the induced heuristic on a set of interesting benchmarks. If the compiler writer is not sat-

isfied with the performance, they should reevaluate how they phrased the learning problem

or their choice of features and iterate through the methodology again.

3.2 Phrasing the Learning Problem

The first step to applying LOCO is to phrase the compiler optimization problem as a

classification learning problem. Generally this means that when the optimizer needs to

make a decision, certain factors (the features) are inputs to a decision function, whose out-

put selects a choice from two or more possibilities. For example, one way to phrase the

list scheduling problem is: Given certain instructions already scheduled, and two possible
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Figure 3.1. LOCO Methodology to Constructing Compiler Heuristics

instructions to schedule next, choose which of the two to add to the schedule. This decision

function can be used to run a tournament among three or more instructions. Using the deci-

sion function, we would compare the first two instructions, then compare the winner from

that decision with the third instruction, and so on. The winner of these comparisons would

be added to the schedule under construction. Adding one instruction changes the sequence

of instructions scheduled, and the set of instructions available next, so one iterates until

scheduling completes. Another example involves the spill heuristic in register allocation. 1

This heuristic decides which variable to spill when there are not enough registers to allocate

for all the variables live at a particular program point. We can devise a decision function

that chooses which of two possible variables to spill to memory. Again, we could use this

heuristic to run a tournament among three or more variables to choose to spill from.

1Note that we do not try to solve this learning problem, but instead leave this to future work.
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3.3 Feature Construction

Feature construction involves identifying a set of properties (features) that one thinks

will be predictive at solving the optimization problem of interest. This is the same first step

required for constructing heuristics manually, but after this step, the approaches diverge.

Finding the “right” set of features, and a good representation of the information they bear,

is the most challenging, and probably least automatable, part of the LOCO methodology.

Feature construction is more an art than a step-by-step procedure. The compiler writer

may require several iterations in developing features for a given problem. However, we

believe it is easier for a human to develop features of a problem than to rank their rela-

tive importance. LOCO not only finds the most important features automatically, but it

constructs the most predictive combinations of those features to form a heuristic.

In list scheduling, it is well known that considering the critical path helps, so we used

features related to the critical path in Chapter 6. Chapters 4 and 5 concern two problems

with no prior art, so we guessed some features that we thought might work (and were very

fortunate that they did work well, first try).

Feature construction may require some “massaging” of the data including normaliz-

ing (scaling), discretizing (binning), or combining features if necessary. Normalizing or

scaling the training data allows the training instances from different “size” problems to be

applicable to one another. For example, in Chapter 4, we normalized the features of the

problem by number of instructions in the basic block. Discretizing or binning features in-

volves breaking features into categories. For example, a features describing temperature

might be constrained to the values hot, warm, and cold as opposed to providing the actual

values.

Many of the supervised learning programs have heuristic methods that automatically

discretize one’s data. However, a compiler writer may have insight into the values be-

ing constructed and may be able to more intelligently bin the data. Also, to get the best

performing and most concise heuristic it may be necessary to combine multiple features
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into a single feature. For example, when solving the list scheduling problem, we initially

represented the features of the two instructions being compared by providing each feature

separately. The results we achieved with this representation were unsatisfactory. We then

combined the same feature provided by each of the two instructions into one feature. For

instance, instead of providing two wcp features, one for each instruction, we instead pro-

vide one wcp feature with the possible values of first, second, or same, indicating whether

the first instruction was larger, the second instruction was larger, or the values were the

same. Combining the features this way allowed us to achieve a better result.

3.4 Generating Training Instances

First, one chooses a suite of benchmarks from which to produce training data. One

should choose the benchmarks so that they represent the spectrum of programs that might

be compiled by the compiler that will contain the induced heuristic. From each benchmark,

the instrumented compiler will produce a set of training examples. For N benchmarks we

will have N sets of training data.

Generating training data involves instrumenting the compiler to generate a training in-

stance at every point of the optimization algorithm where the heuristic would typically be

applied, or at least at a significant, randomly chosen, sample of those points. This generally

involves arranging things so that one can pursue all decision possibilities at that point. One

needs a way to evaluate the end result of each choice, and then one labels the instance with

the best choice. One must also output the values of the features at the decision point. A

training instance says: “In this situation (features) one should do X (label).”

An interesting issue arises when, in order to evaluate a decision, one needs to make

more decisions. For example, in instruction scheduling, to evaluate a given choice, one

needs to schedule the rest of the block. There are several ways to do this. Sometimes one

can enumerate all possibilities (exhaustive search), and pick the best. (This works for short

blocks in instruction scheduling.) An alternative is to consider a stochastic approach in
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which one constructs samples randomly (an approach applicable to larger blocks, where

exhaustive search may be intractable). Finally, one can run to the end of the problem using

one or more heuristics already known to be competent (though perhaps not as good as one

is aiming for). For the list scheduling example, one might use a generic critical-path based

heuristic.

Another significant issue involves evaluating each choice. For the learning problems in

Chapters 4 and 6, we used a (slightly simplified) cycle-level model of the CPU to estimate

the number of cycles each schedule for a block would take when executed. Note that this

estimator needs to be good only in a relative sense, leading to good decisions about which

choice is better. Its absolute estimates do not matter as much. For the learning problem

in Chapter 5, we evaluated each allocation algorithm by the dynamic number of additional

loads and stores added because of spilling. In contrast, genetic algorithms typically do not

use a model, but instead empirically evaluate the heuristic performance on the real machine.

We describe both model-driven and empirical-driven evaluation in Section 2.6.

3.4.1 Threshold Parameters

For any given optimization learning problem, we generate training instances represent-

ing a decision point in the compiler. Each decision point is represented by a set of features

and a label representing the “correct” choice to be made at that decision point. Note that

we phrase all learning problems in this dissertation as binary classification problems.

In general, an instance might be labeled with class “X” if the action it represents is

“better” than performing the action represented by class “Y” as estimated by our model.

The evaluations from our models assist in the labeling process of training instances so they

are important.

Since a model is a simplified estimator of the performance on actual hardware, its esti-

mates are imprecise and will lead to “noisy” training data. To reduce this inherent noise, we

use a technique called threshold parameters. Returning to our previous example, we would
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only label an instance with “X” if the benefit of applying optimization “X” to a method was

above a threshold τ. Those instances where there was no benefit from applying optimiza-

tion “X” would be labeled “NX”. And, those instances where the benefit was between 0

and the threshold τ would be removed from the training set and not considered for learning.

In effect, thresholds remove instances of fine distinction, therefore creating a threshold gap

between the two classes of training instances. The thresholds are not unlike the concept of

margins as found in support vector machines [60].

The experiments presented in Chapter 4 and 5 evaluate several different values for each

threshold variable. We note that using threshold values allows us to “slice-up” the data in

different ways. Through more extensive search, one could perhaps find the “best” values

for these thresholds. This kind of search could be automated based on the desired property

for which one wishes to optimize (e.g., optimization cost or benefit).

3.4.2 Pruning Features and Training Data

One might consider manually pruning the set of features to come up with a good

“reduced-set” of features. We recommend against this and instead recommend letting the

learning program deal with the additional features. Unless the feature set is large and un-

wieldy, learning programs can easily prune out insignificant features and focus on the most

important features for solving the problem. However, features sets that are too large run

the risk of overfitting.
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Also, there might be a tendency to want to prune the training instances manually so

that training occurs only on a fraction of the original training data. We might prune the

training set based to some property, such as importance, of the problem. I believe that

this is unnecessary and possibly even detrimental to the learning unless the sheer volume

of data is impossible for the learning algorithms to handle. Many learning algorithms can

handle large noisy training sets.

3.5 Training the Learning Component

During the learning phase, we present the training instances to one of a variety of su-

pervised learning components in order to construct a tuned heuristic. This is automatic and

easy to do, given training instances in the appropriate form. In fact, many of the machine

learning tools accept similar formats for training data. Machine learning tools generally

provide statistics concerning their effectiveness (classification accuracy) on the training

set, and on one or more test sets. A concept that is central to training is cross validation.

Cross validation is a method for estimating the generalization error of a hypothesis

generated by a learning algorithm. There are several methods of cross validation. In k-fold

cross validation, one divides the training data into k subsets of (approximately) equal size.

One trains the learning algorithm k times, each time leaving out one of the subsets from

training, but using only the omitted subset to compute whatever error criterion is of interest.

Another type of cross validation is called leave-one-out cross validation. This kind of

cross validation works as follows. Given a suite of N benchmarks, we generate training

instances from N � 1 of the benchmarks, and test the accuracy of the generated heuristic on

the benchmark that was left out. This type of cross validation gives the learning algorithm

a broad collection of instances from which to learn, but insures evaluation on instances

from a benchmark not used in the learning process. Thus we can check the generality of

the heuristic, insuring that it is not overly specialized and thus avoiding overfitting to any
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particular benchmark. Leave-one-out cross validation also makes sense for LOCO for two

other reasons:

1. We envision developing and installing of the heuristic “at the factory”, and it will

then be applied to code it has not “seen” before.2

2. While the end goal is to develop a single heuristic, it is important that we test the

overall procedure by developing heuristics many times and seeing how well they

work. The leave-one-out cross validation procedure is a commonly used way to do

this. Another way is repeatedly to choose about half the programs and use their data

for training and the other half for testing. However, we want our heuristics to be

developed over a wide enough range of benchmarks that we are likely to see all the

“interesting” behaviors, so leave-one-out may be more realistic in that sense.

3.6 Integration and Evaluation of the Induced Heuristic

The last two steps involve using the induced heuristic in the compiler. After the learning

process, we must convert the output of the supervised learning component into code, and

integrate it into the compiler. Many supervised learning components already have options

to produce code as output, making this particularly easy. For example, Ripper has an

option that converts the induced classification rules into generic if-then-else code that is

easily converted to Java code.

The final step in the LOCO methodology involves empirically evaluating the perfor-

mance of the induced heuristic. While classification accuracy, usually available from the

learning tool, gives a good sense of how well the features predict the labels, there is usually

some degree of approximation or modeling in the generation of training instances, so one

2One could provide tools to end users so that they could develop their own training sets and retrain. This
would be valuable only if they are likely to come up with a significantly different heuristic function, which
would have significantly different performance on their programs. If we train over a large enough set “at the
factory”, then we presumably “cover” all the interesting behaviors of our compiler and a variety of blocks
that present a full range of scheduling issues. Thus, it is not clear that user retraining would have much value.
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must test the heuristic’s effectiveness in practice. If the effectiveness is not good enough,

one may need to adjust the set of features or the process for generating instances.

3.7 Key Properties

There are a few key properties to successfully framing an optimization problem as a

classification problem.

First, a decision point should be expressible in terms of a fixed collection of properties

or features. Each feature may have either discrete or numeric values, but each training

instance must not vary from one case to another. Some machine learning tools allow for

variable-sized training instances, but this is typically not the norm, and we discourage

trying this especially if one might be experimenting with multiple learning programs.

Second, there must be pre-defined classes or labels established beforehand to which

training instances are to be assigned. This is a specific requirement for supervised learning,

in contrast to unsupervised learning (genetic algorithms and reinforcement learning) in

which groupings of training instances are found by analysis.

Third, the classes with which the training instances will be labeled must be sharply

delineated. A training instance either belongs to a particular class or not. Some learning

problems cannot be phrased in this way. For example, trying to predict the particular cycles

per instruction (CPI) of a method (which is a continuous value) would be difficult to phrase

as a supervised learning problem.

Forth, it is important to frame the heuristic decision function so that it selects among

a small set of classes (in the list scheduling example, the first instruction of the two, or

the second), often just two classes. In general, a binary classification problem is easier to

solve than a multi-classification problem. Also, the induced heuristics for a problem with a

small number of labels will typically lead to a more concise heuristic and thus is easier to

understand.
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Fifth, there must be enough training instances to allow the statistical tests used in learn-

ing algorithms to be effective. The amount of data required is affected by the number of

features and classes and the complexity of the heuristic function being induced. Also, the

best way to avoid overfitting is to use lots of training data.

Through our experience with identifying features and using machine learning, we also

noticed some useful and (possibly obvious) general principles.

1. Experiment with the simplest features first. In this case, it would have been moot to

develop additional features.

2. Normalize features and simplify them. Prefer categorical or boolean values over

integral or continuous ones. Binning of continuous values can also help the learning

task: it simplifies and also tends to enhance readability of the induced heuristic.

3. Examine any relevant hand-coded heuristics. This not only helps in identifying im-

portant features to use, but allows us to see the underlying structure of successful

heuristics, which will give clues as to how the features should be represented and

used.

4. Apply the simplest learning algorithm possible to start with. Obviously, a procedure

that is easier to get working (i.e., require less tweaking) is preferable.

3.8 Conclusion

This chapter gives a detailed description of how to use the LOCO methodology to

induce heuristics for optimization algorithms. We also provide some key properties to using

LOCO that we believe will increase the potential to be successful using LOCO. The next

three chapters describe how we used LOCO to solve three different classes of optimization

problems: How to Optimize, Whether to Optimize, and Which Optimization to Use.
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CHAPTER 4

LEARNING WHETHER TO OPTIMIZE

In the previous chapter we introduced a methodology called LOCO for constructing

compiler heuristics automatically. We described each step of the methodology detailing

how it could be applied to solve any general optimization problem. In this chapter we

present an illustration of using this methodology to construct automatically the first of

three different kinds of optimization heuristics that we study in this dissertation.

Instruction scheduling is a compiler optimization that can improve program speed,

sometimes by 10% or more—but it can also be expensive. Furthermore, time spent op-

timizing is more important in a Java just-in-time (JIT) compiler than in a traditional one

because a JIT compiles code at run time, adding to the running time of the program. We

found that, on any given block of code, instruction scheduling often does not produce

significant benefit and sometimes degrades speed. Thus, we hoped that we could focus

scheduling effort on those blocks that would benefit from it.

Using LOCO we induced heuristics to predict which blocks benefit from scheduling.

The induced function chooses, for each block, between list scheduling and not scheduling

the block at all. Using the induced function we obtained over 90% of the improvement

of scheduling every block, but with less than 25% of the scheduling effort. We also ex-

perimented with using the induced function in combination with profile-based adaptive

optimization. The heuristic remains effective but gives a smaller reduction in scheduling

effort.

Deciding whether to optimize is an important open problem area in compiler research.

We show that LOCO solves a specific instance of this problem well.
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4.1 Introduction

It is common for compiler optimizations to benefit certain programs greatly, while hav-

ing little impact (or even a negative impact) on other programs. For example, instruction

scheduling is able to speed up certain programs, sometimes by 10% or more [40]. Yet on

other programs, applying instruction scheduling has little impact (and in some rare cases,

degrades performance). Reasons for this are that equivalent orderings happen to execute at

the same speed, or because the block has only one legal order, etc.

If instruction scheduling were an inexpensive optimization we would apply it to all

blocks without regard to whether it benefits a particular block. However, scheduling is a

costly optimization to apply, accounting for more than 10% of total compilation time in

our optimizing JIT compiler. Because it is costly and because it is not beneficial to many

blocks, we want to apply it selectively.

We would prefer to apply scheduling to those blocks that have the following two prop-

erties. The block 1) accounts for a significant portion of a program’s running time, and 2)

will benefit from scheduling.

Determining the first property is done through profiling and is a well-studied area of

research [6, 64, 17]. On the other hand, determining the second property (whether the block

will benefit from scheduling) has received relatively little attention. This is the subject of

the research reported in this chapter. Also, to the best of our knowledge this is the first

application of supervised learning to determine whether to apply an optimization, in our

case instruction scheduling.

We present in this chapter a class of heuristics, which we call filters, that accurately

predict which blocks will benefit from scheduling. This allows us to filter from scheduling

the blocks that will not benefit from this optimization. Since in practice a large fraction of

blocks do not benefit from instruction scheduling, and since the filter is much cheaper to

apply than instruction scheduling itself, we significantly decrease the compiler’s time spent

scheduling instructions.
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We show that we can use inexpensive and static features successfully to determine

whether or not to schedule.

4.2 Problem and Approach

We want to construct a filter that with high effectiveness predicts whether scheduling a

block will benefit the application’s running time. The filter should be significantly cheaper

to apply than instruction scheduling; thus we restrict ourselves to using properties (features)

of a block that are cheap to compute. To the best of our knowledge, this is the first time

anyone has developed heuristics to apply instruction scheduling selectively, so we had no

“good” hand-coded heuristics from which to start.

The first step in applying LOCO to this problem requires phrasing the problem as a

classification problem. For this task, this means that each block is represented by a training

instance and each training instance is labeled with respect to whether scheduling benefits

the block or not.

For this problem we used only rule induction (Ripper) to induce filters. We emphasize

that the goal of the methods discussed in this chapter is to learn to choose between schedul-

ing and not scheduling, not to induce the heuristic used by the scheduler. In Chapter 6, we

consider learning how to schedule, that is, learning to choose which instruction to schedule

next. We now consider the specific features used for this research and the methodology for

developing the training instances.

4.2.1 Features

The second step in applying LOCO involves identifying the set of properties that are

important to the optimization problem.

What properties of a block might predict its scheduling improvement? One can imagine

that certain properties of the block’s dependence graph (DAG) might predict scheduling

benefit. However, building the DAG is an expensive phase that can sometimes dominate the
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Feature Type Meaning

bbLen BB size Number of instructions in the block

Category Fraction of instructions that ...

Branch Op kind are Branches
Call Op kind are Calls
Load Op kind are Loads
Store Op kind are Stores
Return Op kind are Returns
Integer FU use use an Integer functional unit
Float FU use use a Floating point functional unit
System FU use use a System functional unit
PEI Hazard are Potentially Excepting
GC Hazard are Garbage Collection points
TS Hazard are Thread Switch points
Yield Hazard are Yield points

Table 4.1. Features of a basic block.

overall running time of the scheduling algorithm [40]. Since we require cheap-to-compute

features, we specifically chose not to use properties of the DAG. Instead, we tried the

simplest kind of cheap-to-compute features that we thought might be relevant. Computing

these features requires a single pass over the instructions in the block.

We grouped the different kinds of instructions into 12 possibly overlapping categories,

where instructions in each category have similar scheduling properties. Rather than ex-

amining the structure of the block, we consider just the fraction of instructions of each

category that occur in the block (e.g., 30% loads, 22% floating point, 5% yield points,

etc.). We also supply the block size (number of instructions in the block). See Table 4.1

for a complete list of the features. “Hazards” are a type of branch (typically not taken) that

disallows reordering. These features are as cheap to compute as we can imagine, while

offering some useful information. It turns out that they work well. We present all of the

features (except block size) as ratios to the size of the block (i.e., fraction of instructions

falling into a category, rather than the number of such instructions). This allows the learn-

ing algorithm to generalize over many different block sizes.
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We could potentially have expanded our set of features, but what we have works well.

We note that coming up with features for other optimizations might be easy or hard, de-

pending on the optimization. In this case, we were “lucky” in that a little domain knowledge

allowed us to develop on our first attempt a set of features that produced highly-predictive

heuristics.

It is possible that a smaller set of features would perform nearly as well. However, it is

doubtful that in this case reducing the feature set will make the filtering process run faster,

since we calculate features values in a simple linear pass over the basic block, incrementing

counters corresponding to the categories pertaining to the instruction. Calculating features

and evaluating the heuristic functions typically consumed .5%-1% of compile time (a neg-

ligible fraction of total time) in our experiments, so we did not explore this possibility. For

other problems, it might be important to prune the feature set, especially if the features are

not as cheap to compute as these are.

One final observation is that these features are fairly generic, for the most part, and

might be useful across a wide range of systems. The GC, TS, and Yield features are specific

to Jikes RVM, but other systems may have similar “barriers” to code reordering. If those

barriers are plain in the code being scheduled, then a feature similar to ours will probably

be useful.

4.2.2 Learning Methodology

As mentioned in Chapter 3, determining what features to use is an important (and pos-

sibly the most difficult) step in applying LOCO to a problem. Once we determine the

features, the next step involves generating training instances. Each training instance con-

sists of a vector of feature values, plus a boolean classification label, i.e., LS (Schedule) or

NS (Don’t Schedule), depending on whether or not the block benefits from scheduling.

Our procedure for this problem is as follows. As the Java system compiles each Java

method, it divides the method into blocks, which it presents to the instruction scheduler. We
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instrument the scheduler to print into a trace file raw data for forming instances, consisting

of the features of the block and an estimate of the block’s cost (number of cycles) without

scheduling, and an estimate of the block’s cost with list scheduling applied. We obtain

these estimates from a simplified machine simulator. We described this simulator in more

detail in Chapter 2.

We label an instance with LS if the estimated time after list scheduling is more than

t% less than before scheduling. We label an instance with NS if scheduling is not better

(at all). We do not produce a training instance if the benefit lies between 0 and t%. We

call t the threshold value. We first consider the case t � 0 and discuss positive threshold

values later. Typically we obtain thousands of instances for each program (one for each

block in the program). Table 4.4 shows training set sizes for different threshold values for

SPECjvm98.

4.2.3 The Learning Algorithm

After generating the training instances, the next step involves applying a learning algo-

rithm. We chose the rule induction package called Ripper. It has many advantages over

other learning methodologies, such as its output being easier for people to understand and

therefore easier to gain insight from. We apply Ripper to the training instances. The output

of Ripper is a heuristic function: given the features of the block, it indicates whether or not

we should schedule the block. It is important to note that the procedure above (including

learning) occurs entirely offline. We analyze one of the induced if-then rule sets (a filter) in

Section 4.5.6.

4.2.4 Integration of the Induced Heuristic

After the training, the next step is installing the heuristic function in the compiler and

applying it online. Each block from each method that is compiled by the optimizing com-

piler is considered as a possible candidate for scheduling. We compute features for the

block. If the heuristic function says we should schedule a block, we do so. (The cost
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of computing the features is included in all of our actual timings. It is small relative to

scheduling and to the rest of the cost of compiling a method.)

4.3 Evaluation Methodology

The final step of using LOCO is to evaluate the induced heuristics. To evaluate a filter

on a benchmark, we consider three kinds of results: classification accuracy, scheduler

running time, and application running time.

Classification accuracy refers to the accuracy of the induced filter on correctly classify-

ing a set of labeled instances. Classification accuracy tells us whether a filter heuristic has

the potential of being useful; however, the real measure of success lies in whether applying

the filter can successfully reduce scheduling time while not adversely affecting the benefit

of scheduling to application running time. In a few cases, using a filter improved appli-

cation running time over always applying the scheduler (this occurs when filters inhibit

scheduling that actually degrades performance).

Scheduler running time refers to the impact on compile time, comparing against not

scheduling at all, and against scheduling every block. Since timings of our proposed system

include the cost of computing features and applying the heuristic function, this (at least

indirectly) substantiates our claim that the cost of applying the heuristic at run time is low.

(We also supply measurements of those costs, in a separate section.)

Application running time (i.e., without compile time), refers to measuring the change

in execution time of the scheduled code, comparing against not scheduling and against

scheduling every block. This validates not only the heuristic function but also our instance

labeling procedure, and by implication the block timing simulator we used to develop the

labels. The goal is to achieve application running time close to the best of the fixed strate-

gies, and compilation time substantially less than scheduling every block.
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4.4 Experimental infrastructure

We implemented our instruction schedulers in Jikes RVM, a Java virtual machine with

JIT compilers, provided by IBM Research [2]. The system has two bytecode compilers, a

baseline compiler that essentially macro-expands each bytecode into machine code, and an

optimizing compiler.

We optimized all methods at the highest optimization setting, and with aggressive set-

tings for inlining. We used the build configuration called OptOpt with more aggressive

inlining, which increases scheduling benefit.1

4.5 Experimental Results

We aimed to answer the following questions: How efficient is scheduling using filter

heuristics as compared to scheduling all blocks? How effective are the filter heuristics in

obtaining best application performance? We ask these questions first on the SPECjvm98

standard benchmark suite and next on a suite that includes only benchmarks for which list

scheduling made an impact of more than 4% on their running time. (We describe these

benchmarks in Section 2.3.1.) What we can verify with this is that we have not undermined

the scheduler: the scheduler can still improve some programs a lot while having little

impact on others. Later in the chapter, we consider some additional questions, such as

how much time does it take to apply our heuristic filters in the compiler, and what happens

if we apply our filter in compilations that optimize only hot methods.

We address the first question by comparing the time spent scheduling. We answer the

second by comparing the running time of the application, with compilation time removed.

To accomplish the latter, we requested that the Java benchmark iterate 6 times. The first

iteration will cause the program to be loaded, compiled, and scheduled according to the

1We set the maximum callee size to 30 bytecode instructions, the maximum inlining depth to 6, and the
upper bound on the relative expansion of the caller due to inlining to be a factor of 7.
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appropriate scheduling protocol. The remaining 5 iterations should involve no compilation;

we use the median of the 5 runs as our measure of application performance.

4.5.1 Classification Accuracy

Before presenting efficiency and effectiveness results, we offer statistics on the accuracy

of the induced classifiers (for threshold values t from 0 to 50). For each benchmark, we built

a filter with leave-one-out cross validation. For each benchmark in our benchmark suite,

we train with learning data from 6 programs, then use the induced heuristic to schedule the

benchmark left out. We discuss cross validation in Chapter 3. The filter chooses between

list scheduling and no scheduling.

Table 4.2 shows the classification errors rates of rules induced by Ripper on SPECjvm98

benchmark program test sets generated during the cross validation tests. We also include

the geometric mean of these error rates. These impress us as good error rates, and they are

also fairly consistent across the benchmarks.

Program 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

compress 6.66 6.52 5.81 5.74 1.52 0.93 0.76 0.34 0.53 0.15 0.00
jess 7.68 8.33 7.51 6.65 2.04 1.16 0.96 0.49 0.30 0.03 0.03

raytrace 10.96 9.02 7.05 6.48 2.79 2.47 1.78 1.27 0.43 0.23 0.18
db 6.33 5.87 5.39 5.45 1.14 0.65 0.33 0.33 0.13 0.10 0.00

javac 8.34 8.92 8.57 6.86 4.06 3.08 2.20 1.46 0.89 0.22 0.12
mpegaudio 7.36 6.94 5.91 5.75 2.30 1.75 1.22 1.47 0.55 0.22 0.06

jack 7.63 7.03 6.07 5.36 1.69 1.34 0.92 1.09 0.20 0.03 0.00

Geo. mean 7.86 7.53 6.62 6.04 2.22 1.63 1.17 0.92 0.43 0.14 0.06

Table 4.2. Classification error rates (percent misclassified) for different threshold values.

4.5.2 Simulated Execution Times

Before looking at execution times on an actual machine, we consider the quality of the

induced filters (compared with always scheduling and never scheduling) in terms of the

simulated running time of each benchmark. We used the block simulator to predict (and
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therefore label) whether a block will benefit from scheduling or not. Thus, we hoped that

our filters would perform well on a metric based on time reported by the block simulator.

Comparing our filters with simulated execution time helps us validate the learning method-

ology, and to separate validation of the learning methodology from validation of the block

simulator’s model of the actual machine.

We calculate the weighted simulated running time of each block by multiplying the

block’s simulated time by the number of times that block is executed (as reported by profil-

ing information). We obtain the simulated running time of the application by summing the

weighted simulated running time of each block. More precisely, the performance measure

for program P is:

SIMπ
�
P � � ∑

b � P

�
# Executions of b ��� � cycles for b under scheduler π �

where b is a basic block and π is either using a filter, always scheduling, or never schedul-

ing. Table 4.3 shows predicted execution times as a ratio to predicted time of unscheduled

code. We see that the model predicts improvements at all thresholds. These improve-

ments do not correspond exactly to our measured improvements, which is not surprising

given the simplicity of the basic block time estimator. What the numbers confirm is that

the induced heuristic indeed improves the metric on which we based its training instances.

Thus, LOCO “worked” for this learning problem. Whether we get improvement on the real

machine depends on how predictive the basic block simulator is of reality.

4.5.3 Efficiency and Effectiveness

We now consider the quality of each induced filter for threshold t � 0, and then present

results for the rest of the threshold values. Figure 4.1(a) shows the scheduling time of the

L/N filters (chooses to schedule or not) relative to LS (always perform list scheduling). NS

(no scheduling) is 0 since it does no scheduling work. We find that on average (geometric
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Program 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

compress 84.66 83.70 83.92 83.79 87.33 84.18 85.45 98.16 92.79 99.55 100.00
jess 92.53 92.09 95.76 92.64 95.51 97.09 97.69 96.42 98.46 99.98 100.00

raytrace 93.56 92.81 84.60 86.38 89.38 92.31 89.68 99.48 99.78 99.96 99.95
db 88.53 88.53 88.53 88.54 92.61 90.24 90.34 92.74 99.94 100.00 100.00

javac 96.63 96.08 96.92 97.55 97.07 97.79 97.77 97.94 98.06 98.85 100.00
mpegaudio 90.53 89.26 86.84 89.16 87.00 92.10 92.26 99.75 97.16 89.99 97.64

jack 97.20 97.16 97.35 97.54 97.62 98.39 98.97 99.59 99.43 99.93 99.89

Geo. mean 91.85 91.27 90.39 90.67 92.26 93.04 93.04 97.70 97.92 98.26 99.64

Table 4.3. Predicted execution times for different threshold values.

mean) L/N takes 38% of the time of LS (i.e., is 2.5 times faster). These numbers are also

fairly consistent across the benchmarks.

Figure 4.1(b) shows the impact of L/N filters and LS on application running time, pre-

sented relative to NS (a value smaller than 1 is an improvement, greater than 1 a slow

down). Here there is more variation across the benchmarks, with LS doing the best at .977

and L/N filters doing well at .979. Of the benefit LS obtains (2.3%), L/N obtains 93% of it.

Given the substantially lower cost of L/N to run, it is preferable to running LS all the time.

The results are fairly consistent across the benchmarks, though some benchmarks improve

more than others.

Note that our features (and filters) do not take into account the importance of the

blocks and therefore do not require profile information. Scheduling only important blocks

based on profiling can do no better at improving application running time than just always

scheduling (unless scheduling degrades performance). Thus, even if we used profile infor-

mation to schedule only the important blocks, we could still improve application running

time over L/N only by a small amount. (Note: here we are talking only about skipping

scheduling of cold blocks; skipping all optimized compilation of cold blocks is a different

matter, which we address in Section 4.5.8.)
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(a) Scheduling Time Using No Thresholds

(b) Application Running Time Using No Thresholds

Figure 4.1. Efficiency and Effectiveness Using Filters.
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4.5.4 Thresholding

While the t � 0 result is not bad, we suspected that we could improve the classification

error rates by increasing t. (Of course for a value large enough, only the NS category would

be left and the error rate would be 0%!)

More significantly, we suspected that by eliminating instances where scheduling made

little difference, and giving the learning algorithm only those points where the choice makes

a significant difference, we might improve scheduler effectiveness. We were less certain of

the impact on efficiency, but thought it might increase because the training sets would have

fewer LS instances, but as many NS instances. We reasoned that this would tend to induce

functions that would prefer scheduling blocks less often. These speculations were borne

out, as can be seen in Figures 4.2(a) and 4.2(b).

Again, we performed the experiment for the L/N protocol, varying t from 0 to 50 in

increments of 5. Note that t � 0 is the same L/N from the previous graphs. Considering first

the efficiency effects, the geometric mean shows a steady improvement as t goes from 0 to

50, from 39% to 6% of the cost of LS. This is somewhat consistent across the benchmarks,

but there is definite variation. We were able to cut the scheduling effort in half, but what

happened to the effectiveness? First it degraded, but at t � 20 it improved, offering 93% of

the benefit of LS. Thereafter, it generally degrades. While the results seem sensitive to the

exact value of t, the value 20 improves over straight L/N (t � 0). At this value, scheduling

is 4.3 times faster than LS.

How does thresholding affect the size of the training sets? And how does it affect

the classification by the induced heuristics? We include two tables that offer some simple

statistics that show what happens. Table 4.4 indicate how many instances (across all the

benchmarks) have label LS at the given t value. That number is constant for NS (at 37280,

so we only show statistics for instances with the LS label), but drops off steadily for LS as

t increases.
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(a) Scheduling Time Using Thresholds

(b) Application Running Time Using Thresholds

Figure 4.2. Efficiency and Effectiveness Using Filter Thresholds.
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Table 4.5 shows how many instances at run time were classified with that label by

the induced heuristic. We develop the numbers separately for each benchmark’s heuristic

(using leave-one-out cross validation), applied to that benchmark’s instances; the table

gives the sum across the benchmarks. The sum is the same for all t values (45453), but

the number of NS instances increases, and the number of LS instances steadily decreases,

as t increases. This clearly explains the efficiency results. As the threshold increases, the

induced rules predict more blocks not to benefit from scheduling. This result further shows

that effectiveness depends on the scheduling of a rather small minority of the methods,

7.5% of them for t � 20. This is not surprising: in compiler optimization it is often true

that an optimization has little effect on many if not most code fragments, but is crucial to

improving a certain minority of them.

t% 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
LS 8173 7976 7098 4930 2438 1443 912 565 316 192 49
LS% 21.9 21.4 19.0 13.2 6.5 3.9 2.4 1.5 0.8 0.5 0.1

Table 4.4. Effect of t on training set size of SPECjvm98. NS is constant at 37280.

t% 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
NS 39389 39256 40250 41065 42046 42557 43154 44061 44851 45142 45293
LS 6064 6197 5203 4388 3407 2896 2299 1392 602 311 160
LS% 13.3 13.6 11.4 9.7 7.5 6.4 5.1 3.1 1.3 0.7 0.4

Table 4.5. Effect of t on run time classification of blocks for SPECjvm98.

Since our threshold technique worked well in this case, we encourage others to explore

its effectiveness in other settings. We suspect it may be helpful whenever class labels are

chosen on a “best” or “better than” basis that compares a “predicted” metric (such as sim-

ulated cycle count of a block) under different treatments (scheduling and not scheduling).
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4.5.5 Filtering Applied to Other Benchmarks

While the above result is not bad, we suspected that we would have better results focus-

ing only on benchmarks where scheduling is beneficial. We gathered a suite of programs

that benefit from scheduling by exploring Java programs freely available on the Internet.

Instruction scheduling leads to at least a 4% improvement on the running time of these

benchmarks. We describe the benchmarks in more detail in Section 2.3.1.

Our reasoning for focusing on this set of benchmarks is as follows:

If a program gains little benefit at all from scheduling, our filtering technique can reduce

the compile time, but will have no substantial impact on the application running time. We

could do a poor job, or a good job, of choosing which blocks to schedule, and it won’t

matter because the scheduler just is not having much effect.

On the other hand, if we consider a program that gets a lot of benefit from scheduling,

then we want to make sure that we do not seriously undermine that benefit. Focusing on

benchmarks that gain scheduling benefit allows us to determine this. Suppose, for the sake

of argument, we included a large number of programs with little (but barely measurable)

scheduling benefit. And further suppose that we show that filtering preserves that benefit.

We claim that this is not at all as interesting or useful as showing that we preserve the

benefit gained by programs that benefit a lot from scheduling. By focusing on this set of

benchmarks we are trying to be more critical, not less, of our technique.

For these experiments we used a filter induced from training examples from all the 7

SPECjvm98 programs. We expected that filtering would achieve most of the benefit of

scheduling all blocks, while being much more efficient. This expectation was borne out, as

can be seen in Figures 4.3(a) and 4.3(b).

4.5.6 A Sample Induced (Learned) Filter

Some learning schemes produce expressions that are difficult for humans to understand,

especially those based on numeric weights and thresholds such as neural networks and
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(a) Scheduling Time Using Thresholds

(b) Application Running Time Using Thresholds

Figure 4.3. Efficiency and Effectiveness Using Filters On Other Benchmarks.
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genetic algorithms. Rule sets are easier to comprehend and are often compact. It is also

relatively easy to generate code from a rule set that will evaluate the learned filter in a

scheduler.

Table 4.6 shows a rule set induced by training using examples drawn from 6 of 7

SPECjvm98 benchmark programs. If the right hand side condition of any rule (except

the last) is met, then we will apply the scheduler on the block; otherwise the learned filter

predicts that scheduling will not benefit the block.

The numbers in the first two columns give the number of correct and incorrect training

examples matching the condition of the rule.

( 924/ 12) list � bbLen ��� 7 � calls ��� 0.0857 � loads ��� 0.3793 � peis ��� 0.1493 � integers ��� 0.6087
( 661/ 8) list � bbLen ��� 7 � systems ��� 0.0889 � stores ��� 0.05 � loads ��� 0.1538 � gcpoints ��� 0.0833 � loads ��� 0.5556 � loads ��� 0.3636
( 452/ 23) list � bbLen ��� 7 � calls ��� 0.1034 � stores ��� 0.1778 � loads ��� 0.375
( 218/ 14) list � bbLen ��� 7 � systems ��� 0.0606 � integers ��� 0.4167 � peis ��� 0.2361 � branches ��� 0.1 � stores ��� 0.0435
( 272/ 19) list � bbLen ��� 7 � systems ��� 0.0741 � branches ��� 0.1111 � loads ��� 0.3667 � integers ��� 0.3667 � peis ��� 0.1667 � floats ��� 0
( 518/ 41) list � bbLen ��� 7 � systems ��� 0.0606 � gcpoints ��� 0.0714 � integers ��� 0.4091
( 269/ 52) list � bbLen ��� 7 � calls ��� 0.119 � stores ��� 0.0667 � loads ��� 0.2222 � integers ��� 0.2857 � loads ��� 0.625
( 74/ 3) list � bbLen ��� 5 � stores ��� 0.1613 � loads ��� 0.3 � integers ��� 0.3438
( 166/ 5) list � bbLen ��� 7 � calls ��� 0.119 � branches ��� 0.0476 � peis ��� 0.1765 � stores ��� 0.1237 � peis ��� 0.093
( 75/ 13) list � bbLen ��� 5 � stores ��� 0.12 � loads ��� 0.2083 � integers ��� 0.3448 � yieldpoints ��� 0.0143
( 51/ 14) list � bbLen ��� 7 � systems ��� 0.0741 � loads ��� 0.3 � systems ��� 0.0465 � peis ��� 0.2
( 39/ 8) list � bbLen ��� 5 � stores ��� 0.1562 � loads ��� 0.3 � integers ��� 0.3529 � gcpoints ��� 0.1818 � peis ��� 0.1667
( 33/ 7) list � bbLen ��� 5 � stores ��� 0.1562 � loads ��� 0.3 � integers ��� 0.3529 � peis ��� 0.15 � peis ��� 0.125 � calls ��� 0
( 25/ 3) list � bbLen ��� 5 � stores ��� 0.12 � loads ��� 0.2222 � integers ��� 0.3889 � stores ��� 0.1 � branches ��� 0.1111
( 18/ 5) list � bbLen ��� 5 � stores ��� 0.1613 � loads ��� 0.2941 � integers ��� 0.3846 � calls ��� 0.0769 � stores ��� 0.1111
(27476/1946) orig �

Table 4.6. Induced Heuristic Generated By Ripper.

In this case we see that block size and several classes of instructions (call, system, load,

and store) are the most important features, with the rest offering some fine tuning. For

example, the first if-then rule predicts that it is beneficial to schedule blocks consisting of 7

instructions or more, that have a small fraction of call and PEI instructions, but possibly a

larger fraction of load and integer instructions. Note (from the last line) that for this training

set a large percentage of blocks were predicted not to benefit from scheduling.

As we will see shortly, determining the feature values and then evaluating rules like

this sample one does not add very much to compilation time, and typically takes an order

of magnitude less time than actually scheduling the blocks selected for scheduling. Thus,

while we might be able to eliminate some of the features and retain most of the effectiveness

of the filter heuristics, there was not much motivation in this case to do so.
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4.5.7 The Cost of Evaluating Filters

Table 4.7 gives a breakdown of the compilation costs of our system, and statistics con-

cerning the percentage of blocks and instructions scheduled. For the individual programs,

we give a range of values, covering all threshold values (t � 0 through 50). As t increases,

s decreases, and while f remains nearly constant, f
�
s will increase. We also give, for each

threshold value, the geometric mean of each statistic across the six benchmarks.

Here are some interesting facts revealed in the table. First, the fraction of blocks and of

instructions scheduled steadily decreases with increasing t, dropping significantly at t � 30

and t � 35. Second, the fraction of instructions scheduled, which tracks the relative cost of

scheduling fairly well, tends to be about twice as big as the fraction of blocks scheduled,

implying that the filter tends to retain longer blocks. This makes sense in that longer blocks

probably tend to benefit more from scheduling. Third, the cost of calculating the filter, as

a percentage of non-scheduling compilation time, is always 1% or less. Fourth, there is

not a lot of variation in these statistics across the benchmarks. Finally, we always obtain

substantial reduction in scheduling time compared with List (scheduling every block).

4.5.8 Filtering with Adaptive Optimization

The Jikes RVM system includes an adaptive compilation mechanism, which determines

at run time which methods are executed frequently, and then optimizes those methods at

progressively higher levels of optimization [5]. This system typically achieves most of the

benefit of optimizing all methods, but with much lower compilation cost. There are two

obvious comparisons one might make between our filtering technique and the Jikes RVM

adaptive system:

1. The improvement offered by filtering alone versus the improvement offered by the

adaptive system alone. Even when scheduling every basic block, scheduling costs

only 13–23% of compile time, which gives an upper bound on the improvement we
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Program SB SI f/s f/c s/c

aes 0.2–14% 0.2–36% 8–20% 1.0% 4–12%
bh 0.1–19% 1.0–41% 7–27% 0.3% 1– 5%
linpack 0.4–14% 0.9–30% 9–17% 1.0% 5–11%
power 0.3–20% 0.6–40% 4–27% 0.4% 1– 9%
voronoi 0.3–19% 0.9–39% 4–27% 0.4% 1– 9%
scimark 0.6–16% 1.3–37% 8–22% 1.0% 5–13%

gm, t � 0 16.8% 36.3% 6.5% 0.7% 10.3%
gm, t � 5 16.1% 36.9% 6.3% 0.7% 10.3%
gm, t � 10 12.7% 28.5% 8.8% 0.7% 7.6%
gm, t � 15 11.2% 23.3% 9.3% 0.6% 6.7%
gm, t � 20 8.3% 20.5% 9.8% 0.6% 6.2%
gm, t � 25 9.2% 21.0% 10.3% 0.7% 6.3%
gm, t � 30 5.6% 10.2% 15.1% 0.6% 4.1%
gm, t � 35 1.7% 3.8% 20.0% 0.6% 3.0%
gm, t � 40 1.3% 2.9% 20.9% 0.6% 2.9%
gm, t � 45 0.5% 1.8% 21.8% 0.6% 2.7%
gm, t � 50 0.3% 0.7% 22.6% 0.6% 2.5%

List 100% 100% 0% 0.0% 13–23%

Table 4.7. Cost breakdowns: gm � geometric mean; SB � scheduled blocks; SI � sched-
uled instructions; f � time to evaluate features and heuristic function; s � time spent in
scheduling; c � compile time excluding scheduling.

can obtain with filtering. Adaptive compilation reduces compile time much more

than this, so we do not even bother to report specific numbers.

2. The improvement offered by the adaptive system alone versus the improvement of-

fered by the adaptive system plus our filtering. We report this comparison below.

First we need to explain a methodological point. The adaptive system is generally

triggered according to time-driven sampling of program counter values, which make it

non-deterministic from run to run. To obtain deterministic results we proceeded as follows.

First, we performed a number of adaptive runs with compilation logging turned on. This

told us, for each run, the methods optimized and their optimization levels. From the logs,

we determined for each method the highest optimization level achieved by that method in

a majority of the runs of that benchmark in which the method was optimized. To obtain
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deterministic runs similar to the adaptive system, we force optimization of each method to

its majority level when the system first attempts to compile the method, and we prevent any

further optimization as the system runs. We call this the Pseudo-Adaptive system, and its

compile time and execution time behavior is very similar to the adaptive system.

Table 4.8 shows filtering cost breakdowns similar to those we presented for filtering

alone. We observe that in this case our filters select a larger fraction of the instructions.

This may seem surprising, but is logical in that these benchmarks tend to spend much of

their time in floating point computations, and blocks with floating point instructions are

more likely to benefit from careful scheduling. These blocks may also be longer, some of

them resulting from loop unrolling, etc.

Program SB SI f/s f/c s/c

aes 0.0–26% 0.0–68% 4–13% 0.5% 4–16%
bh 0.0–24% 0.0–57% 4– 7% 0.6% 7–14%
linpack 0.0–21% 0.0–63% 3– 4% 0.4% 8–13%
power 5.3–38% 12.2–71% 4% 0.4% 10–15%
voronoi 1.7–30% 5.4–59% 5–10% 0.9% 8–18%
scimark 1.3–23% 2.0–59% 4– 7% 0.7% 5–16%

gm, t � 0 26.0% 60.8% 4.0% 0.6% 14.6%
gm, t � 5 24.7% 61.3% 3.9% 0.6% 15.0%
gm, t � 10 23.3% 58.3% 4.2% 0.6% 14.8%
gm, t � 15 17.4% 42.6% 4.2% 0.6% 13.4%
gm, t � 20 18.3% 47.4% 4.0% 0.5% 13.4%
gm, t � 25 14.6% 38.3% 4.7% 0.6% 12.7%
gm, t � 30 6.4% 14.1% 5.7% 0.6% 9.6%
gm, t � 35 6.1% 11.9% 5.7% 0.5% 9.2%
gm, t � 40 3.9% 8.2% 6.2% 0.5% 8.7%
gm, t � 45 0.0% 0.0% 5.7% 0.4% 7.3%
gm, t � 50 0.0% 0.0% 6.7% 0.5% 7.2%

Table 4.8. Cost breakdowns for Pseudo-Adaptive runs: gm � geometric mean;
SB � scheduled blocks; SI � scheduled instructions; f � time to evaluate features and
heuristic function; s � time spent in scheduling; c � compile time excluding scheduling.

Efficiency: Scheduling all blocks in pseudo-adaptive runs consumed about 16% of non-

scheduling compile time (geometric mean). Comparing with Table 4.8, we see that filtering
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does not save as much on this population of blocks. Put another way, filtering, to some

significant extent, avoids scheduling blocks that turn out to be cold. This is interesting,

though it is not immediately clear how we can exploit it (since scheduling sees code in its

form after most optimizations, we cannot apply the filters much earlier in the optimization

process). Still, we might be able to save perhaps 5% of compilation costs, provided filtering

does not undermine effectiveness.

Effectiveness: Table 4.9 shows the geometric mean execution time ratio compared

with no scheduling, for list scheduling and for filtering with our various threshold values.

It is notable that instruction scheduling appears less effective on the blocks optimized in

(pseudo) adaptive runs. We still do well for t � 20 and t � 25, but in those cases we reduce

compilation time by at most a few percent. We are forced to conclude that filtering may not

be worthwhile in this adaptive compilation setting.

List t � 0 t � 5 t � 10 t � 15 t � 20 t � 25 t � 30 t � 35 t � 40 t � 45 t � 50

94.3 95.5 94.8 96.0 99.4 95.3 95.9 99.1 97.4 99.1 99.6 100.0

Table 4.9. Application execution time ratio (versus no scheduling) for List and Pseudo-
Adaptive runs, geometric mean across six benchmarks.

4.5.9 Time Compiling versus Time Running

It might at first seem reasonable to report comparisons of total execution time (compi-

lation plus application execution) with and without filtering, etc. We believe this does not

make much sense for benchmark programs, since we can make application execution time

arbitrarily large compared with compilation by simply iterating the benchmark more times.

Put another way: is there any “typical” ratio of compile time to running time? Still, we

can determine a pay-back ratio for each benchmark, i.e., how much of the added compila-

tion time does each iteration of the application recover? Table 4.10 gives these pay-back

numbers for List and filtering at the different thresholds for our six benchmarks that benefit

from scheduling. Some numbers are reported as “ � 0”, which means that the optimization
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actually hurt application performance in that case. We observe that compile time is gen-

erally much greater than application time for these benchmarks; the application times for

power and scimark are closer to the compile times, hence their higher pay-back.

Filter aes bh linpack power voronoi scimark

LS 2.5 1.0 1.2 53 1.0 136

t � 0 5.1 1.3 2.7 132 1.1 � 0
t � 5 5.1 1.6 2.7 118 1.0 � 0

t � 10 5.5 2.1 3.0 130 � 0 299
t � 15 5.1 3.1 0.4 156 1.5 175
t � 20 7.2 0.7 3.7 26 1.5 502
t � 25 6.0 4.7 3.7 164 1.0 207
t � 30 8.5 4.7 0.6 142 0.2 � 0
t � 35 13.1 4.8 6.3 280 1.3 427
t � 40 11.7 5.0 0.4 305 1.5 350
t � 45 16.0 5.0 0.5 25 1.7 465
t � 50 19.8 � 0 0.5 3 1.8 15

NSA/NSC 3.5 1.4 2.9 54 1.7 617

Table 4.10. Percent of compile time recovered by each iteration of the application, and
application time as percentage of compile time for NS.

Table 4.11 presents analogous measurements for the Pseudo-Adaptive system. Here it

is clear that instruction scheduling is not at all helpful for bh, linpack, or voronoi.

For the remaining benchmarks, scheduling helps, at least sometimes.

4.6 Summary

Choosing whether to apply potentially costly compiler optimizations is an important

open problem. We consider here the particular case of instruction scheduling, with the

possible choices being a traditional list scheduler (LS) and no scheduling (NS). Since many

blocks do not benefit from scheduling, one can obtain most of the benefit of scheduling by

applying it to a subset of the blocks. What we demonstrated here is that it is possible to

induce a function that is competent at making this choice: we obtain almost all the benefit

of LS at less than 1/4 of the cost.
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Filter aes bh linpack power voronoi scimark

LS 4.1 � 0 � 0 � 0 � 0 1900

t � 0 4.3 0.6 5.1 76 � 0 250
t � 5 4.6 � 0 � 0 � 0 � 0 1484

t � 10 4.8 � 0 � 0 � 0 � 0 119
t � 15 3.9 � 0 � 0 � 0 � 0 � 0
t � 20 5.4 � 0 � 0 64 � 0 � 0
t � 25 5.0 � 0 � 0 29 � 0 689
t � 30 2.8 0.3 � 0 20 � 0 1108
t � 35 0.0 � 0 � 0 41 � 0 2542
t � 40 � 0 � 0 � 0 37 � 0 8991
t � 45 0.0 � 0 � 0 24 � 0 68
t � 50 0.0 � 0 � 0 46 � 0 7365

NSA/NSC 7.0 36.7 8.5 1113 20.1 1918

Table 4.11. Percent of Pseudo-Adaptive compile time recovered by each iteration of the
application, and application time as percentage of compile time for NS.

On the way to this result we found that it helped to use thresholds: to remove training

instances whose cost under different schedulers is within a chosen threshold value, i.e., not

different enough to provide a good “signal” on which to train. Interestingly, this instance

filtering improved both the efficiency and the effectiveness of our induced function.

Sometimes (perhaps only rarely) it is beneficial to perform instruction scheduling in

a JIT, depending on how long the program runs, etc. If it is rarely worthwhile, that only

emphasizes the need for our heuristic to decide whether to apply it. The general approach

we took here should apply in other JIT situations. Of course all we have demonstrated

rigorously is that it works for one Java compilation system. If the JIT is adaptive, ap-

plying optimization only to “hot” methods, then filtering is less effective and may not be

worthwhile.

We found LOCO to work excellently for this learning task. Thus, beyond achieving

good performance on the task, we obtain the additional benefits of a simple cheap learning

algorithm that produces understandable heuristics. As with any machine learning tech-
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nique, devising the appropriate features is critical. Choosing whether to apply an instruc-

tion scheduler turns out to require only simple, cheap-to-compute features.
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CHAPTER 5

LEARNING WHICH OPTIMIZATION ALGORITHM TO USE

In the previous chapter we described a new class of compiler heuristics, which we called

filters, that control whether to apply an optimization. Filters are highly predictive at choos-

ing whether it will be beneficial to apply instruction scheduling to a block of instructions.

The filters were successful using only simple properties of the block. We also showed how

we constructed these filters automatically using LOCO.

This chapter introduces another new class of compiler heuristics, which we call hy-

brid optimizations. We call them hybrid optimizations because they (dynamically) choose

which optimization algorithm to apply at run time from a set of different algorithms that

implement the same optimization. Hybrid optimizations use a heuristic to predict the most

appropriate algorithm for each piece of code being optimized. Specifically, we construct a

hybrid register allocator that chooses which register allocation algorithm to apply from two

different register allocation algorithms, linear scan and graph coloring. Linear scan is more

efficient, but sometimes not as effective. Graph coloring, on the other hand, is generally

more expensive than linear scan, but on some occasions more effective.

The hybrid allocator decides, based on features of a method, which register allocation

algorithm to apply to that method. Using LOCO we induced heuristics that predict which

algorithm to use. The induced function chooses, for each method, between linear scan and

graph coloring. Using the hybrid allocator with our compiler set at the highest optimization

level we obtained 74% of the improvement of using graph coloring, the more effective

allocator, but with less than 42% of the effort. We also experimented with using a hybrid

allocator for a less aggressive optimization level. The hybrid allocator remains effective
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but gives a smaller reduction in allocation effort. To the best of our knowledge, this is the

first time anyone has used features to select between two different optimization algorithms.

5.1 Introduction

Compiler writers are constantly inventing new optimization algorithms to try to im-

prove over the current state-of-the-art. Often compiler writers arrive at significantly dif-

ferent algorithm implementations for a particular compiler optimization. Often, however,

there is no clear winner among the different implementations. There are certain situations

where one particular optimization algorithm is preferable to use and other situations where

applying a different algorithm would be more beneficial.

We invent a new class of heuristics, which we call hybrid optimizations. Hybrid opti-

mizations assume that one has implemented two or more algorithms for the same optimiza-

tion. A hybrid optimization uses a heuristic to choose the best of these algorithms to apply

in a given situation. In this chapter we construct a hybrid register allocator that chooses be-

tween two different register allocation algorithms, linear scan and graph coloring. Linear

scan (LS) is more efficient, but sometimes not as effective at packing all the variables of

a method into the available physical registers. On the other hand, graph coloring (GC) is

generally more expensive than linear scan, but sometimes achieves a better packing of the

variables into registers. Our hybrid allocators are more efficient than graph coloring and

they are always more effective than linear scan.

This chapter discusses how we use LOCO to construct a hybrid allocator. The induced

heuristics should be significantly cheaper to apply than register allocation; thus we restrict

ourselves to using properties (features) of a method that are cheap to compute or have

already been computed in a previous compilation phase.

We emphasize that while instruction scheduling is an optional optimization phase and

it could be skipped entirely, register allocation is a required optimization phase. That is,
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register allocation must be applied to every Java method before it can be executed on the

machine.

5.2 Motivation

We measured the time to run GC and LS for the case of 24 registers (12 volatiles,

12 non-volatiles). Figure 5.1 shows scatter plots of the running time versus method size

(number of instructions). Both graphs omit outliers that have very large running times.

LS’s running time is consistent and fairly linear. GC’s time is in the same general region,

but is worse and does not have as clear a linear relationship with method size (this is to be

expected, given the overhead of constructing an interference graph in the GC algorithm).

Table 5.1 gives statistics on the measured running times of GC and LS. The second

column gives the average time to allocate registers in units of microseconds per (low-level

intermediate code) instruction. GC is nearly 7 times slower than LS on this measure. How-

ever, if we exclude a small number of methods that took more than 1 second to schedule

(outliers), then the ratio is 1.7. The remaining columns give percentiles in the elapsed time

to allocate registers for each method, for both GC and LS. These values highlight that a

small percentage of methods strongly bias GC’s average running time. A possible strategy

to ameliorate this is to predict when applying GC will benefit a method over LS, and run GC

only in those cases. This is exactly the goal of a hybrid optimization. A hybrid optimiza-

tion will reduce compilation effort, using an efficient algorithm most of the time, but will

use a more effective, but expensive, optimization algorithm seldomly, when it deems the

additional benefit is worth the effort. This trade-off is especially interesting if compilation

time is important, such as in a JIT compilation environment.

5.3 Problem and Approach

We want to construct a heuristic that with high effectiveness predicts which alloca-

tion algorithm is most beneficial to apply. To our knowledge, this is the first time any-
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Figure 5.1. Algorithm running time versus method size for GC and LS

Algorithm (µs)/Insts (µs)/Insts 50%ile 90%ile 95%ile 99%ile
No outliers (seconds) (seconds) (seconds) (seconds)

GC 1241 300 0.011145 0.158539 0.393485 1.955040
LS 183 176 0.008066 0.101580 0.189935 0.803425

Table 5.1. Running time statistics for GC and LS

one has used features to select between two different register allocation algorithms, so we

had no “good” hand-coded heuristics from which to start. We used LOCO to construct,

automatically, heuristics that choose between the two algorithms. It may be feasible to

construct a heuristic manually to choose between the two algorithms, but this would be

time-consuming and tedious, and it would be an inefficient way to search the space of

heuristics. Also, if the task involves many different alternative algorithms from which to

choose, it may require a machine learning approach because it may just be too hard to

construct a heuristic by hand.

The first step in applying LOCO to this problem requires phrasing the problem as a

classification problem. For this task, this means that each method is represented by a train-

ing instance and each training instance is labeled with respect to whether graph coloring

achieves enough additional benefit (less spills) over linear scan to warrant applying it.
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We emphasize that while register allocation involves heuristics, such as spill heuristics,

the learning of which has been considered elsewhere, the goal here is to learn to choose

between linear scan and graph coloring, not to induce a heuristic used by one particular

register allocation algorithm. In other words, the research here involves learning which

optimization algorithm (register allocation) to use. We now consider the specific features

used for this research and the methodology for developing training instances.

5.3.1 Features

The second step in applying LOCO involves identifying the set of properties that are

important to this optimization problem.

What properties of a method might predict which allocation algorithm to use? One can

imagine that certain properties of a method’s interference graph might predict whether or

not to use graph coloring. However, building the interference graph is so expensive that it

can sometimes dominate the overall running time of the graph coloring algorithm. Since

we require cheap-to-compute features, we specifically choose not to use properties of the

interference graph.

Instead, we use features that have previously been computed for other compilation

phases. For instance, we use features summarizing the control flow graph, CFG, such

as statistics pertaining to regular (non-exceptional) versus exceptional edges. We also use

features that describe liveness information, such as the number of variables that are live

in and out of a block. We also try the simplest kind of cheap-to-compute features that

we thought might be relevant. Computing these features requires a single pass over the

method.

The features can be grouped into three different categories. The first set of features

pertains to edges in the control flow graph. These features include regular CFG edges and

exceptional CFG edges. The second set of features pertains to the live intervals. We provide

features for statistics describing the number of intervals that are live going in and out of

75



Feature Meaning

Out Edges CFG Out Edges (total, min, max, average)
In Edges CFG In Edges (total, min, max, average)
Exception In CFG Exceptional In Edges (total, min, max, average)
Exception Out CFG Exceptional Out Edges (total, min, max, average)
Live on Entry Number of edges live on entry (total, min, max, average)
Live on Exit Number of edges live on exit (total, min, max, average)
Intervals Number of live intervals (total, min, max, average)
Symbolics Number of symbolics (total, average)
Block size Size of blocks (min, max, average)
Num Insts Number of instructions (total)
Num Blocks Number of blocks in method (total)

Table 5.2. Features of a method.

the blocks. This set also includes features for the number of live intervals and symbolics.

The third set of features describes statistics about sizes of blocks and the total number of

instructions and blocks in the method. See Table 5.2 for a complete list of the features.

These features were either pre-computed or as cheap to compute as we can imagine while

offering some useful information. It turns out that they work well.

We present all of the features (except number of instructions and blocks) in several

forms, such as minimum, maximum, total, and an average. This allows the learning algo-

rithm to generalize over many different method sizes.

These features work well so we decided not to refine them further. Our domain knowl-

edge allowed us to develop a set of features that on our first attempt produced highly-

predictive heuristics.

It might be possible that a smaller set of features would perform nearly as well. How-

ever, calculating features and evaluating the heuristic functions typically consumed .5%-2%

of compile time (a negligible fraction of total time) in our experiments, so we did not ex-

plore this possibility. We started with a larger feature set, but rule induction reduced the set

to the most significant features, so we did not need to eliminate features manually.
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One final observation is that these features are fairly generic for the most part, and

might be useful across a wide range of systems.

5.3.2 Learning Methodology

As mentioned in Chapter 3 determining which features to use is an important step in

applying LOCO to a problem. We have constructed a set of features and now take the next

step, generating training instances.

Each training instance consists of a vector of feature values, plus a boolean classifica-

tion label, i.e., LS (Linear Scan) or GC (Graph Color), depending on which algorithm is

best for the method.

Our procedure for generating training instances is as follows. After the Java system

compiles and optimizes each Java method, the last phase involves presenting the method

for register allocation. As we allocate the variables in the method to registers we can

compute the features we decided upon. We instrument both a graph coloring allocator and

a linear scan allocator to print into a trace file, for each method, raw data for forming a

training instance.

Each raw datum consists of the features of the method that make up the training in-

stance and statistics used to calculate the label for that instance. For the particular step

of computing the features of a method, we can use either algorithm since the features are

not algorithm specific. However, computing the final statistics used for labeling requires

allocating the method with both graph coloring and linear scan. These statistics include the

time to allocate the method with each allocation algorithm, and the number of additional

spills incurred by each algorithm. We discuss the use of these statistics for labeling each

training instance in Section 5.3.3.

We obtain the number of spills for a method by counting the number of loads and

stores added to each method after register allocation and multiplying this by the number of

times each basic blocks executes. We obtain basic block execution counts by profiling the
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if (LS Spill � GC Spill � Benefit Threshold)
Print GC;

else if (LS Cost/GC Cost � Cost Threshold)
Print LS;

else if (LS Spill - GC Spill �
� 0)

Print LS;
else�

// No Label �

Figure 5.2. Procedure for labeling instances with GC and LS

application. We discuss this process in more detail in Chapter 2. We emphasize that these

steps take place in an instrumented compiler and all happen off-line. Only the heuristics

produced by LOCO are part of the production compiler and these heuristics are fast.

5.3.3 Thresholds

We label an instance based on two different thresholds, a cost threshold and a benefit

threshold. The cost threshold pertains to the time it takes to allocate registers with each

algorithm. The benefit threshold pertains to the number of spill loads and stores incurred

by the code generated by each allocation algorithm.

For the experiments in this chapter we use the following procedure to label the training

instances. We label an instance with “GC” (prefer graph coloring) if the spill benefit of

graph coloring is more than B (benefit threshold) less than applying linear scan. We label

an instance with “LS” (prefer linear scan) if there is no spill benefit to allocating the method

with graph coloring. The spill benefit is the number of spill loads and stores saved by using

GC rather than LS. We also label an instance with “LS” if the cost of using graph coloring

is C% (cost threshold) more than the cost of applying linear scan. Figure 5.2 depicts this

algorithm for labeling.

We experiment with threshold values of B � 0, B � 8K, and B � 64K for the spill

benefit and the values of C � 0 and C � 50 for the cost threshold. Varying these threshold

values gives us the following hybrid allocators: B0C0, B8KC0, B64KCO, B0C50, B8KC50,
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B64KC50. For example, we might construct a training set using the threshold values of

B � 8K and C � 50, for spill benefit and cost threshold values, giving us the hybrid allocator

B8KC50.

Typically we obtain thousands of instances for each program (one for each method

in the program). Table 5.3 shows training set sizes for different threshold values for

SPECjvm98.

Threshold B0C0 B8KC0 B64KC0 B0C50 B8KC50 B64KC50
LS 1796 1796 1796 1796 1964 2029
GC 313 144 79 313 144 79
GC % 17.4 8.0 4.4 17.4 7.3 3.8

Table 5.3. Effect of different threshold values on training set size for SPECjvm98.

5.3.4 Integration of the Induced Heuristic

After the training step, the next step is installing the heuristic function in the compiler

and applying it online. Each method compiled by the optimizing compiler is allocated

registers using a register allocation algorithm. We compute features for the method. The

cost of computing the features is included in all of our actual timings. It is small relative to

the cost of graph coloring and to the rest of the cost of compiling a method.

If the heuristic function says we should allocate a method with graph coloring, we do

so, otherwise we use linear scan.

The results presented are for the SPECjvm98 benchmarks. We describe these bench-

marks in further detail in Section 2.3.1.

5.4 Experimental infrastructure

We implemented our register allocation algorithms in Jikes RVM, a Java virtual ma-

chine with JIT compilers, provided by IBM Research [2]. The system provides a linear
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scan allocator in its optimizing compiler. In addition, we implemented a Briggs-style graph

coloring register allocator [12].

For our first set of results, we use the highest optimization setting which is O3. Opti-

mization level O3 includes live range splitting, which increases the effectiveness of register

allocation. The second set of results we report are for optimization level O1, a less aggres-

sive optimization level.

5.5 Evaluation Methodology

To evaluate a hybrid allocator on a benchmark, we consider four kinds of results: clas-

sification accuracy, spill loads, algorithm running time, and benchmark running time.

Classification accuracy refers to the accuracy of the induced hybrid allocator on cor-

rectly classifying a set of labeled instances. Classification accuracy tells us whether a hy-

brid allocator has the potential of being useful. However, the real measure of success lies in

whether applying the heuristic can successfully reduce allocation time while not adversely

affecting the benefit of applying graph coloring to application running time. In a few cases,

using a hybrid allocator improved application running time over always applying the graph

coloring allocator (this occurs when the hybrid allocator inhibits the application of graph

coloring in cases where it actually degrades performance).

Spill loads refers to the additional number of loads (read memory accesses) incurred

by the allocation algorithm. Spill loads give an indication of how well the allocator is able

to perform its task. Memory accesses are expensive, and although the latency of some

additional accesses can be hidden by the overlapping execution of other instructions, the

number of spill loads is highly correlated with application running time. We do not take

into account spill stores because their latency can be mostly hidden with store buffers. (A

store buffer is an architectural feature that allows computation to continue while a store

executes. Store buffers are typical in most modern architectures.)
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Allocator running time refers to the impact on compile time, comparing always using

linear scan and always using graph coloring. Since timings of our proposed system include

the cost of computing features and applying the heuristic function, this (at least indirectly)

substantiates our claim that the cost of applying the heuristic at run time is low. (We also

supply measurements of those costs, in a separate section.)

Application running time (i.e., without compile time), refers to measuring the change in

execution time of the allocated code, comparing using linear scan and against always using

graph coloring. This validates not only the heuristic function but also our instance labeling

procedure, and by implication the spill model we used to develop the labels.

The goal is to achieve application running time close to always applying graph coloring,

and compilation time substantially less than applying graph coloring to every method.

5.6 Experimental Results

We aimed to answer the following questions: How efficient is our hybrid allocator com-

pared to allocating all methods with linear scan? How effective is the hybrid allocator in

obtaining best application performance compared to graph coloring? We ask these ques-

tions on the SPECjvm98 benchmark suite. We then consider some additional questions,

such as how much time does it take to apply the hybrid heuristic in the compiler, and what

happens if we apply our hybrid allocator to a different optimization level.

We address the first question by comparing the time spent allocating. We answer the

second by comparing the running time of the application, with compilation time removed.

To accomplish the latter, we requested that the Java benchmark iterate 6 times. The first

iteration will cause the program to be loaded, compiled, and allocated according to the

allocation algorithm. The remaining 5 iterations should involve no compilation; we use the

median of the 5 runs as our measure of application performance.
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5.6.1 Classification Accuracy

Before presenting efficiency and effectiveness results, we offer statistics on the accuracy

of the induced classifiers for the following threshold combinations: B0C0, B8kC0, B64kC0,

B0C50, B8kC50, and B64kC50.

For each benchmark, we built a hybrid allocator with leave-one-out cross-validation.

The hybrid allocator chooses between graph coloring and linear scan.

Table 5.4 shows the classification error rates of rule sets induced by Ripper on

SPECjvm98 benchmark program test sets generated during the cross-validation tests. We

also include the geometric mean of these error rates.

Hybrid B0C0 B8kC0 B64kC0 B0C50 B8kC50 B64kC50
db 4.69 4.24 3.42 4.69 3.91 2.34

jack 10.59 5.80 2.51 0.59 7.66 2.55
javac 15.07 10.04 5.81 15.07 11.23 5.89

raytrace 5.53 4.84 3.26 5.53 7.04 7.54
compress 3.28 1.80 1.80 13.28 3.28 1.64

jess 10.45 4.56 2.78 10.45 5.76 2.77
mpegaudio 9.33 10.85 7.08 9.33 4.00 4.00

Geo. mean 7.49 5.23 3.45 7.49 5.63 3.36

Table 5.4. Classification error rates (percent misclassified) for different threshold values.

5.6.2 Spill Loads

Before looking at execution times on an actual machine, we consider the quality of the

induced hybrid allocator (compared with always applying either graph coloring or linear

scan) in terms of the number of spill loads added by register allocation. Spill loads predict

whether a method will benefit from the additional effort of applying the more expensive

graph coloring allocator.

Spill loads are used in the labeling process, thus we hoped that our hybrid allocator

would perform well on the spill load metric. Comparing the allocators against spill loads
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allows us to validate the learning methodology, independently of validating against the

actual performance on the target machine.

We calculate the dynamic number of spill loads added to each method by multiplying

the number of spill loads added to each block by the number of times that block is executed

(as reported by profiling information). Then we sum the number of dynamic spill loads

added to each block. We obtain the dynamic number of spills loads for the entire program

by summing the number of dynamic spill loads added to each method. More precisely, the

performance measure for program P is:

SPILLSπ
�
P � � ∑

M � P
∑

b � M

�
# Executions of b ��� � spill loads added to b under allocater π �

where M is a method, b is a basic block in that method, and π is hybrid, graph coloring, or

linear scan.

Program B0C0 B8kC0 B64kC0 B0C50 B8kC50 B64kC50 LS
db 1.19 0.99 0.99 1.19 1.01 1.00 1.20

jack 1.02 1.04 1.04 1.02 1.04 1.07 1.07
javac 1.02 1.01 1.04 1.02 1.06 1.04 1.07

raytrace 1.03 1.03 1.39 1.03 1.52 1.05 1.55
compress 1.00 1.04 1.04 1.00 1.04 2.01 2.01

jess 1.11 1.00 1.30 1.11 1.23 1.33 1.42
mpegaudio 1.07 1.05 1.16 1.07 1.36 1.49 2.13

Geo. mean 1.06 1.02 1.13 1.06 1.17 1.25 1.44

Table 5.5. Spill loads for different hybrids and linear scan.

Table 5.5 shows the spill loads for each allocator as a ratio to spill loads produced by our

graph coloring algorithm. We see improvements for all hybrid allocators over linear scan.

These improvements do not correspond exactly to measured execution times, which is not

surprising given that the number of spill loads is not an exact measure of performance on

the architecture. What the numbers confirm is that the induced heuristic indeed improves

the metric on which we based its training instances. Thus, LOCO was again able to solve
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this learning problem. Whether we get improvement on the real machine is concerned with

how predictive reducing spill loads are to benchmark performance.

5.6.3 Efficiency and Effectiveness

We now consider the quality of the hybrid heuristic induced using each of the different

threshold parameter combinations. Figure 5.3(a) shows the allocation time of the hybrid

allocators, and for LS (always perform linear scan), relative to GC (always perform graph

coloring). LS (linear scan) is almost always the most efficient allocator. Each group of bars

shows the performance of the different allocators and the rightmost group of bars shows

the geometric mean for all the benchmarks. The leftmost bar in each group indicates the

performance of graph coloring. The next six bars from left to right indicates the perfor-

mance of the different hybrid allocators: B0C0, B8kC0, B64kC0, B0C50, B8kC50, and

B64kC50. The rightmost bar of each group shows the performance of linear scan.

We see that for mpegaudio the B64kC50 hybrid allocator is more efficient than LS.

This happens when GC is cheaper than applying LS for those methods where the hybrid

allocator applies GC. This occurs only for mpegaudio.

The geometric mean for the efficiency graph shows a steady improvement as the benefit

and cost thresholds are increased, from 83% to 28% of the cost of LS. This is somewhat

consistent across the benchmarks, but there is definite variation. We were able to cut the

allocation effort significantly, but what happened to the effectiveness? All the hybrid al-

locators do well (except for B64kC50), with B8kC50 offering 74% of the benefit of GC.

While the results seem sensitive to the exact value of the thresholds, the value B8kC50 im-

proves efficiency over straight B0C0 and is comparable in its effectiveness. At this value,

allocation is 2.5 times faster than GC. These numbers are also fairly consistent across the

benchmarks.
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Figure 5.3. Efficiency and Effectiveness Using Hybrid Allocators with Opt Level O3.
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Figure 5.3(b) shows the impact of the hybrid allocators and GC on application running

time, presented relative to LS (a value smaller than 1 is an improvement, greater than 1

a slow down). Here there is more variation across the benchmarks, with GC doing the

best at .92 and the hybrid allocators doing well at .93-.97. Given the lower cost of hybrid

allocators to run, they are preferable to running GC all the time. The results are fairly

consistent across the benchmarks, though some benchmarks improve more than others.

5.6.4 A Sample Induced (Learned) Heuristic

As we mentioned, rule sets are easier to comprehend and are often compact. It is also

relatively easy to generate code from a rule set that can be used to build a hybrid allocator.

Table 5.6 shows a rule set induced by training using examples drawn from 6 of 7

SPECjvm98 benchmark programs. If the right hand side condition of any rule (except

the last) is met, then we will apply the GC on the method; otherwise the hybrid allocator

predicts that GC will not benefit the method and it applies LS.

The numbers in the first two columns give the number of correct and incorrect training

examples matching the condition of the rule.

( 20/ 9) GC � avgLiveOnExitBB ��� 3.875 � avgNumbSymBB ��� 13.0168
( 22/13) GC � avgLiveOnEntryBB ��� 4.05556 � avgCFGInEdgesBB ��� 1.39806 � avgLiveOnExitBB ��� 5.52 � numberInsts ��� 294
( 10/ 5) GC � avgLiveOnExitBB ��� 4.28814 � maxLiveOnEntry ��� 13
( 12/ 2) GC � avgLiveOnExitBB ��� 3.68293 � maxLiveOnEntry ��� 9 � numberSymbolics ��� 895 � maxLiveIntervals ��� 38 � maxLiveIntervals ��� 69
(1815/78) LS �

Table 5.6. Induced Heuristic Generated By Ripper.

In this case we see that liveness information and the number of symbolics are the most

important features, with the rest offering some fine tuning. For example, the first if-then

rule predicts that it is beneficial to use graph coloring on methods consisting blocks with

a high average number of live intervals exiting the block and a high average number of

symbolics in the block. Note that for this training set a large percentage of methods (1815 �

78 � 1893 o f 1986 � 95%) were predicted not to benefit from graph coloring.
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As we will see shortly, determining the feature values and then evaluating rules like this

sample one does not add very much to compilation time, and typically takes much less time

than actually allocating the methods with GC.

5.6.5 The Cost of Evaluating a Hybrid Heuristic

Table 5.7 gives a breakdown of the compilation costs of our system, and statistics con-

cerning the percentage of methods and instructions allocated with each allocator. The costs

are given as geometric means over the 7 benchmarks.

As we increase the benefit and cost threshold values, we see that the cost of allocation

(a
�
c) decreases. While f remains nearly constant, f

�
a and f

�
c increase.

Here are some interesting facts revealed in the table. First, the fraction of methods and

of instructions allocated with GC steadily decreases with increasing threshold values, drop-

ping significantly at B64kC0, B8kC50, and B64kC50. Second, the fraction of instructions

allocated with GC, which tracks the relative cost of allocation fairly well, tends to be about

3.5 times as big as the fraction of methods allocated with GC, implying that the hybrid

allocators tend to use GC for longer methods. This makes sense in that longer methods

probably tend to benefit more from graph coloring.

Third, the cost of calculating the heuristic, as a percentage of compilation time, is

always 1% or less. Finally, we always obtain reduction in allocation time compared with

GC (applying graph coloring to every method).

5.6.6 Hybrid Allocation with Optimization Level O1

The Jikes RVM system offers different levels of optimizations, including O1, which

includes less aggressive, more efficient optimizations, and O3, the most aggressive level,

which includes more costly optimizations, such as SSA-based transformations. We notice

the same trends in register allocation costs found in the more aggressive optimization level

of O3.
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Allocator GCM GCI LSM LSI f
�
a f

�
c a

�
c

GC 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 21.26%
B0C0 15.68% 52.91% 83.96% 45.66% 0.44% 0.07% 16.51%
B8kC0 12.03% 44.66% 87.49% 53.81% 0.50% 0.08% 15.13%
B64kC0 9.33% 33.95% 90.04% 62.77% 0.53% 0.08% 14.06%
B0C50 15.68% 52.91% 83.96% 45.66% 0.43% 0.07% 16.64%
B8kC50 6.10% 19.43% 93.78% 78.13% 0.85% 0.08% 9.81%
B64kC50 2.06% 8.50% 97.22% 89.44% 1.20% 0.09% 7.31%
LS 0.00% 0.00% 100.00% 100.00% 0.00% 0.00% 3.41%

Table 5.7. Cost breakdowns: GCM � GC allocated methods; GCI � GC allocated in-
structions; LSM � LS allocated method; LSI � LS allocated instructions; f � time to
evaluate features and heuristic function; a � time spent allocating methods; c � compile
time excluding allocation time.

As for benchmark running times, there is a clear performance degradation going to

O1. For this optimization level, graph coloring does not give as large of an improvement

for benchmarks db and compress. Benchmark compress shows a slight improvement

with graph coloring and mpegaudio still shows a large improvement with graph coloring.

In general, we notice trends in benchmark running time performance similar to those found

in the more aggressive O3, just not as large.
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Figure 5.4. Efficiency and Effectiveness Using Hybrid Allocators with Opt Level O1.
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5.6.7 Time Compiling versus Time Running

It might at first seem reasonable to report comparisons of total execution time (com-

pilation plus application execution) with and without using hybrid allocators. We believe

this does not make much sense for benchmark programs, since we can make application

execution time arbitrarily large compared with compilation by simply iterating the bench-

mark more times. Put another way: is there any “typical” ratio of compile time to running

time? Still, we can determine a pay-back ratio for each benchmark, i.e., how much of

the added compilation time does each iteration of the application recover? Table 5.8 gives

these pay-back numbers for GC and hybrid allocators at the different thresholds for our

seven benchmarks. Some numbers are reported as “ � 0”, which means that the the alloca-

tor actually hurt application performance in that case, compared to linear scan. We observe

that compile time is generally much greater than application time for these benchmarks; the

application times for raytrace and mpegaudio are closer to the compile times, hence

their higher pay-back. We see that hybrid allocators have a better pay-back for db, ray-

trace, and compress. GC is not at all helpful for jack or javac. Hybrid allocators

are not helpful for these benchmarks as well as jess.

Allocator db jack javac raytrace compress jess mpegaudio
GC 13.32 � 0 � 0 1281.76 10.69 1019.72 26.27

B0C0 17.35 � 0 � 0 1224.12 11.71 � 0 32.00
B8kC0 15.05 � 0 � 0 989.64 10.00 � 0 31.88

B64kC0 15.37 � 0 � 0 � 0 10.62 � 0 31.68
B0C50 17.29 � 0 � 0 1002.82 11.98 � 0 31.48

B8kC50 17.57 � 0 � 0 � 0 10.37 � 0 35.01
B64kC50 12.31 � 0 � 0 1588.34 229.21 � 0 40.95

Table 5.8. Percent of O3 compile time recovered by each iteration of the application, and
application time as percentage of compile time for LS.

Table 5.9 presents analogous measurements for a optimization level O1. Here it is clear

that hybrid allocators show better pay-back numbers for db, raytrace, compress, and
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jess. Again, GC and our hybrid allocators are not at all helpful for jack or javac, but

this time they show a benefit for jess.

Allocator db jack javac raytrace compress jess mpegaudio
GC 66.81 � 0 � 0 150.74 15.49 843.01 3.55

B0C0 17.87 � 0 � 0 54.78 10.46 214.48 4.07
B8kC0 18.40 � 0 � 0 59.27 � 0 152.88 3.79

B64kC0 � 0 � 0 � 0 56.98 � 0 394.78 3.84
B0C50 17.97 � 0 � 0 53.73 9.61 201.45 3.85

B8kC50 28.59 � 0 � 0 2562.00 � 0 � 0 4.16
B64kC50 29.35 � 0 � 0 359.72 � 0 � 0 57.71

Table 5.9. Percent of O1 compile time recovered by each iteration of the application, and
application time as percentage of compile time for LS.

5.7 Summary

Choosing which optimization algorithm to apply among different optimization algo-

rithms that differ in efficiency and effectiveness can avoid potentially costly compiler opti-

mizations. It is an important open problem.

We consider here the particular case of register allocation, with the possible choices

being linear scan (LS), graph coloring (GC), and hybrid allocators that choose between

these two algorithms. Since many methods do not gain additional benefit from applying

graph coloring over linear scan, a hybrid allocator applies graph coloring only to a subset

of the methods.

What we demonstrated for an aggressive optimizing compiler (optimization level O3)

is that it is possible to induce a function that is competent at making this choice: we obtain

almost all the benefit of GC at less than 42% of the cost.

On the way to this result we found that it helped to use thresholds. For this work, we

varied two different threshold parameters: a cost threshold that takes into account the cost

of allocation with the different algorithms, and a spill threshold that considers the benefit of
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spilling with the different algorithms. We removed training instances whose benefit using

graph coloring over linear scan was more than a chosen threshold value. That is, the number

of spills added by using the less effective algorithm, linear scan, is not difference enough

to make a different in the running time of the program. Interestingly, this training instance

filtering improved both the efficiency and the effectiveness of our induced function.

Sometimes (perhaps only rarely) it is beneficial to perform graph coloring in a JIT,

depending on how long the program runs, etc. If it is rarely worthwhile, that only empha-

sizes the need for our heuristic to decide when to apply it. The general approach we took

here should apply in other JIT situations. Of course all we have demonstrated rigorously

is that it works for one Java compilation system. If the JIT is compiling programs at a

less aggressive optimization level then hybrid allocation is less effective and may not be

worthwhile.

We found LOCO to work well for this learning task. In addition, the learning algorithm

we use produces understandable heuristics. As with any machine learning technique, de-

vising the appropriate features is critical. Choosing which register allocation algorithm to

apply turns out to require only simple, cheap-to-compute features.

5.8 Related Work

Lagoudakis et al. [32] describe an idea of using features to choose between algorithms

for two different problems, order statistics selection and sorting. The order statistics se-

lection problem consists of an array of n (unordered) numbers and some integer index i,

1 �
� i �

� n. The problem involves selecting the number that would rank i-th in the array

if the numbers were sorted in ascending order. The authors used reinforcement learning to

choose between two well-known algorithms: Deterministic Select and Heap Select. The

learned algorithm outperformed both of these algorithms at the task of order statistics se-

lection. The second problem they look at is the sorting problem, that is, the problem of

rearranging an array of n (unordered) numbers in ascending order. Again, the authors used
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reinforcement learning to choose between two algorithms: Quicksort and Insertion Sort.

The learned algorithm again was able to outperform both of these well-known algorithms.

Bernstein et al. [9] describe an idea of using three heuristics for choosing the next

variable to spill, and choosing the best heuristic with respect to a cost function. This is

similar to our idea of using a hybrid allocator to choose which algorithm is best based on

properties of the method being optimized. There are important differences between their

work and ours. Their technique applies all the spill heuristics and measures the resultant

code with the cost function. Our technique, on the other hand, does not try each option, but

instead uses features of the code to make a prediction. By making a prediction using simple

properties of the code, our heuristics are more efficient while still remaining effective. In

fact, our technique could be used as an alternative to Bernstein et al. cost function. It

is worth noting that their technique is able to improve over the methods of Chaitin [15],

Chow [19], Brélaz [11], resulting in about a 10% reduction in spills and a 3% improvement

in running time.
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CHAPTER 6

LEARNING HOW TO OPTIMIZE

6.1 Introduction

The aim of this chapter is to show how to cast the local instruction scheduling prob-

lem as a machine learning task so that one obtains a heuristic scheduling algorithm auto-

matically. Once this specific problem is cast as a machine learning problem, we can use

supervised learning to generate the list scheduling heuristic. This heuristic controls how

to schedule a block. More specifically, this is the heuristic that decides which instruction

to add to the schedule under construction in the list scheduling algorithm. We also show

that the induced heuristics are “effective”. That is, the heuristics produced using LOCO are

comparable to ones hand-coded and hand-tuned by compiler experts.

Our empirical results demonstrate that just a few features are adequate for competence

at this task for a real processor, and that any of several supervised learning methods perform

nearly optimally with respect to these features. The learning goal is to minimize the cycles

needed for each basic block, in isolation and assuming all memory accesses hit in the cache.

We found that competence at this task resulted in good measured execution times for entire

scheduled programs. In the end, we essentially match the performance of commercial

compilers for the same processor.

6.2 The Problem

Execution speed of programs on modern computer architectures is sensitive, sometimes

by 10% or more [40], to the order in which instructions are presented to the processor. How-

ever, as mentioned in Chapter 2, scheduling instructions optimally on modern computer
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architectures is NP-hard. To realize potential execution gains with an efficient scheduling

algorithm, it is customary for an optimizing compiler to use a heuristic algorithm for in-

struction scheduling. Currently, compiler writers hand-craft instruction scheduling heuris-

tics for each compiler and target processor.

We wish to construct a heuristic algorithm to use in the performance task of scheduling

the instructions of basic blocks, sequences of instructions with one entry and one exit.

In reality, execution cost is affected by preceding blocks (which may leave functional

units busy, etc.), by the contents of the cache, etc. To simplify our scheduling algorithms

and the learning task, we ignore these effects. Our results demonstrate that this simplifica-

tion does not prevent good local instruction scheduling, as measured in terms of execution

times of scheduled benchmark programs.

We consider the class of schedulers that work by repeatedly selecting the apparent best

of those instructions that could be scheduled next, proceeding from the beginning of the

block to the end. While one can imagine other approaches to scheduling (such as per-

muting non-dependent instructions), this greedy approach is practical for production use,

corresponding to list scheduling as used in production compilers.

Because the scheduler selects the apparent best from those instructions that could be

selected next, the task is to learn to make this selection accurately. Hence, the learner

needs to acquire the notion of ‘apparent best instruction’. The process of selecting the best

alternative is like finding the maximum of a list of numbers. One keeps in hand the current

best, and proceeds with pairwise comparisons, always keeping the better of the two.1 One

can view this as learning a relation over triples
�
P� Ii � I j � , where P is the partial schedule (the

total order of what has been scheduled, and the partial order remaining), and I is the set of

instructions from which the selection is to be made. Those triples that belong to the relation

define pairwise preferences in which the first instruction is preferable to the second. This

1One can consider other ways to run a tournament based on pairwise comparison, but from our results
this approach appears adequate.
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formulation is similar to work done by Utgoff et al. [59] where they use a decision tree

induction algorithm to learn a boolean preference predicate P(x;y) that indicates whether a

state x should be preferred to a state y in a search control problem.

We now consider in turn the representation of our training instances, the features, the

methodology for developing training instances, the learning algorithm, and the bench-

marks.

6.3 The Representation of Scheduling Preference

Because we have framed the determination of the apparent best instruction as learning

a logical relation, the learning algorithm must construct a heuristic that evaluates to true if

and only if
�
P� Ii � I j � . We note that if

�
P� Ii � I j � is considered to be a member of the relation,

then it is safe to infer that
�
P� I j � Ii � is not a member (i.e., this relation should be anti-

symmetric).

6.4 Features

What are the primitive facts from which we can construct the heuristic expression? In

this case we need features of the candidate instructions Ii and I j and of the partial schedule

P. There is considerable art to choosing useful features. We were greatly assisted by

having in hand a good hand-crafted heuristic scheduler (called “DEC” below) supplied

by the processor vendor (Digital Equipment Corporation, at that time), which suggested

potentially useful features. We now describe our feature set in detail.

By examining the DEC scheduler, applying intuition, and considering the results of

various preliminary experiments, we chose the features shown in Table 6.1. The possible

values for the features are: odd: yes or no; wcp and e: first, second, or same, indicating

whether the first instruction (Ii) has the larger value, the second instruction (I j) has the

larger value, or the values are the same; d: first, second, both, or neither, indicating which
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of Ii and I j can dual-issue with the previous instruction; ic0 and ic1: both instruction’s

values, expressed as one of twenty named categories (load, store, iarith, etc.).

Heuristic Name Heuristic Description Intuition for Use
Max Delay (e) The earliest cycle when the instruction can begin

to execute, relative to the current cycle
We want to schedule instructions that
will have their data and functional
unit available earliest.

Instruction Class (ic) We divide the target’s instructions into about 20
classes equivalent with respect to timing.

The instructions in each class can be
executed only in certain pipelines, etc.

Weighted Critical Path (wcp) The height of the instruction in the DAG (the
length of the longest chain of instructions depen-
dent on this one), with edges weighted by ex-
pected latency of the result produced by the in-
struction.

Instructions on longer weighted crit-
ical paths should be scheduled first,
because they directly affect the lower
bound of the schedule cost.

Odd Partial (odd) Is the current number of instructions scheduled
odd or even?

If ‘yes’, we’re interested in schedul-
ing instructions that can dual-issue
with the previous instruction.

Actual Dual (d) Can the instruction dual-issue with the previous
scheduled instruction?

If Odd Partial is ‘yes’, it is impor-
tant to know whether a candidate in-
struction can issue with the previous
scheduled instruction.

Table 6.1. Features for Instructions and Partial Schedule

This mapping of triples to feature values loses information. The loss does not affect

learning much (as shown by preliminary experiments omitted here), but it reduces the size

of the input space, and tends to improve both speed and accuracy of learning for some

learning algorithms. In any case, one must summarize features of P, Ii, and I j into fixed

length vectors.

6.5 Obtaining Examples and Counter-Examples

How can we construct a set of example triples
�
P� Ii � I j � ? For local instruction schedul-

ing, we can search the entire space of schedules for basic blocks that are not too long. We

found it practical to do this only for blocks of ten or fewer instructions. For such blocks,

for each partial schedule P and each candidate next instruction Ii, given a timing model of

the processor we can determine the optimal cost of schedules starting with P and choosing

Ii next. If the best cost for P followed by Ii is less than the cost of P followed by I j, we

generate an example triple
�
P� Ii � I j � and a counter-example

�
P� I j � Ii � . We had no trouble

generating millions of examples and counter-examples.
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Is this procedure biased because we considered only small blocks? For the benchmark

programs we studied, 92% of the basic blocks were small enough, and the average block

size was 4.9 instructions. However, we did see that large blocks tend to be executed more

often and thus have a disproportionate impact on execution time. To determine what effect

omitting the large blocks from the training data had on learning, we generated examples

for large blocks by examining a large sample of schedules using Monte Carlo techniques.

We found that using the large block examples resulted in no scheduling improvement over

using the short block examples.

6.6 Learning Algorithms

There are many learning algorithms one could use to learn our preference relation.

We tried a decision tree induction package (ITI [58]), a rule-set induction package (Rip-

per (RULE) [20]), table lookup (TLU),2 a function approximator (ELF [57]), and a feed-

forward artificial neural network (NN [44]). A conference paper [39] includes a detailed

description of each learning algorithm and some comparisons of all schemes except for

RULE. Since all the schemes performed about the same, here we report results only for

ELF and RULE.

6.7 Benchmarks

We used the SPEC95 benchmark suite, which consists of 18 programs, 10 written in

FORTRAN, which tend to use floating point calculations heavily, and 8 written in C, which

focus more on integers, character strings, and pointer manipulations. These were com-

piled with the vendor’s compilers, set at the highest level of optimization offered, which

includes compile- or link-time instruction scheduling. We call these the Orig schedules

2This basically memorizes all the examples and counter-examples, and interpolates for cases not seen. If
there are conflicting examples and counter-examples, then it chooses the majority class (positive or negative).
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Benchmark Description Source Number of Number of Avg Size of
Lines Blocks Instructions Blocks

applu Parabolic and elliptic partial differential equations 3 817 25 475 129 853 5.097
apsi Solves for the mesoscale and synoptic variations of

potential temperature, wind, velocity, and distribu-
tion of pollutants

4 211 29 077 159 482 5.485

fpppp Quantum chemistry 2 122 25 693 132 139 5.143
hydro2d Astrophysics: hydrodynamical Navier-Stokes equa-

tions are solved to compute galactical jets
2 522 26 789 129 568 4.837

mgrid Multi-grid solver in a 3D potential field 368 25 555 121 750 4.764
su2cor Quantum physics: Monte Carlo calculation of ele-

mentary particle masses
1 614 26 972 135 837 5.036

swim Shallow water model with 512x512 grid 259 25 109 119 333 4.753
tomcatv A mesh-generation program 107 23 856 117 515 4.926
turb3d Simulates isotropic, homogeneous turbulence in a

cube
1 280 26 285 127 884 4.865

wave5 Plasma physics: solves Maxwell’s equations and
particle equations of motion on a Cartesian mesh
with a variety of field and particle boundary condi-
tions

6 430 28 932 152 655 5.276

Total 22 730 263 743 1 326 016 5.028

Table 6.2. Characteristics of SPEC95 FORTRAN benchmarks.

for the blocks. The resulting collection has 447,127 basic blocks, composed of 2,205,466

instructions. Tables 6.2 and 6.3 offer more details about these benchmarks.

6.8 Empirical Results

We designed our experiments to answer the following questions: Can we schedule as

well as hand-crafted algorithms in production compilers? Can we schedule as well as the

best hand-crafted algorithms? We answer these questions with comparisons of program

execution times, as predicted from simulations of individual basic blocks (multiplied by

the number of executions of the blocks as measured in sample program runs) and with

actual running time measurements. The predicted execution time measure seems fair for

local instruction scheduling, since it omits the other execution time factors being ignored

in developing training instances. That is, the predicted time measure indicates how well

the learning algorithms learned the task as posed. The actual running time measurements

indicate whether doing well on the learning task carries over to actual performance im-

provements, which of course is what compiler implementers ultimately care about.
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Benchmark Description Source Number of Number of Avg Size of
Lines Blocks Instructions Blocks

compress Reduces the size of files using adaptive Lempel-Ziv
coding

1 422 4 596 20 152 4.385

gcc Based on the GNU C compiler version 2.5.3, builds
SPARC code

133 049 77 269 332 184 4.299

go Artificial intelligence: plays the game of go 25 362 16 095 80 900 5.026
ijpeg Graphic compression and decompression 17 449 12 033 70 928 5.894
li LISP interpreter running the Gabriel benchmarks 4 323 8 056 36 668 4.552
m88ksim Motorola 88100 microprocessor simulator runs test

program
12 026 10 121 46 438 4.588

perl Manipulates strings (anagrams) and prime numbers
in Perl

21 078 22 590 111 849 4.951

vortex Subset of a full object oriented database program
called VORTEx (Virtual Object Runtime EXposi-
tory)

41 034 32 624 180 331 5.528

Total 255 743 183 384 879 450 4.902

Table 6.3. Characteristics of SPEC95 C benchmarks.

The reason we used simulated cycle counts, too, was to consider inter-block interfer-

ence effects separately from cache effects. We set the simulator to treat every memory

access as a cache hit, so the simulated times reflect only inter-block effects. Answering the

optimality question is more difficult, since it is infeasible to generate optimal schedules for

long blocks. We offer a partial answer by measuring the number of optimal choices made

within small blocks.

To proceed, we selected a computer architecture implementation and a standard suite of

benchmark programs (SPEC95) compiled for that architecture. We extracted basic blocks

from the compiled programs and used them for training, testing, and evaluation as described

below.

6.8.1 Experimental Infrastructure

We chose the Digital Alpha [46] as our architecture for the instruction scheduling prob-

lem. When introduced it was the fastest scalar processor available, and from an instruction

dependence analysis standpoint its instruction set is simple. The 21064 implementation

of the instruction set [23] is interestingly complex, having two dissimilar pipelines and the

ability to issue two instructions per cycle (also called dual issue) if a complicated collection

of conditions hold. Instructions take from one to many tens of cycles to execute.
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Researchers at Digital made publicly available a simulator for basic blocks for the

21064, which indicates how many cycles a given block requires for execution, assuming

all memory references hit in the caches and translation look-aside buffers, and no resources

are busy when the basic block starts execution. When presenting a basic block one can

also request that the simulator apply a heuristic greedy scheduling algorithm. We call this

scheduler DEC.

6.8.2 Experimental Procedures

From the 18 SPEC95 programs, we used the ATOM tool [49] to extract all basic blocks,

and also to determine, for sample runs of each program, the number of times each basic

block was executed. For blocks having no more than ten instructions, we used exhaustive

search of all possible schedules to (a) find instruction decision points with pairs of choices

where one choice is optimal and the other is not, and (b) determine the best schedule cost

attainable for either decision. Schedule costs are always as judged by the DEC simulator.

This procedure produced over 13,000,000 distinct choice pairs, resulting in over 26,000,000

triples (given that swapping Ii and I j creates a counter-example). We selected 1% of the

choice pairs at random (always insuring we had matched pairs of example/counter-example

triples).

For each learning scheme we used leave-one-out cross-validation, previously described.

We evaluated two measures of execution time of the resulting schedules. The first measure,

predicted execution time, was computed as the sum of predicted basic block costs weighted

by execution frequency, with the frequencies taken from sample program runs as described

above. The predicted basic block costs are as produced by the DEC simulator. The second

measure is machine cycles as measured using the Alpha hardware performance counters.

The first measure is from a simulator and is hence repeatable. The second measure is on

actual hardware, and though we ran in single-user mode, we still saw variation from run to
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run. Therefore we performed 35 runs of each program to obtain reliable estimates of the

average running time and its variation.

6.8.3 Statistical Analysis Procedures and Results

Consider first our analysis of actual running times. In examining the distributions of

running times for each benchmark as scheduled by each scheduler, we found the distribu-

tions were not normal, so we used a non-parametric procedure (Friedman Repeated Mea-

sures Analysis of Variance (ANOVA) on Ranks) to compare schedulers. Since the absolute

running times of the 18 benchmarks vary widely, we first normalized all runs of each bench-

mark to the median time of the runs for the DEC scheduler (on the same benchmark). The

ANOVA test sorts the 3150 (18 benchmarks � 35 runs � 5 schedulers) normalized execu-

tion times and gives them ranks according to the sort. It then considers the rank numbers

for the 630 runs associated with each scheduler, and determines whether that scheduler’s

runs were faster, slower, or essentially the same as runs of each other scheduler, using a test

of statistical significance.

Table 6.4 shows the median (50th percentile) and 25th and 75th percentile normalized

execution times resulting from each scheduler’s runs, in order of increasing scheduler qual-

ity as determined by the ANOVA analysis.3 The difference in each pair of schedulers was

statistically significant (p �
� 05), but the table shows that the differences are small and

perhaps not of great practical significance, except that all heuristic schedulers noticeably

outperform random scheduling. (The Rand scheduler simply flips a coin at each decision

point.) The same information is presented graphically in Figure 6.1, which shows both the

variation over all runs, and the variation of the medians of the benchmarks.

We present the predicted execution time results in Table 6.5 and Figure 6.2. Again we

used an ANOVA test, but this time on the 18 predicted execution times, normalized to the

3The lines of the table really are in the proper order; the RULE scheduler produced enough times worse
than DEC times to be ranked slower than DEC.
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Scheduling Percentile
Scheme 50th 25th 75th
Rand 1.087 1.030 1.130
RULE 0.993 0.979 1.015
DEC 0.998 0.989 1.005
ELF 0.993 0.976 1.002
Orig 0.989 0.976 1.000

Table 6.4. Normalized Measured Execution Times

Rand RULE DEC ELF Orig
0.8

0.9

1.0

1.1
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all runs
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Figure 6.1. Normalized Measured Execution Times
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Figure 6.2. Predicted Execution Time

DEC scheduler predicted time. The analysis ranked the schedulers Rand � Orig � DEC �

ELF � RULE in quality (Rand worst, Orig next, and the other three equivalent).

Scheduling Percentile
Scheme 50th 25th 75th
Rand 1.246 1.134 1.540
Orig 1.019 1.012 1.031
RULE 1.000 0.999 1.002
DEC 1.000 1.000 1.000
ELF 1.000 0.995 1.002

Table 6.5. Predicted Execution Time

While there are a number of differences in the ranking of schedulers by measured exe-

cution time, predicted execution time, and the ANOVA analysis, overall the heuristic sched-

ulers perform similarly, and noticeably better than random.
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Another way of understanding the results is to see how often the schedulers make op-

timal choices. As previously explained, we can determine optimality only for small basic

blocks. We present these results in Table 6.8.3; it does not include the RULE scheduler.

We see that there is little room for improvement, at least in terms of our local instruction

scheduling goal. In separate experiments we determined that the DEC scheduler produces

optimal schedules for small blocks 99.5% of the time.

Scheduler % Optimal Choices (95% conf. int.)
ITI 97.777 (97.474, 98.081)
NN 97.496 (97.058, 97.936)
TLU 96.683 (96.229, 97.140)
ELF 96.568 (96.083, 97.055)

Table 6.6. Experimental Results: Optimal Choices in Small Blocks

We tried to improve effectiveness of our learned schedulers by adding more features, in

hopes of making optimal choices closer to 100% of the time. The features we added offered

no significant improvement. Indeed, with performance this close to optimal already, it may

be unrealistic to expect more.

The results show that all supervised learning techniques produce schedules predicted

to be better than the production compilers, but not as good as the DEC heuristic sched-

uler. This is a striking success, given the small number of features. As expected, table

lookup performs the best of the learning techniques. Curiously, relative performance in

terms of making optimal decisions does not correlate with relative performance in terms

of producing good schedules. This appears to be because in each program a few blocks

are executed very often, and thus contribute much to execution time, and large blocks are

executed disproportionately often. Still, both measures of performance are quite good.

What about reinforcement learning? McGovern et al. [36, 37] ran experiments with

temporal difference (TD) learning and the results were not as good. This problem appears

to be tricky to cast in a form suitable for TD, because TD looks at candidate instructions in
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isolation, rather than in a preference setting. It is also hard to provide an adequate reward

function and features predictive for the task at hand. We describe this work in more detail

in Section 6.10.

6.8.4 A Sample (Induced) Heuristic for the Alpha 21064

Some of the learning schemes we used produce boolean expressions that are difficult

for humans to understand, especially those based on numeric weights and thresholds, such

as ELF and NN. Decision trees (C4.5 and ITI) and rule sets are easier to comprehend, and it

is also relatively easy to generate code that will evaluate the learned preference expression

in a scheduler. We show below a rule set produced by Ripper. This rule set was learned

by training using examples drawn from all 18 SPEC benchmark programs. If the right

hand side condition of any rule (except the last) is met, then the first instruction of a pair is

preferred; otherwise the second is preferred. The numbers in the first two columns give the

number of correct and incorrect training examples matching the condition of the rule.

(77838/ 600) first � e � first
(15036/ 490) first � e � same � wcp � first
( 412/ 264) first � e � same � wcp � same � d � first � ic0 � ’load’
( 82/ 15) first � e � same � wcp � same � d � first � ic0 � ’store’
( 450/ 115) first � e � same � wcp � same � d � first � ic0 � ’ilogical’
( 190/ 20) first � e � same � wcp � same � d � first � ic0 � ’fpop’
( 81/ 39) first � e � same � wcp � same � d � first � ic0 � ’iarith’ � ic1 � ’load’
( 127/ 41) first � e � same � wcp � same � d � first � ic1 � ’iarith’
( 247/ 0) first � e � same � wcp � same � d � first � odd � ’yes’
( 225/ 93) first � e � same � wcp � same � d � both � ic0 � ’store’
( 320/ 44) first � e � same � wcp � same � d � both � ic0 � ’ilogical’ � ic1 � ’fpop’
( 22/ 0) first � e � same � wcp � same � d � both � ic0 � ’fpop’ � ic1 � ’load’
( 762/ 135) first � e � same � wcp � same � d � both � ic1 � ’load’ � odd � ’yes’
(96367/2130) second � true

In this case we see that e, the time before the instruction can start executing, and wcp,

the length of the critical path from the instruction to the end of the basic block, are the most

important features, with the rest offering fine tuning when e and wcp are identical for both

instructions.

6.9 Learning How to Schedule for Out-Of-Order Processors

What value does static instruction scheduling have in the face of out-of-order execution,

etc.? We have done some investigation on a newer processor (PowerPC 7410, described
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in Chapter 2), which has more “dynamic” scheduling (reordering of execution in the hard-

ware). We describe the features used to induce heuristics for this architecture. We then

describe some results we obtained using LOCO’s induced heuristics compared to hand-

tuned heuristics for this architecture. Finally, we examine the heuristic induced by LOCO.

6.9.1 Features

What properties will be predictive of how to schedule instructions on a newer, more

complex architecture? We used some of the same features from Table 6.1 that we used

for the older Alpha architecture, plus we added some additional features we thought might

help. Table 6.7 describes all the features we used.

Heuristic Name Heuristic Description Intuition for Use
Max Delay (e) The earliest cycle when the instruction can begin

to execute, relative to the current cycle
We want to schedule instructions that
will have their data and functional
unit available earliest.

Instruction Class (ic) We divide the target’s instructions into about 20
classes equivalent with respect to timing.

The instructions in each class can be
executed only in certain pipelines, etc.

Weighted Critical Path (wcp) The height of the instruction in the DAG (the
length of the longest chain of instructions depen-
dent on this one), with edges weighted by ex-
pected latency of the result produced by the in-
struction.

Instructions on longer weighted crit-
ical paths should be scheduled first,
because they directly affect the lower
bound of the schedule cost.

Critical Path (cp) The height of the instruction in the DAG (the
length of the longest chain of instructions depen-
dent on this one), with edges weighted by 1.

Instructions on longer critical paths
should be scheduled first, because
they directly affect the lower bound
of the schedule cost. This feature is
slightly cheaper than wcp because it
does required looking up an instruc-
tion’s latency.

Latency The expected time it takes for an instruction’s re-
sult to become available.

We want to schedule instructions that
have a longer latency first.

Descendents The number of instructions that are below this in-
struction in the DAG.

We want to schedule instructions that
are the root of a large sub-tree in the
DAG.

Parents The number of instructions that this instruction is
immediately dependent on.

We may want to postpone scheduling
an instruction with a large number of
parents, because it might take longer
for its result to be available.

Children The number of instructions that are immediately
dependent on this instruction.

We want to schedule instructions that
have a potentially large number of in-
structions that it can make available.

Table 6.7. Features for Instructions and Partial Schedule
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6.9.2 Results

Table 6.8 shows results using a list scheduling heuristic (LIST) and scheduling using

an induced heuristic (RULE) as compared to not scheduling. Static scheduling does give

smaller percentage improvement on this architecture; however, we still see useful improve-

ments for some programs. Benchmark javac shows a degradation in performance when

using the list scheduling heuristic versus our induced heuristic! In fact, our induced heuris-

tic is on average 1% better than the hand-tuned heuristic. This slight improvement is,

however, small, and could be explained by cache or other architectural effects. We do see

that our induced heuristics for these more recent machines are comparable to hand-tuned

heuristics.

Program LIST RULE

compress 91.9% 91.9%
db 100.1% 99.5%
jack 100.6% 100.5%
javac 108.9% 100.6%
mpegaudio 88.2% 88.0%
raytrace 94.5% 94.6%
jess 100.3% 100.5%
geo mean 97.6% 96.4%

Table 6.8. LIST � list scheduling heuristic; RULE � induced scheduling heuristic.

6.9.3 A Sample (Induced) Heuristic for the PowerPC 7410

Using Ripper, we generated preference functions that determined how to schedule for

the PowerPC architecture. Analyzing the automatically generated heuristics, we found

that certain features, namely e and wcp, were most important, with other features offering

fine-tuning when e and wcp were identical for both instructions. This shows that Ripper

can find the most important features included in the feature set. One interesting special

case (third to last rule) that LOCO finds is to schedule an instruction first if the second

instruction is on the weighted critical path, the second instruction has more parents, and
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the first instruction is of the “pseudo” class. Instructions that are of “pseudo” class are

“fake” instructions added by the compiler to respect certain dependencies in the DAG.

Thus a “pseudo” instruction disallows movement of instructions above or below it, so it

makes sense to prefer to schedule it first.

first � e � first � wcp � first
first � e � same � cp � first � onWcp1 � true
first � e � first � cp � first
first � e � same � wcp � first � cp � first � iclass1 � ’integer’ � onWcp2 � true
first � e � same � cp � first � latency � first
first � e � same � wcp � first � cp � first � latency � same
first � e � first � latency � same � parents � same � children � first
first � e � first � latency � same � parents � second
first � e � second � latency � same � children � second � onWcp1=false
first � wcp � first � cp � first � latency � second � parents � second � iclass2 � ’integer’
first � wcp � first � latency � same � parents � second � decendents � same
first � wcp � first � parents � second � iclass1 � ’psuedo’
first � wcp � first � parents � second � onWcp2 � true
second � true

6.10 Related Work

We previously reported [39] some of the results presented here. To that prior work

we have added the RULE scheduler, the measured execution times and improved statisti-

cal analyses. The validation of prior estimated execution times with actual and simulated

measurements is crucial to demonstrating the effectiveness of our technique in practice.

We also reran some of the experiments in this chapter on an out-of-order processor (that

dynamically schedules instructions as they execute in the processor). These experiments

were run under the Jikes RVM compilation environment. These experiments further vali-

date that the LOCO methodology can produce heuristics that are comparable to hand-tuned

heuristics.

We also found a few pieces of work closely related to the work in this chapter. One is

a patent [55]. From the patent’s claims it appears that the inventors used a scheduler with

heuristics weighted by the weights in something like a neural network. They evaluate each

weight setting by scheduling an entire benchmark suite, running the resulting programs,

and using the resulting times to choose among a set of possible weight adjustments. The

inventors’ approach appears to us to be potentially very time-consuming. It does have two

advantages over our technique: in the learning process it uses measured execution times
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rather than simulated times, and it does not require a timing simulator. Being a patent, this

work does not state any experimental results.

We now describe some related work on constructing scheduling heuristics using ma-

chine learning algorithms, namely genetic algorithms and reinforcement learning.

6.10.1 Genetic Algorithms

Genetic algorithms (GAs) [31] provide an approach to learning that is loosely based

on evolution. GAs often describe their hypotheses as bit strings (although they can also

be described by symbolic expressions or even computer programs) whose interpretation

depends on the application. The search for the best hypothesis begins with a population,

or collection, of initial hypotheses. At each step, the hypotheses in the current population

are evaluated according to a fitness function. The current population is then updated by

replacing a fraction of the population by the offspring of the most fit hypotheses. GAs

are capable of searching high-dimensional spaces and can search spaces of hypotheses

containing complex interacting parts, where the impact of each part on hypothesis fitness

may be difficult to model. This latter characteristic can be especially useful to compiler

writers because of the complex interaction of different optimizations and the complexity

of developing a model to simulate today’s processors. However, evaluating the fitness of

a hypothesis (especially, in the domain of compiler construction) can be costly—the time

required to iterate a population through several generations is often measured in days.

Beaty et al. [8] applied genetic algorithms to the problem of instruction scheduling.

They presented a method in which a genetic algorithm is allowed to choose the order of

instructions to be placed in the schedule. The genetic algorithm trains and schedules si-

multaneously, and it must be retrained for every new block. Beaty shows that genetic

algorithms are able to schedule code as well as or better than existing scheduling methods

on a few benchmarks. Like Boltzmann machines, genetic algorithms are prohibitively ex-

pensive, requiring several hundred iterations before a good schedule is found. This method
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also produces invalid schedules, which adds to its high cost. Given the high computation

cost of genetic algorithms and the large number of iterations needed to schedule a block,

this is not a viable solution for commercial compilers. In contrast, our technique would

allow learning to be turned off when performance had reached an acceptable level. A con-

sequence of this is that our technique would be as efficient as hand-coded techniques in

the speed in which code was scheduled and allocated. In defense of Beaty et al. and other

approaches that use expensive scheduling techniques: these techniques might be applied

only to the very “hottest” blocks.

6.10.2 Reinforcement Learning

Another area of machine learning that has been used for constructing scheduling heuris-

tics is reinforcement learning. Reinforcement learning is learning how to map situations

to actions so as to maximize a numerical reward signal [54]. The learner or agent is not

told what action to perform, as in most other forms of machine learning, but instead dis-

covers which actions yield the most reward, through trial and error. Supervised learning,

in contrast, is learning from examples that are provided by some external knowledgeable

supervisor. Learning from examples is an important kind of learning, but alone it is inad-

equate for learning in large or uncertain environments. In environments such as these, it

is often impractical to obtain correct and representative examples of all situations an agent

may encounter. For example, in instruction scheduling it may be easier to learn through

trial and error which of a number of schedules is best as opposed to having a knowledgeable

scheduler give the best schedule possible from a sequence of instructions. It is beneficial

that the agent be allowed to interact with its environment and to learn from its own expe-

riences. Beyond an agent and its environment, the main components of a reinforcement

learning systems are policy, a reward function, and a value function.

A policy is a mapping of the states of the environment to actions the agent will perform

when in those states. The policy defines the way the agent behaves in the environment.
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A reward function is a mapping of the states of the environment to a number, a reward,

indicating the desirability of being in that state. The reward function defines the goal of

the reinforcement learning problem. Whereas reward functions indicate to the agent which

states are good in the short term, value functions indicate to the agent the long term good-

ness of starting from a state. The value of a state is the total amount of reward expected to

accumulate starting from that state. Rewards are immediate while values are predictions of

future rewards. We build predictions of values with rewards, and the purpose of estimating

values is to achieve more reward.

McGovern et al. [36, 37] had some success in applying reinforcement learning (RL)

to the same learning task we solved in this chapter. Using RL, they achieved performance

within a few percent of commercial compilers. However, they never induced a heuristic

that beat the tuned heuristics produced by LOCO. RL has the advantage of not requiring

a model of the environment from which to learn. Instead, it learns from past experience

and via exploratory search. Thus, there may be some problems that one can solve more

effectively using RL, in contrast to using LOCO.

Other researchers have used reinforcement learning in other scheduling domains. For

instance, Zhang and Dietterich [65] describe a technique using reinforcement learning to

learn a control policy for a NASA scheduling problem. They showed that their technique

was more effective than the previous best known method, which used a non-learning search

procedure—a method based on simulated annealing. The NASA scheduling problem is a

specific type of resource-constraint problem. The NASA scheduling problem consists of

certain tasks that must be scheduled before and after a space shuttle launch. Each task

has a duration, a set of prerequisite tasks, and one or more resource requirements. The

constraints are that the starting time of each task must come after each of its prerequisite

tasks have completed and the sum of all resources allocated of each type must not exceed

the total amount of resources available. The problem is solved as a state space search where

the starting state is a critical path schedule, in which each task prior to launch is scheduled
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as late as possible and every task after landing is scheduled as early as possible, subject to

prerequisite tasks but ignoring resource constraints.

6.10.3 Iterative Repair

The general framework of iterative repair comes from the AI community [34]. The

technique has shown promise for several scheduling applications including space shuttle

mission scheduling [65]. The general idea is to construct a schedule that begins each op-

eration as early as possible with respect to precedence constraints, ignoring resource con-

straints. In effect, the algorithm constructs a schedule assuming unlimited resources. The

process continues by removing operations, called unscheduling, that conflict and inserting

them back into the schedule, called rescheduling at a later point. The process of unschedul-

ing and rescheduling is called repair. The algorithm then tries to repair the schedule by

finding the first operation that will stall due to a resource constraint and moving it, along

with its predecessors, to a point in the schedule that satisfies its resource constraints (always

respecting precedence constraints). We continue repairing the schedule, iterating until there

are no more resource constraints.

Philip Schielke [45] used iterative repair (IR) methods for local and global scheduling.

Schielke was able to find only small improvements in performance compared to hand-tuned

heuristics. Schielke suggests improvements to the base algorithm of IR which he terms IR-

RDF and IR-BIAS.

IR-RDF uses an evaluation function to evaluate whether moving an instruction will

produce a better schedule than the previous one. The RDF equals the number of cycles in

the schedule multiplied by the number of functional units plus the number of operations

that need to be moved due to a resource conflict. If moving an instruction produces a new

schedule with a lower RDF than the previous schedule, the instruction is moved, otherwise

it stays in its position in the schedule regardless of resource constraints.
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Schielke introduces another improvement to the basic IR algorithm, called IR-BIAS.

IR-BIAS uses the same rescheduling technique as in IR-RDF, but it biases the selection

of which conflicting instruction to move. Before performing scheduling, Schielke assigns

priorities to instructions using list scheduling. Operations with a higher priority are less

likely to be selected for moving, thus high priority nodes have a better chance of appearing

earlier in the schedule. Schielke has performed some preliminary experiments that show

IR-RDF and IR-BIAS outperform list scheduling at the task of global scheduling.

Our technique for constructing heuristics differs in several important ways. First, our

methodology searches for heuristics only during the learning phase of our algorithm. Once

our algorithm has found a “good” heuristic, the heuristic is used to construct only one se-

quence of instructions. In contrast, iterative repair methods construct many different sched-

ules and can therefore be expensive. Also, iterative methods are stochastic and therefore

the heuristics produced are unstable.

6.11 Summary

The majority of the effort in this research was in determining how to cast this problem

in a form suitable for machine learning. Once that form was accomplished, supervised

learning produced quite good results on this practical problem. Here are some significant

points about this research.

� Using LOCO we constructed heuristics comparable to two vendor production com-

pilers, as shown on a standard benchmark suites.

� Learning with the goal of minimizing each basic block’s execution time, ignoring

other blocks and the effects of memory hierarchy, worked well in the presence of

those effects. That is, local instruction scheduling improvements generally carried

over to overall execution time.
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� Several supervised learning schemes performed about as well, with only minor per-

formance differences between them.

� Adding examples from large blocks, obtained using Monte Carlo techniques to limit

the search for optimal schedules, offered no significant improvement.

Our primary conclusion is that machine learning can find, automatically, quite compe-

tent local instruction scheduling heuristics.
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CHAPTER 7

RELATED WORK IN APPLYING LEARNING TO COMPILATION

For each chapter we include a related work section, when appropriate that reviews

research relevant to that chapter. This chapter reviews research that is not so much related

to any individual chapter as much as it is related to the entire dissertation. This chapter

reviews several pieces of work related to applying machine learning to compilation.

Calder et al. [14] used supervised learning, namely decision trees and neural networks,

to induce static branch prediction heuristics. Their approach gave a misprediction rate of

20%, versus 25% from the best hand-crafted branch predictors at the time. Their learning

methodology is similar to ours, but there are important differences. First, their technique

was not applied to a compiler optimization. Static branch prediction is a technique that can

enable optimizations. For example, it can assist in predicting which basic blocks should be

concatenated in superblock formation. Second, their technique made it inherently easy to

determine a label for their training instances. The optimal choice for predicting a branch

was easily obtained by instrumenting their benchmarks to observe each branch’s most likely

direction. However, solving our optimization problems involved using models to predict

what the best choice to make is. The inherent inaccuracies in using a model required us to

use a technique we called thresholding to achieve the best results in learning. The last and

final difference from this work and ours was that there was a lot of prior work in solving

this problem by hand. This gave Calder et al. plenty of features from which to draw, which

assisted them in applying learning successfully to this problem.

Monsifrot et al. [38] use a classifier based on decision tree learning to determine which

loops to unroll. As in Calder et al. [14], there was a lot of previous work in solving this
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problem, giving the researchers many hand-coded heuristics from which to draw features.

In contrast to our approach, they obtain labels by using real machine measurements. Their

learning methodology is as follows. They measure the effect of unrolling and not unrolling

each loop in isolation by measuring the performance benefits of unrolling the loop on a

real machine. They use a technique similar to thresholding to label their training instances.

If the effect of unrolling the loop is beneficial by more than 10%, they create a positive

training example pertaining to the loop. If unrolling the loop causes a 10% degradation in

performance, they generate a negative training example. They looked at the performance

of compiling Fortran programs from the SPEC benchmark suite using g77 for two different

architectures, an UltraSPARC and an IA64. They showed an improvement over the hand-

tuned heuristic of 3% and 2.7% over g77’s unrolling strategy on the IA64 and UltraSPARC,

respectively.

A group of researchers at MIT used genetic algorithms to tune heuristic priority func-

tions in three compiler optimizations [52]. They randomly generated expressions for a

priority function for a specific compiler optimization, forming an initial population for a

genetic algorithm. They performed crossovers and mutations by modifying the expres-

sions with relational and/or real-valued functions of random expressions. They derived

priority functions for these tasks: hyperblock selection, spilling in register allocation, and

data prefetching. Their generated heuristics outperformed hand-crafted ones on an archi-

tectural simulator. (However, simply by producing 399 heuristics at random and choosing

the best they were able to outperform the hand-crafted heuristics.) Iterating the genetic

programming produced a significantly better result only for the spilling priority function

in register allocation, and it stabilized to the best performing genomes in a few iterations.

Unsupervised learning techniques, such as genetic algorithms, have one main advantage

over LOCO in that they do not require labels for their training examples. In contrast, su-

pervised learning techniques learn by matching training inputs with known outcomes. In

all 3 cases, determining a good outcome is not a problem. Supervised learning algorithms
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are easier to get working right and producing good results, and the resulting functions are

typically more human-readable. This genetic programming work took days of computer

time to derive a heuristic, whereas our supervised learning procedure completes in seconds

(once we have developed the training instances).

The same MIT researchers also introduced a technique similar to the research per-

formed by Monsifrot et al. [38]. This work presents an incremental, though important,

improvement over Monsifrot’s research. Previous work by Monsifrot et al. solved the bi-

nary classification problem of determining whether a loop would benefit from unrolling.

This paper solves this same problem, then goes one step further in solving the multi-

classification problem of choosing the appropriate factor by which a loop should be un-

rolled. They use a supervised learning algorithm called nearest neighbor. The heuristic

induced by the classifier is able to choose the optimal or near optimal factor for unrolling

74% of time compared to the hand-tuned heuristic found in the Open Research Compiler

(ORC), which chooses the near optimal factor only 37% of the time. Using nearest neigh-

bor, the authors can construct heuristics that realize running time speedups on the SPEC

benchmarks of 6% over ORC with loop unrolling.

Cooper et al. [21] use genetic algorithms to solve the compilation phase ordering prob-

lem. They were concerned with finding “good” compiler optimization sequences that re-

duced code size. Unfortunately, their technique is application-specific. That is, a genetic

algorithm has to retrain for each program to decide the best optimization sequence for

that program. The genetic algorithm builds up chromosomes pertaining to different se-

quences of optimizations and adapts these for each individual program. Mutations can

involve adding new optimizations into the sequence or removing existing ones from the

sequence. Their technique was successful at reducing code size by as much as 40%.

Alessandro De Gloria and Paolo Faraboschi suggest a method of code compaction on

very long instruction word (VLIW) architectures using Boltzmann machines [27]. Code

compaction in VLIW architectures is the problem of assigning instructions into a mini-
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mum number of large instruction packets (each packet corresponds to a very long instruc-

tion word, hence the name VLIW). The problem of code compaction has many of the

same properties as instruction scheduling. Boltzmann machines are a class of neural net-

works that use simulated annealing in their learning procedure [30]. The authors looked

at compacting code for seven basic blocks ranging in size from 13 to 39. They show, by

performing several hundred annealing iterations, that they are able to achieve performance

equivalent to “hand-compiled” code. Unfortunately, like simulated annealing, this method

is very computationally intensive, requiring many iterations over a training set before the

learning procedure converges. Another problem with the scheduling technique introduced

in the paper is that it is allowed to schedule instructions arbitrarily without regard to data

dependency constraints. Therefore, along with valid schedules the technique can also pro-

duce many invalid schedules. Their solution is to check the validity of the schedule against

the original data dependence DAG, but this adds costly computation. Also, a Boltzmann

machine must be retrained for each different basic block that is being scheduled. To alle-

viate the problem of the expensive learning procedure, the authors suggest the possibility

of having many Boltzmann machines implemented in hardware and scheduling different

basic blocks concurrently.
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CHAPTER 8

DISCUSSION

This dissertation describes a process for constructing compiler heuristics automatically

that we call LOCO. We introduce a taxonomy of compiler heuristics and then use LOCO

to construct heuristics for three different compiler problems.

Using LOCO, we construct automatically a heuristic called a filter that controls whether

or not an optimization is performed. Specifically, we constructed filters to predict when

instruction scheduling is beneficial, significantly reducing the cost of scheduling (by 75%)

while still retaining most of its benefit of scheduling always.

For the second compiler problem we solved we constructed a heuristic, which we call

hybrid optimization, that controls which algorithm to use from a set of two or more dif-

ferent register allocation algorithms. Our hybrid register allocator chooses between either

graph coloring or linear scan for each method that gets compiled. Hybrid allocators are

typically as effective (and in some cases more effective) at achieving low benchmark run-

ning times as graph coloring allocators, while significantly reducing the amount of effort

spent allocating registers.

Finally, we used LOCO to construct successfully heuristics that control how to schedule

instructions. For two different architectures, LOCO induced heuristics that produced code

comparable to that produced by hand-tuned heuristics.

We now discuss some general principles learned over the course of this research.
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8.1 Features and Heuristics: Simple and Cheap

Constructing features is a very important step in the process of applying LOCO to a

compiler problem. The features used must be predictive as well as cheap-to-compute. We

found that a little domain knowledge was sufficient to choose good features successfully.

For the compiler problems in this dissertation, we were able to construct features that were

adequate to solve the problems competently. Also, the cost of computing the features (and

the heuristic) is relatively low compared to the cost of the optimization they control.

In Chapter 6 we developed heuristics for a well-known compiler problem (list schedul-

ing) and thus there was ample previous work from which to draw features. It was therefore

not completely surprising that we were able to devise a set of features that could be used

to construct effective heuristics. In contrast, considering that there was no prior work for

the research done in Chapter 4 and Chapter 5, we were surprised to discover that we could

develop simple heuristics that solve those problems effectively. We also found that using a

technique called thresholding allowed us to induce the best performing heuristics.

8.2 Supervised Learning: Excellent Function Inducers

A critical component of the LOCO methodology is supervised learning algorithms. Su-

pervised learning algorithms induce heuristic functions automatically from training data.

We found that supervised learning was excellent at solving the problems we tackled. In

Chapter 6 we induced heuristics, automatically, using supervised learning, whose perfor-

mance was comparable to hand-tuned heuristics on this well-studied problem. We also

found that a variety of learning algorithms all had low classification error rates and thus

performed equally well. We conclude that the compiler problems we tackled were not

difficult learning problems.
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Figure 8.1. Percentage of Time Spent in Compiler Optimizations

8.3 Compiler Optimizations

As mentioned through the course of this research we noticed that there were several

different classes of compiler heuristics, which we introduced in Chapter1. We believe we

are the first to construct heuristics for two of these classes: filters and hybrid optimizations.

These heuristics are important innovations in compiler research. The research in this dis-

sertation clearly shows that we can use simple models to predict performance adequately

on a real machine. The fact that we were able to induce effective heuristics validates this.

We construct heuristics automatically for two important compiler optimizations that,

combined, account for about 25% to 30% of compile time. Figure 8.1 shows the percentage

of time taken in different optimization phases for raytrace compiled at the highest level of

optimization possible. These percentages are representative of the other Java benchmarks in

this study. SSA Transformations pertains to various transformations performed during SSA
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(static single assignment) based optimizations, including going into and out of SSA form.

From the figure we can see that we might want to build filters and/or hybrid optimizations

for optimizations Array Load Elimination and Global Code Placement.

8.4 Speculations

The ease with which we were able to construct effective feature sets may have some-

thing to do with the types of optimizations with which we experimented. All the opti-

mizations we looked at in this dissertation were back-end optimizations; that is, they are

applied during the final stages of compilation. The fact that these optimizations transform

low-level code makes it easier to estimate the performance effects of transformations as

opposed to optimizations done at a higher-level. It may be more difficult to apply LOCO

successfully to optimizations closer to the front end of the compiler. In future work we

intend on answering this question by applying LOCO to higher-level optimizations.

We have at least some anecdotal evidence that supervised learning is preferable to use

for solving compiler problems than other machine learning techniques, such as genetic al-

gorithms or reinforcement learning. Genetic algorithms can take days of computer time to

derive a heuristic [52], whereas our supervised learning procedure completes in seconds

(once we have developed the training instances). Also, these techniques can take a con-

siderable amount of tuning to achieve the best result. McGovern et al. [36, 37] had some

success in applying reinforcement learning to solve the same problem in Chapter 6. They

achieved performance within a few percent of commercial compilers. However, they never

induced a heuristic that beat the tuned heuristics produced by LOCO.
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CHAPTER 9

CONCLUSIONS

This dissertation has contributed to both the understanding of compiler heuristics and

how to induce compiler heuristics automatically with supervised learning. In this chapter,

we recap the key contributions of the dissertation and discuss directions for future research.

9.1 Key Contributions

This dissertation describes a methodology of solving compiler problems we call LOCO.

We used LOCO to induce heuristics for three different compiler problems: (1) learning

whether to optimize, (2) learning which optimization algorithm to use, and (3) learning

how to optimize. Our solution is the first one automatically and quickly to induce effective

and efficient heuristics for these three problems. Our primary conclusion of this dissertation

is that supervised learning can find, automatically, quite competent compiler heuristics.

9.1.1 Learning Whether to Optimize

Choosing whether to apply potentially costly compiler optimizations is an important

open problem. In Chapter 4 we considered the particular case of instruction scheduling,

with the possible choices being a traditional list scheduler (LS) and no scheduling (NS). In

that chapter, we demonstrated that it is possible to induce a function that is competent at

making this choice: we obtain almost all the benefit of LS at less than 1/4 of the cost. We

also found that thresholds helped in improving both the efficiency and the effectiveness of

our induced function.
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9.1.2 Learning Which Optimization to Use

Choosing which optimization algorithm to apply among different optimization algo-

rithms that differ in efficiency and effectiveness can avoid potentially costly compiler op-

timizations. In Chapter 5 we considered the particular case of register allocation, with

the possible choices being linear scan (LS), graph coloring (GC), and hybrid allocators

that choose between these two algorithms. What we demonstrated, for an aggressive op-

timizing compiler (optimization level O3 in Jikes RVM), is that it is possible to induce a

function that is competent at making this choice: we obtain almost all the benefit of GC at

less than 42% of the cost. This work also shows that thresholds can help in improving the

effectiveness and efficiency of our hybrid allocators.

9.1.3 Learning How to Optimize

Choosing how to control an optimization algorithm is the task of heuristic functions,

typically called priority functions. In Chapter 6 we considered the particular case of in-

ducing the heuristic that controls how to schedule a block. We showed that we could con-

struct heuristics comparable to two vendor production compilers, as shown on two standard

benchmark suites.

9.2 Future Directions

We have made significant inroads into understanding and developing a methodology for

using supervised learning to solve compiler problems, but substantial work remains toward

the goal of achieving a comprehensive study of applying machine learning to compilers. In

what follows we discuss several directions for future work.

To date there is only anecdotal evidence to prefer supervised learning over other ma-

chine learning algorithms, specifically genetic algorithms and reinforcement learning. It

would be interesting to have a head-to-head comparison of these techniques at solving a

similar problem. It is clear that supervised learning has the edge in efficiency, but can other
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machine learning algorithms find other heuristics that outperform any heuristic induced

from supervised learning algorithms?

We would also like to use LOCO to construct heuristics to control other optimizations.

More complex compiler optimizations, such as redundancy elimination, almost certainly

need more complex features to use in deciding if the optimization is likely to be worthwhile,

but we hope that this positive experience will inspire success on harder problems.

I would also like to use techniques inspired by LOCO to induce heuristics for other

software systems. For example, one might apply LOCO to construct heuristics that con-

trol which garbage collection algorithm to apply at a particular point during a program’s

execution. There is some preliminary evidence [48] showing that using a technique of dy-

namically hot-swapping different garbage collection algorithms at different points during a

program’s execution can be beneficial.

We feel that LOCO could be used for any heuristic found within an optimizing com-

piler. We intend on applying LOCO to a variety of optimizations, especially ones that can

stress the methodology. For example, heuristics used to control compilation for dynamic

environments (such as FPGAs) or for large scale multiprocessor systems (such as Grid

systems).

This dissertation showed that thresholding is a key component in getting the most bene-

fit of LOCO. Using thresholding involves a fair amount of search to find the best threshold

values. We intend on constructing a technique of automating the search process for finding

good threshold values.
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APPENDIX A

HYBRID ALLOCATOR RESULTS FOR OPTIMIZATION LEVEL
O3

We present effectiveness results in the following figures (Figures A.1 through A.4)

using hybrid, linear scan, and graph coloring allocators for different register set sizes for an

aggressive optimization level (O3). This optimization level includes an optimization called

live-range splitting, which is performed as a side-effect of going into and out of SSA form.

This optimization splits live ranges, reducing conflicts between variables, and thus allowing

register allocation algorithms to do a better job of allocating registers to variables. These

graphs show that as the number of available registers increases, there is less difference in

performance of the different allocators. We now highlight some interesting results from

this set of graphs. For a register set size of 12, graph coloring has a significant benefit for

benchmarks db, compress, and mpegaudio. Our hybrid allocators correctly choose

when to apply graph coloring for benchmarks db and compress. However, Figure A.1

suggests that for compress, most of the hybrids (except B64kC50) miss allocating one or

more important methods with graph coloring and therefore fail to achieve the same level of

performance as GC. For a register set size of 16, hybrid allocators achieve the performance

of GC on db and mpegaudio, although there is a large degradation in performance for

jack. For the rest of the graphs we see similar performance between graph coloring and

our hybrids. For this optimization level, we see that the hybrids are between 70% to 40%

more efficient that GC.
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Figure A.1. Efficiency and Effectiveness Using Hybrid Allocators with Opt Level O3 (12
Regs).
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Figure A.3. Efficiency and Effectiveness Using Hybrid Allocators with Opt Level O3 (20
Regs).
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Figure A.4. Efficiency and Effectiveness Using Hybrid Allocators with Opt Level O3 (24
Regs).
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APPENDIX B

HYBRID ALLOCATOR RESULTS FOR OPTIMIZATION LEVEL
O1

We present effectiveness results in the following figures (Figures B.1 through B.4) us-

ing hybrid, linear scan, and graph coloring allocators for different register set sizes for a less

aggressive optimization level (O1). This optimization level includes cheap optimizations.

Because this optimization does not include live-range splitting, there is not as large a dif-

ference in performance between the different allocators. Again, as the number of available

registers increases, graph coloring has less benefit, therefore linear scan should be preferred

more often. There are two important differences between the graphs for this optimization

level and those for optimization level O3. First, there is a significant drop in register allo-

cation effort when using hybrid for this optimization level. For the most part, the hybrid

allocators take 40% of the time to allocate registers than does GC. Also, for this optimiza-

tion level we see that hybrid allocators can outperform graph coloring. For benchmarks db

and mpegaudio (for all register set sizes), our hybrid allocators show more benefit than

always applying graph coloring.
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Figure B.1. Efficiency and Effectiveness Using Hybrid Allocators with Opt Level O1 (12
Regs).
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Figure B.2. Efficiency and Effectiveness Using Hybrid Allocators with Opt Level O1 (16
Regs).
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Figure B.3. Efficiency and Effectiveness Using Hybrid Allocators with Opt Level O1 (20
Regs).
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Figure B.4. Efficiency and Effectiveness Using Hybrid Allocators with Opt Level O1 (24
Regs).
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