
TBD

A Transactional Memory with Automatic Performance Tuning

QINGPING WANG, Lehigh University
SAMEER KULKARNI, University of Delaware
JOHN CAVAZOS, University of Delaware
MICHAEL SPEAR, Lehigh University

A significant obstacle to the acceptance of transactional memory (TM) in real-world parallel programs is the abundance of
substantially different TM algorithms. Each TM algorithm appears well-suited to certain workload characteristics, but the
best choice of algorithm is sensitive to program inputs, available cores, and program phases. Furthermore, operating system
and hardware characteristics can affect which algorithm is best, with tradeoffs changing across iterations of a single ISA.

This paper introduces methods for constructing policies to dynamically select the most appropriate TM algorithm based
on static and dynamic information. We leverage intraprocedural static analysis to create a static profile of the application.
We also introduce a low-overhead framework for dynamic profiling of a running transactional application. Armed with these
complementary descriptions of a program’s behavior, we present novel expert adaptivity policies as well as machine learning
policies that are trained off-line using simple microbenchmarks. In our evaluation, we find that both the expert and learned
policies provide better performance than any single TM algorithm across the entire STAMP benchmark suite. In addition,
policies that combine expert and learned policies offer the best combination of performance, maintainability, and flexibility.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Programming—Parallel Programming;
D.3.3 [Programming Languages]: Language Constructs and Features—Concurrent Programming Structures

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Atomicity, Serializability, Synchronization, Dynamic Adaptivity, Machine Learning

ACM Reference Format:
Wang, Q., Kulkarni, S., Cavazos, J., and Spear, M. 2012. A transactional memory with automatic performance tuning. ACM
Trans. Architec. Code Optim. 9, 4, Article TBD (March 2012), 20 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
Designers of general-purpose software components must strike an acceptable balance between max-
imizing performance in the common case and minimizing pathological problems in cases that are
expected to be rare. As software complexity grows, this task grows increasingly challenging. The
situation is particularly true for shared memory parallel programs, where architectural and workload
characteristics dramatically affect the relative merit of various synchronization mechanisms.

In this paper, we focus on Transactional Memory (TM) [Harris et al. 2010]. There are more than a
dozen software TM (STM) algorithms, each of which defines the common case differently: some are
best for linked data structures, some for small operations on matrices, and others for read-dominated
workloads. Some expect a strong language-level memory model, and some assume hardware will
provide low cache miss latency and fast atomic instructions, such as compare-and-swap (CAS).

At Lehigh University, this research was sponsored in part by the National Science Foundation Grant CNS-1016828. At the
University of Delaware, this research was sponsored in part by the DARPA Computer Science Study Group (CSSG) and
National Science Foundation Career Award 0953667.
Author’s addresses: Q. Wang and M. Spear, Computer Science and Engineering Department, Lehigh University; S. Kulkarni
and J. Cavazos, Computer and Information Sciences Department, University of Delaware.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2012 ACM 1544-3566/2012/03-ARTTBD $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article TBD, Publication date: March 2012.

TBD:2 Q. Wang et al.

10

12

14

T
im

e
 (

s
e

c
o

n
d

s
)

LSA

NOrec

TL2

TLRW

Nano

0

2

4

6

8

0 2 4 6 8 10 12

T
im

e
 (

s
e

c
o

n
d

s
)

Threads

Fig. 1. Performance of the STAMP SSCA2 workload for common STM algorithms. The “Nano” algorithm is asymptoti-
cally worse than every algorithm tested, yet it is often best in workloads with short transactions.

From one iteration of an instruction set architecture to the next, hardware characteristics can
change. Similarly, multi-chip systems behave differently than single-chip systems. Even on a fixed
platform, behavior can vary due to sensitivity to program inputs [Hong et al. 2010] or phases of
program execution [Shen et al. 2004; Lau et al. 2006]. As heterogeneity increases, the possibility of
identifying any single TM algorithm as “best” grows increasingly unlikely.

We propose a comprehensive framework through which a TM runtime system can automatically
tune its performance. In addition to measuring static properties of a transactional application, we
introduce a dynamic profiling framework for TM. By combining these complementary approaches,
we can develop rich descriptions of a workload without relying on complex analysis.

Armed with this information, we introduce expert heuristics and adaptivity mechanisms based on
machine learning (ML). We take as inspiration applications of machine learning to solve systems
problems [Stephenson et al. 2003; Kulkarni et al. 2004; Pouchet et al. 2008; Yotov et al. 2003].
Previous studies developed novel ML-based solutions for efficiently selecting compiler optimiza-
tions [Cooper et al. 2005; Agakov et al. 2006; Cavazos and O’Boyle 2006; Fursin et al. 2008],
finding the best values for transformation parameters [Monsifrot et al. 2002; Stephenson and Ama-
rasinghe 2005; Cavazos and O’Boyle 2005], and choosing the best algorithm to use for a particular
sequential task [Li et al. 2004; 2005], to name a few examples. We extend the concept of ML-based
adaptive runtime systems to apply to parallel programs and show three distinct ML techniques that
can be employed in our general-purpose framework. Using a combination of static and dynamic
information, our system can select among a broad set of TM algorithms during execution to select
the algorithm most likely to maximize the performance of the in-flight program.

Our adaptive policies outperform any individual algorithm on the STAMP benchmark suite [Minh
et al. 2008], and offer significant improvement when a strong language-level memory model is
required. Our static analysis allows selection of high-performance special-purpose algorithms, and
our dynamic mechanisms can exploit differences in program behavior over time to outperform any
single algorithm for almost all workloads. As an example of the first property, consider Figure 1. The
best performing algorithm is “Nano”, a locking version of the original WSTM [Harris and Fraser
2003]. Nano is unsuitable for general-purpose STM workloads, as it has O(reads2) overhead, while
the other algorithms have O(reads) overhead. However, Nano has no metadata bottlenecks. For
SSCA2’s short transactions, our policies determine that Nano will provide the best performance.

This paper makes four main contributions:

— We present the first use of ML for runtime STM algorithm selection. Our system leverages static
analysis and dynamic profiling, and considers strong and weak language-level memory models.

— Our best policies outperform any single algorithm across the entire STAMP benchmark suite.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article TBD, Publication date: March 2012.

A Transactional Memory with Automatic Performance Tuning TBD:3

— We identify static and dynamic characteristics (i.e., features) for the task of choosing the best
STM algorithm for each phase of a program, and quantify their importance.

— Our technique can adapt to new architectures by simply retraining itself at install time.

Our best strategy tries to use expert knowledge to exploit static features; when that fails, it em-
ploys ML with simple dynamic features, such as cycles in transactions, cycles between transactions,
and reads per transaction. On our test workload suite, a transparent case-based reasoning system
was the best ML classifier, but black-box ML systems should perform well if they can avoid a
few easily-identifiable mistakes. While almost every STM algorithm was useful in some scenario,
choosing among eight algorithms ensured consistently good performance, suggesting that simple
ML, simple features, and just a handful of STM algorithms should suffice in real-world settings.

The remainder of this paper is organized as follows. Sections 2 and 3 discuss the basics of STM
operation and summarize prior adaptive STM systems. Section 4 introduces the static and dynamic
features that we use to characterize workloads, and Section 5 describes our run-time adaptivity
framework. Section 6 describes our expert and ML-based adaptivity policies. Section 7 presents
performance results, Section 8 discusses future research directions, and Section 9 concludes.

2. STM BACKGROUND
To use STM, programmers annotate regions of code that require atomicity. Within these regions,
individual loads and stores to shared memory are instrumented, as are region boundaries. Typically,
the code within these regions runs speculatively: the instrumentation includes some mechanism to
detect conflicts between concurrent transactions, as well as a mechanism to undo the partial effects
of a transaction and retry it. The instrumentation for individual accesses and transaction boundaries
is usually located in a library. The library provides concurrency control by mapping individual
locations in memory to some form of metadata that enforces a single-writer, multi-reader protocol
for program data. The library also handles conflict detection and rollback.

Below we list some key considerations for designers of STM algorithms:

— If aborts are rare, performing speculative writes in place may outperform buffering writes for
commit-time replay. Note that this option requires transactions to maintain an “undo log” for
reverting modifications in the event of an abort.

— Some algorithms offer low latency and high scalability when most transactions are read-only.
— Some workload/STM combinations are prone to performance pathologies and benefit from al-

gorithms with provable livelock-freedom or fine-grained starvation avoidance mechanisms.
— The language-level memory model may require transparent “privatization” and “publication”

to transition data between a state in which they are accessed within transactions and a state in
which they are accessed nontransactionally. We consider ELA semantics, in which all forms of
privatization are supported, but “racy” publication patterns are not [Menon et al. 2008].

— Hardware characteristics, such as the availability of vector instructions, the cache hierarchy, and
the cost of CAS and memory fence instructions, affect tradeoffs among STM algorithms.

We now relate the above considerations to popular STM designs:
Single Mutex: All transactions are protected by a global mutex lock. There may be write logging

to enable self-abort, and if read-only transactions can be statically shown to be common, a reader-
writer lock may be used. I/O is always safe within a transaction, and there is no risk of livelock.

Ownership Records: Program data is mapped to a table of ownership records (orecs, essentially
versioned locks) [Harris et al. 2010]. Reads are optimistic: they do not modify locks, but record
lock versions. Writes acquire the lock either on first encounter or at commit time. Orecs allow for
buffered updates or in-place updates with undo logging. Orec systems typically use some notion
of global time (e.g., a shared counter) to reduce overheads. For workloads dominated by small
writer transactions, this can become a bottleneck. Making an orec-based STM compatible with
ELA semantics introduces significant overhead [Menon et al. 2008].

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article TBD, Publication date: March 2012.

TBD:4 Q. Wang et al.

9000

12000

W
ri

te
r

C
o

m
m

it
s

0

3000

6000

0 50 100 150 200 250

W
ri

te
r

C
o

m
m

it
s

Time (10K Commits)

Fig. 2. Phases in the STAMP Genome benchmark. Each point on the X axis represents an interval of 10K commits, with
the Y axis showing the number of commits in each interval that were not read-only.

Signatures: A transaction’s accesses are represented as bit-vectors, or “signatures”, and conflicts
are detected by intersecting signatures. Example algorithms include the privatization-safe, livelock-
free RingSTM [Spear et al. 2008], and the priority-focused InvalSTM [Gottschlich et al. 2010].

Values: Some STM algorithms log all address/value pairs that have been read. They can then
detect conflicts by checking whether the values at these addresses have changed [Dalessandro et al.
2010], and use a single lock to serialize writer commits. These algorithms are livelock-free, and by
virtue of maintaining no global metadata, they tend to have very low single-thread latency. They
provide ELA semantics, but the single lock limits performance when writers are frequent.

Bit and Byte Locks: All of the designs mentioned above use optimistic read mechanisms, where
no transaction can identify when it is accessing locations that another transaction is reading. By
maintaining either bitlocks [Ni et al. 2008] or wider bytelocks [Dice and Shavit 2010], the cost of
making transactional reads visible can be kept low. While reader visibility increases latency and can
result in more contention for metadata, it simplifies conflict detection and resolution, enables ELA
semantics, and simplifies support for advanced features.

Read-Parallel Designs: The eager and lazy TML algorithms are designed for workloads with
infrequent writers. Latency is extremely low, at the expense of concurrency when there are writers.

To solidify our motivation for adaptivity, consider a program whose behavior is input-dependent
and that operates in phases, where each phases’ transactions exhibit characteristics for which a
different STM algorithm is ideal. Such an application would suffer from selecting any single STM
algorithm for its entire execution, even if the choice considered the input values and hardware/OS
features. As a trivial example of this case, consider Figure 2. There is a distinct read-only phase in
the application. An STM algorithm optimized for read-dominated workloads will be best for much
of the execution, but a poor fit for the other phases.

3. PREVIOUS ADAPTIVE STM SYSTEMS
Past adaptive STM systems focused on preventing performance pathologies, with a few proposals
also considering techniques to maximize performance. We highlight the most relevant works below.

Worst-Case Progress: Many STMs support a “serial-irrevocable” (SI) mode, where one transac-
tion runs at a time. While SI was proposed as a way to support I/O in transactions that are known not
to use self-abort, it can also guarantee progress. In essence, after a sufficient number of consecutive
aborts, a thread may become serial-irrevocable (or perhaps only serial, if it might self-abort) to be
sure that it will commit [Welc et al. 2008; Ni et al. 2008].

Location-Level Adaptivity: An STM can dynamically change the concurrency control mech-
anism for individual variables, allowing those involved in frequent conflicts to be accessed pes-

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article TBD, Publication date: March 2012.

A Transactional Memory with Automatic Performance Tuning TBD:5

simistically [Sonmez et al. 2009]. This improves conflict detection and prevents some pathologies,
without requiring pessimism on all accesses. Support requires overhead on every access to identify
the variable’s access mode.

Strong Progress Guarantees: Ni et al. proposed an orec-based STM that supports “obstinate”
transactions (using visible reads) as well as switches to serial and serial-irrevocable modes. The
system employed a novel indirection-based interface to prevent overhead while supporting these
mechanisms, and avoided global coordination when switching the mode of a transaction: the in-
strumentation for any transaction seamlessly handled the fact of other transactions concurrently
operating in other modes [Ni et al. 2008].

Feature Monitoring: ASTM [Marathe et al. 2005] tracked when a workload employed an un-
common API call (“early release”) to decide whether locations should be locked on first access or
at commit time. The technique increased throughput, but only if early release could be used.

Re-Parameterizing the STM: Dynamically selecting the number of orecs [Felber et al. 2008]
improved scalability by decreasing the likelihood of false conflicts on metadata. Furthermore, work-
loads without much concurrency decreased latency by restricting themselves to a few orecs. An
automatic mechanism based on re-execution found the best number of locks for a workload.

Phased Execution: PhTM [Lev et al. 2007] switched between hardware and software modes on a
machine with hardware TM support. PhTM identified potential reasons to switch modes, including
the presence of transactions that are unsupported by the hardware, excessive consecutive aborts,
and periodic timers. Since its focus was on hardware/software interaction, PhTM did not consider
switching among STM implementations. Some variants required coordination at the beginning of
some transactions, even when there was no mode switch in progress. This is a potential bottleneck.

Selecting Locks or Transactions: Usui et al. employed static and dynamic analysis to identify
workloads for which locks outperformed STM, even when multiple threads were available [Usui
et al. 2009]. Clearly at one thread, the lower latency of a lock-based runtime is best. Additionally, if
transaction latency is too high and the cost of a lock moving between processors’ caches is low, the
concurrency afforded by STM may not be worth its cost.

Pathology Avoidance: RSTM [Spear 2010] supports adaptivity among different STM algo-
rithms. The system selects from 10 algorithms to react to bad performance. Decisions are based
on likelihood of pathology and precision of conflict detection.

The above systems share the design philosophy that when throughput is unsatisfactory, the under-
lying TM becomes more pessimistic, according to a simple static sequence of transitions. Pessimism
can take many forms: it can entail the use of commit-time locking instead of encounter-time locking,
the use of coarse locks instead of transactions, the use of software instead of hardware transactions,
or the use of visible reads. The pessimism may endure for only a few transactions, or may cause a
permanent change to the underlying STM algorithm. Furthermore, the pessimism may be localized
to one transaction’s behavior, or may result in all transactions switching to a new STM algorithm.
While many of the above mechanisms are robust and effective at preventing pathology, we found
none to be suitable for our goal of maximizing system performance.

First, most mechanisms rely on the detection of bad performance by monitoring transaction
aborts: if the consecutive abort count is too high or distinguished aborts occur (e.g., aborts due
to overflow in hardware TM), then it is likely that adaptivity is necessary to restore progress. In the
remaining mechanisms, detection of bad performance is done through analysis of a small feature
set: early release in ASTM, transactional versus nontransactional time in Usui’s system, and whole-
program throughput in Felber’s system. These limited feature sets are amenable to small adaptivity
decisions (only one dimension in each system) or perhaps off-line decisions. We argue that to im-
prove “already good” performance in a running application, a large feature set, consisting of both
static and dynamic features, is necessary.

Second, the policies guiding transitions among algorithms are rigid. They are typically repre-
sented by a heuristic encoding an expert’s intuition about how to prevent pathology for a specific
STM algorithm. The danger in this approach is that it is not future-proof: the emergence of new
hardware characteristics, new STM algorithms, and new workload behaviors can introduce situa-

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article TBD, Publication date: March 2012.

TBD:6 Q. Wang et al.

Table I. Static workload features. Apart from txsites, values are always, sometimes, or unknown.

S txsites: Number of distinct source-level transactions
S nontx gap: Function calls are made before or after the transaction, in the same lexical scope
S trivial: Transactions have no loops, no calls, and ≤ 6 reads and writes
S writer: Transactions always perform a write
S mcas likely: Number of reads equals number of writes, and there are no calls within transactions
S txcalls: Transactions call functions that use TM
S nontxcalls: Transactions call functions that do not use TM
S verylarge: Transactions make at least 1 nontxcall, or at least 2 txcalls
S costly aborts: Transactions make a nontxcall before any transactional reads or writes

tions that the expert did not anticipate. We argue that this diversity makes the creation of an optimal
adaptivity policy intractable. Our solution is to create a system that can be trained in its deployed
environment and potentially trained differently for each production application. In this manner, the
STM system can automatically tune its performance based on its operating environment and chang-
ing workload characteristics.

4. CHARACTERIZING WORKLOADS
Any system that selects the best STM algorithm for a specific workload must have some description
of the workload behavior that provides a reliable basis for decision making. As discussed in Sec-
tion 3, past approaches used a variety of measures to approximate the behavior of workloads. Our
approach combines information available through simple static analysis and dynamic measurement.

4.1. Static Features
We assume a standard TM interface: transaction boundaries are function calls, as are individual
loads and stores; multiple transactions may be executed from within a single lexical scope; and
functions that contain transactional instrumentation are marked. Our analysis counts distinct source-
code transactions (S txsites), approximates the distance between dynamic instances of these
transactions (S nontx gap), and measures the incidence of various function calls within each
transaction. A property is marked always if it holds for all transactions, sometimes if it holds
for some transactions, and unknown otherwise. We do not distinguish between properties that do
not hold and those that our analysis cannot prove to hold. Table I lists the static features we measure.
S nontx gap allows estimation of how likely transactions are to overlap. S trivial,

S writer, and S mcas likely permit selection (or exclusion) of algorithms that apply to spe-
cific behavior patterns. The remaining features estimate the transaction’s size: we assume that
S nontxcalls indicates large units of work for which transactional instrumentation would be
prohibitively expensive, that multiple S txcalls indicate data structure traversals, and that trans-
actions that begin with a large prefix of nontransactional work merit special attention.

We emphasize that these features are easy to measure. More powerful analysis (e.g., shape anal-
ysis to determine the exact type of data structure being analyzed, or interprocedural analysis) are
likely to enable more powerful adaptive policies.

4.2. Dynamic Features
To measure the dynamic behavior of a program, we employ lightweight instrumentation on every
transaction boundary to measure program-wide properties. When additional information is needed,
we use a simple STM (ProfileTM) to sample per-transaction characteristics.

Boundary Instrumentation: In the commit function of each STM algorithm, we update per-
thread counts of writer and read-only commits. We query these counts when the workload read-
only ratio (D RORatio) is needed. After every commit we also store the value of the hardware
tick counter, and before a transaction begins, we subtract that value from the current hardware tick
counter and add the difference to a per-thread accumulator. Dividing by the number of transactions
estimates the nontransactional work (D NonTxWork) between transactions. In our environment,
thread migration and frequency scaling did not affect the tick counter’s precision.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article TBD, Publication date: March 2012.

A Transactional Memory with Automatic Performance Tuning TBD:7

Table II. Dynamic workload features measured by ProfileTM.

D TxTime: Cycles between start and end of a transaction; approximated via hardware tick counter
D Writes: Number of distinct locations to which a write is performed
D WAWWrites: Number of writes to locations that have already been written by the current transaction
D ROReads: Number of reads made by a transaction before its first write
D RAWReads: Number of reads to locations that have already been written by the current transaction
D RWReads: Non-RAW reads performed after a transaction’s first write
D RORatio: Percent of transactions that are read only
D NonTxWork: Cycles between transactions within a thread; approximated via hardware tick counter
D AllWrites: Sum of D Writes and D WAWWrites
D AllReads: Sum of D ROReads, D RAWReads, and D RWReads

Per-Transaction Sampling: Measuring dynamic properties of transactions at all times led to
unacceptable overhead (more than 5% slowdown). Since profiling should have no cost when not in
use, we instead use sampling. When a dynamic profile of the workload is needed, we switch to a
custom STM implementation, which we call ProfileTM, and run several transactions.

In ProfileTM, a fair ticket lock guards all transactions. There is no concurrency, but profiled
transactions are likely to be drawn from multiple threads. Since ProfileTM transactions are guarded
by a ticket lock, they do not need to detect conflicts during execution. The removal of conflict
detection reduces more latency than dynamic measurement adds, resulting in less single-thread
latency than traditional STM algorithms. We use buffered writes and redo logs, since they simplify
the task of counting the D WAWWrites and D RAWReads features discussed below. The features
measured by ProfileTM are listed in Table II. We provide the motivation for each feature below:

— D TxTime: Combining time inside of transactions with the always-measured D NonTxWork
indicates the frequency of transactions, as well as of the percentage of execution time attributable
to transactions. This enables dynamic selection of locks instead of transactions.

— D Writes: In STM algorithms that use per-location metadata (orecs, bitlocks, or bytelocks),
each distinct address written requires a CAS operation, and thus the number of writes is a good
indicator of overall transaction latency.

— D WAWWrites: In undo-based STM algorithms, these writes are cheaper than D Writes; in
redo-based STM algorithms, these have the same cost as D Writes.

— D ROReads: A transaction often makes several reads before performing its first write. Most
STM algorithms can capitalize on this behavior by offering a special read instrumentation that
does not perform a test for read-after-write consistency. In redo-based systems, this is particularly
effective, since it avoids a search in the write log.

— D RAWReads: In redo-based STM algorithms, transactions that have performed a write begin
each read operation by performing a lookup in the write log. When the lookup succeeds, the read
immediately returns, resulting in very low latency.

— D RWReads: In redo-based systems, these reads are most expensive, as they entail both a lookup
in the write log and the overhead of a D RORead.

In current STM algorithms, read-after-read is not detectable and offers little opportunity for de-
creasing latency. With aggressive compiler support, several additional optimizations are detectable.
The most notable one is when a write-after-read can be detected by the compiler and transformed
into a “read-for-write” operation. In systems supporting this optimization, a fourth read type would
be needed. Similarly, a compiler might present a decoupled read instrumentation sequence [Harris
et al. 2006] or offer special low-latency transactional reads that use partial sandboxing [Spear et al.
2009]. Little effort would be required to extend ProfileTM to count these accesses.

5. RUN-TIME ADAPTIVITY FRAMEWORK
We created the framework described in Figure 3 that can dynamically pick the correct STM algo-
rithm during program execution using the workload features described in Section 4.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article TBD, Publication date: March 2012.

TBD:8 Q. Wang et al.

Learning

Tool

STM Algorithm
STM Algorithm

STM Algorithm
STM Algorithm

More

Profiles?

Instrumented

Transaction

Static

Application

Description

Running Program

Adaptivity

Policy

x

N thread levels

(Throughput)

(Static

Features)

Off-Line Training During Program Execution

µbenchmark
µbenchmark
µbenchmark Choose Algorithm Trigger

Yes

No

Commit

(Dynamic Profile)

Dynamic

Application

Description

Application

Feature

Requirements

Fig. 3. Adaptivity Workflow: Off-line training on microbenchmarks produces an executable adaptivity policy. During
program execution, various events (triggers) cause the framework to profile a fixed number of transactions, and then use
the policy and profile to select a new algorithm. Algorithm selections also incorporate STM feature requirements, such as
language-level semantics, and the static application profile.

5.1. Off-Line Training Strategy
We perform unsupervised off-line training. The trainer is given as input a set of microbenchmarks, a
set of configurations of those microbenchmarks, and a set of STM algorithms. For each combination,
it runs five 5-second experiments and records the average throughput. It then runs the experiment
using ProfileTM in single-thread mode to gather dynamic characteristics of the workload and per-
forms static analysis upon the microbenchmark. All data is fed to the ML training policy, which
produces an adaptivity policy. This policy is either executable code or a data file that specifies the
behavior of executable code, depending on the ML system being used.

There are two weaknesses in this approach. Our microbenchmarks (described below) are all ho-
mogeneous workloads with one program phase, which may not be representative of real TM work-
loads. Additionally, their coding style always matches the pattern:

transaction { tx_function(...) }

This pattern limits our intraprocedural analysis to the S nontx gap feature. As we discuss in
Section 6, this artifact does not affect our expert adaptivity policies.

5.2. Off-Line Training: Workloads
In a production environment, one may tailor training data to the common-case for the target applica-
tion. To show generality, we instead train using parameterized microbenchmarks, and thus measure
what should serve as a lower bound on the effectiveness of our adaptive system. Our training work-
load consists of various configurations of the following microbenchmarks:

— Data Structure Traversals: Red-black trees, hash tables, and linked lists, with varying mixes
of insert, lookup, and remove, and varying key ranges are stored in the dataset. These workloads
typically scale well and correspond to the use of TM for creating concurrent data structures.

— Pathology Test: This usually causes livelock for eager STMs and starvation for lazy STMs.
— Overhead Finders: These expose overheads in STM algorithms. Examples include shared

counters, which highlight boundary latency, truly disjoint workloads, which expose shared meta-
data bottlenecks, and read-sharing workloads, which emphasize the cost of visible reads.

— Multiword Atomics: These workloads use TM to perform multiword CAS operations of vary-
ing sizes or to implement read N write 1 operations. We also created a read N write N operation
to show how the order of reads and writes affects throughput.

— Database Simulations: These workloads aim to mirror more complex uses of transactions. In
addition to various “forest” workloads (consisting of multiple operations on a set of red-black
trees), we also provide a tree workload where every transaction performs at least one write.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article TBD, Publication date: March 2012.

A Transactional Memory with Automatic Performance Tuning TBD:9

As appropriate, we varied the nontransactional time between transactions, the number of locations
accessed within a transaction, and the percentage of transactions that were read-only. In total, this
resulted in 213 different microbenchmark configurations, which we tested at many thread levels.

5.3. When to Trigger Adaptivity
To choose the best STM algorithm for a workload, the adaptivity policy must understand the work-
load’s behavior. Past work focused on measuring the incidence of API calls that may never occur
in the common case, motivating our use of dynamic profiling to measure characteristics that should
apply to all workloads. During program execution, four events (triggers) activate our adaptivity
framework. As in previous work, we set a threshold for consecutive aborts to rapidly detect patholo-
gies. When a mutex-based STM is in use, there are no aborts, but long delays when attempting to
begin a transaction may suggest that the algorithm should change. A second threshold watches this
delay. Thread creation and destruction are also triggers, though the workloads we test do not exer-
cise this feature. Lastly, we periodically resample a workload by using thresholds of total commits
in the second thread.1 The threshold values are {160, 161, 162, 163, k × 164}, for all k > 0. All
triggers are inexpensive and occur when a thread holds no locks.

5.4. The Dynamic Profiling Process
When configuring our library during program initialization, the adaptivity policy sets an initial algo-
rithm, taking as input the required semantics of the application and whether the application uses self-
abort. For the time being, we only select between Encounter-Time Lock Atomicity (ELA) [Menon
et al. 2008] and weak semantics, which we sometimes refer to as “X” semantics. The policy is also
given the application characteristics produced by static analysis.

On every trigger, the library blocks new transactions from starting and waits for all in-flight
transactions to commit or abort. It then switches to ProfileTM and runs N transactions, one at a
time. This ensures forward progress and prevents pathology. An important consideration is how the
system should handle repeated recommendations of the same algorithm when consecutive aborts
are frequent. Some workloads perform best with an algorithm that admits frequent aborts, and thus
forbidding repeat selections is unacceptable. Instead, a repeat selection causes our system to record
the total number of commits and aborts across all threads. On the next trigger, if the same algorithm
is chosen again, then as long as there has been forward progress (e.g., more commits) under the
chosen algorithm, it will remain in use, and the abort threshold for causing another trigger will be
doubled. Commit-based triggers do not change the abort threshold.

6. ADAPTIVITY POLICIES
The system described in Section 5 allows many mechanisms for creating adaptivity policies. We
envision three approaches: a programmer can create an “expert” adaptive policy, ignoring the entire
left hand side of Figure 3; a completely automated ML system can generate the policy as the output
of off-line training; or some guided process can be employed, wherein the programmer and learning
tool create a policy together.

6.1. Expert Policies
These policies are written by a programmer to satisfy arbitrary requirements. For example, RSTM
(upon which our work is based) provides state machines that avoid pathology by transitioning the
algorithm to successively more pessimistic STM algorithms [Spear 2010].

Our simplest expert policies capture the intuition that the best algorithm depends on the thread
count. We provide three policies, depending on whether ELA semantics are required or not and
whether writers are expected to be frequent:

1Choosing the second thread prevents any triggers when an application runs in single-thread mode, without requiring over-
head in all threads. For heterogeneous workloads, resampling parameters can be easily adjusted.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article TBD, Publication date: March 2012.

TBD:10 Q. Wang et al.

— ThrX: Assumes weak semantics are acceptable, and uses Mutex at 1 thread and the LSA algo-
rithm otherwise. When ELA semantics are not required, LSA [Felber et al. 2008] is among the
lowest latency and most scalable algorithms, unless contention is high.

— ThrELA1: Provides ELA semantics, using Mutex at 1 thread and NOrec [Dalessandro et al.
2010] otherwise. NOrec is among the most scalable STMs that provide ELA semantics.

— ThrELA2: Like ThrELA1, except for ≥ 8 threads, lazy TLRW [Dice and Shavit 2010] is used.
TLRW has fewer bottlenecks than NOrec when writers are frequent.

When static and dynamic profile information is available, expert policies can become much more
nuanced. Observing that many of the static features from Table I can also be detected via dynamic
profiles, we identified several common use cases. When none of these cases is met, we fall back to
ThrX or ThrELA1.

— S Trivial: All transactions access fewer than 6 locations. If this is known statically, choose the
Nano algorithm; if ELA semantics are required, choose TLRW with lazy acquire.

— S MCAS Likely: If the read and write counts are equal, the transaction is probably simulating
a multiword-CAS. If the gap between transactions is large, use Mutex. Otherwise, favor an in-
place algorithm (LSA or TLRW) appropriate for the required semantics.

— RO: If read-only transactions comprise more than 90% of all transactions, use TML.
— Large: If all transactions are large, choose NOrec at ≤ 4 threads, since its low latency for large

transactions will outweigh its bottlenecks.

We refer to policies that select an algorithm using this set of rules as ExpertStatic, ExpertDy-
namic, or ExpertHybrid, depending on whether the characteristics are identified using static analy-
sis, dynamic profiling, or both mechanisms.

6.2. ML-Based Policies
We consider three orthogonal techniques for automatically creating an adaptive policy through ma-
chine learning. These techniques all receive as input the same training data, but generate fundamen-
tally different policies.

Case-Based Reasoning: In case-based reasoning [Aamodt and Plaza 1994] (CBR), a system
creates a “case base” describing every program behavior that it observed during training, the envi-
ronment (e.g., thread count and static features), and the best response (e.g., STM algorithm with the
highest throughput). During program execution, CBR policies scan the case base for entries with
the same number of threads as the workload. Among these entries, the policy selects the row that is
most similar to the average of the collected transactional profiles and returns the algorithm named
by that entry, which is the peak performer for some microbenchmark configuration.

Our CBR policies use the dynamic features described in Section 4. We consider all possible
combinations as candidate similarity metrics, using a normalized Manhattan distance. By retaining
some metadata in the case base, we can always identify the training experiment that influenced a
CBR decision, which aids in performance tuning.

Neural Networks: In neural networks, training data is treated as k tuples, where the first field of
each tuple is an output (ok), and the remaining fields are a corresponding input vector (Ik). Through
off-line analysis, the network learns a complex, high-dimension function that, for each vector Ik,
computes the correct output ok. The expectation is that if there is some mathematical relationship
between program behaviors and the corresponding best choice of algorithm, then the network will
learn that relationship and will be able to output the best choice for any new input vector. The most
powerful neural networks are based on augmented topologies [Yao 1999], particularly the NEAT
(Neuro Evolution of Augmenting Topologies) algorithm [Stanley and Miikkulainen 2002]. We used
the open-source ANJI toolkit [Anji Home 2010].

Unlike CBR, NEAT is a black box classifier. We cannot precisely explain why some input pro-
duces some output. This property is both a strength and a weakness: while we cannot explain cases

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article TBD, Publication date: March 2012.

A Transactional Memory with Automatic Performance Tuning TBD:11

where NEAT fails to identify seemingly obvious trends, NEAT has the potential to find relationships
that are substantially more complex, nuanced, and robust than those found by CBR.

Rule Induction: An important benefit of applying ML successfully is a learning methodology
that produces readable heuristics that gives the TM framework developer insight and confidence in
their utility. Rule set induction is powerful learning methodology that can produce heuristics that
are easy understand. Given the same training data as our CBR and NEAT policies, it produces a
set of if-then-else rules. These rules are human-readable and show precisely what characteristics
influenced the policy’s decision. In large part, they resemble the structure (though not content) of
our expert policies. For rule induction, we used the Ripper system [Cohen 1995].

7. EVALUATION
We built our adaptive policies in the RSTM framework [Spear 2010]. Our work included the addition
of 7 new algorithms to the system. The 17 algorithms we evaluated are listed below. Algorithms
marked with a “*” do not provide ELA semantics:

— Mutex: One lock protects all transactions. There is no concurrency, but latency is minimal.
— TML: A read-parallel STM where whenever a writer starts, all concurrent transactions abort.
— TMLLazy: A variant of TML where read-only transactions abort when a writer commits.
— LSA*: Ownership records (orecs) are used to detect conflicts, and writes are made directly to

memory. Undo logs are used when a transaction aborts [Felber et al. 2008].
— OrecLazy*: LSA with commit-time locking and redo logs.
— OrecFair*: An extension of OrecLazy that adds starvation avoidance. “Possibly starving” trans-

actions use visible reads, while others do not.
— OrecELA: An extension to OrecLazy that adds ELA semantics.
— NOrec: An STM based on value-based validation. There is no per-location global metadata, but

transactions block during any writer commit [Dalessandro et al. 2010].
— NOrecPrio: Extends NOrec with a weak form of priority-based starvation avoidance.
— TL2*: A lazy orec-based algorithm [Dice et al. 2006] that achieves low latency by allowing

some aborts that OrecLazy avoids.
— TLRW: Implements visible readers (read locking) via “bytelocks”. Writes are performed in-

place, with undo logs [Dice and Shavit 2010].
— TLRWLazy: A variant of TLRW with commit-time locking and redo logs.
— BitEager: Similar to TLRW, but using bitlocks instead of bytelocks.
— BitLazy: A bitlock-based TLRWLazy algorithm.
— RingSTM: To detect conflicts, readers maintain a signature of the addresses they access and at

commit time writers publish a signature of the addresses they modify [Spear et al. 2008].
— TLI: A variant of InvalSTM [Gottschlich et al. 2010]. Committing writers are responsible for

finding and forcibly aborting in-flight transactions with whom they conflict.
— Nano: A locking variant of WSTM [Harris and Fraser 2003]. Overhead is quadratic in the num-

ber of reads performed by a transaction, but there are no shared-memory bottlenecks.

All experiments in this section were performed on an HP z600 with 6GB RAM and a 2.66GHz
Intel Xeon X5650 (Nehalem) processor (6 cores / 12 hardware threads). Code was compiled with
g++ version 4.5.1, in 32-bit mode with –O3 optimizations. All experiments are the average of 3
trials. There was low variance among trials, except for the Bayes benchmark (see Section 7.4).

We trained 6 versions of our adaptive policies: “ELA” refers to training conducted using only
algorithms that provide ELA semantics, and “X” refers to training on all 17 algorithms (e.g., weak
semantics). We also considered three sets of training workloads from Section 5.2: S1 used data
structure traversals, pathology tests, and overhead finders; S2 used multiword atomics and database
simulations; S1+S2 used all training workloads. This led to 6 Ripper policies, 6 ANJI policies,
and 6 × 31 CBR variants in our initial exploration (recall that with CBR, we must evaluate every
combination of features separately). We set adaptivity triggers at 16 consecutive aborts, after a 2048-
cycle loop spin on lock acquisition, and according to the commit thresholds described in Section 5.3.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article TBD, Publication date: March 2012.

TBD:12 Q. Wang et al.

Table III. Harmonic mean speedups (normalized to Oracle performance) for STAMP with no semantics require-
ments. Shown are the best single algorithm (LSA), the best expert policies (ThrX and ExpertStatic), the best
Ripper configuration (trained on S1+S2), and the best CBR configuration (trained on S1, similarity based on
weighted sum of D TxTime and D RORatio).

Bayes Genome Intruder KMeans Labyrinth SSCA2 Vacation All
(High) (Low) (High) (Low)

LSA 0.80 0.90 0.88 0.82 0.88 0.99 0.73 0.89 0.88 0.86
ThrX 0.80 0.94 0.98 0.89 0.92 1.00 0.79 0.97 0.96 0.91
ExpertStatic 0.72 0.95 0.98 0.98 0.99 0.96 0.96 0.96 0.95 0.93
Ripper 0.40 0.84 0.71 0.67 0.86 0.83 0.73 0.82 0.82 0.71
CBR 0.70 0.91 0.91 0.78 0.87 1.05 0.93 0.99 0.99 0.89

Table IV. STAMP Harmonic mean speedups when ELA semantics are required. ThrELA2 replaces ThrX, and
CBR achieves its best performance using the D AllReads feature.

Bayes Genome Intruder KMeans Labyrinth SSCA2 Vacation All
(High) (Low) (High) (Low)

NOrec 0.88 0.91 0.89 0.65 0.72 0.99 0.56 0.88 0.88 0.79
ThrELA2 0.92 0.90 0.90 0.72 0.73 0.99 0.67 0.86 0.88 0.83
ExpertStatic 0.76 0.92 0.93 1.00 0.92 0.95 0.90 0.94 0.95 0.92
Ripper 0.46 0.90 0.90 0.73 0.86 0.83 0.90 0.94 0.95 0.79
CBR 0.79 0.99 0.91 0.84 0.87 0.93 1.05 0.98 0.99 0.92

On any trigger, we collected a single transaction profile, as initial studies did not find a significant
improvement in sample quality, but did observe noticeable slowdown in the Labyrinth workload,
when collecting multiple profiles. Tuning this parameter based on S txsites is future work.

We configured our Expert policies to detect behavior using only static STAMP features, only
dynamic features, or a combination (static features + dynamic read-only ratio). We refer to these
variants as ExpertStatic, ExpertDynamic, and ExpertHybrid.

7.1. Evaluation Criteria
To evaluate our adaptive policies, we used the STAMP benchmark suite [Minh et al. 2008]. For
the 9 recommended configurations2, we tested each of the 17 STM algorithms at 1, 2, 4, 8, and 12
threads. Using this information, we created an “oracle” dataset consisting of the best performing
STM algorithm for each benchmark at each thread level.

For each adaptivity policy, we tested each benchmark at each thread level and computed its
speedup versus the oracle. We scored each policy based on its per-benchmark harmonic mean
speedup as well as its STAMP-wide harmonic mean speedup.

7.2. Performance Summary: Preliminaries
Tables III and IV list the best per-benchmark and STAMP-wide harmonic mean speedups for each
adaptive system. Note that the oracle policy differs between the two tables, since ELA excludes
several algorithms. Quantitative comparisons cannot be made between tables.

If only one algorithm can be used for all of STAMP, ELA favors NOrec while LSA is best other-
wise. However, for several benchmarks this choice is far from ideal, resulting in a low 0.79 overall
speedup for NOrec, and 0.86 for LSA. For X semantics, only TL2 was close to LSA (0.81); for
ELA, TLRW and orec variants were close to NOrec (above 0.73).

The adaptivity policies included in RSTM perform poorly (not shown). These policies inter-
pret transient high abort rates as pathologies and make permanent decisions toward fair but low-
throughput algorithms. NOrec and LSA outperform the corresponding ELA and X RSTM policies.

Similarly, ANJI performance was unacceptably low. As a black-box classifier, our only recourse
was to alter the training workload suite and re-train. This process never produced a policy capable
of surpassing 0.57 speedup for X semantics and 0.70 for ELA semantics.

2We omitted the “yada” benchmark, since the released code is unstable.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article TBD, Publication date: March 2012.

A Transactional Memory with Automatic Performance Tuning TBD:13

7.3. Outperforming the Oracle
An ideal adaptivity policy should be able to outperform the oracle, i.e., achieve a speedup > 1. In
practice, the incidence of speedup > 1 benefits from four program characteristics.

(1) The program should have distinct phases. The phases can be statically identifiable, or corre-
spond to a dynamic property, such as the contents of a worklist [Kulkarni et al. 2009].

(2) Each phase must be long enough that the cost of profiling and then switching to a different
algorithm can be offset by an increase in performance.

(3) Each phase must vary in behavior relative to other phases, so that the use of different algorithms
for different phases can result in statistically significant improvements in performance.

(4) Ideally, phase boundaries should coincide with behavioral changes that are quickly detected by
our triggers and that are understood by our adaptive policies.

Past work has shown that phases are not always clearly delineated (e.g., in the Lee-TM routing
workload [Ansari et al. 2008] upon which STAMP Labyrinth is based, the abort rate “creeps” over
time). In this case, the first and fourth properties are likely to be violated. However, the use of
periodic profiling can still detect phases, so long as some other artifact (in Lee-TM/Labyrinth, the
number of reads and writes) differs from one profile collection to the next.

Across all adaptivity policies, we found that at least one of our policies was able to achieve a
consistent speedup of 1.04 or higher across all thread levels on each of KMeans, Vacation, SSCA2,
and Labyrinth. However, these policies did not necessarily perform well on other workloads, and
hence may not be reported in Tables III and IV.

Failure to outperform the oracle on Genome was a surprise. Upon further investigation, we found
that some of our policies failed to choose TML when Genome entered the read-only phase, and
others failed to abandon TML when Genome left the read-only phase. These faults can be addressed
either by modifying TML so that departing the read-only phase causes a high rate of aborts, or else
by adding a trigger based on the number of consecutive read-only or writer commits. Determining
which approach is better should be delayed until there are more transactional workloads.

7.4. Expert Policy Performance
The ThrX and ThrELA policies, which select an algorithm based only on the thread count, raise
performance significantly. For ThrX, this improvement is completely due to avoiding overhead at 1
thread, as it chooses LSA otherwise. We recommend this approach without hesitation for any future
STM design. However, ThrX still performs poorly on SSCA2, KMeans, and Bayes.

ThrELA2, which chooses between Mutex, NOrec, and TLRWLazy, is more nuanced. In choosing
TLRWLazy at ≥ 8 threads, it loses performance on Vacation. However, TLRWLazy scales better
than NOrec for small writing transactions, and in the end this improvement on KMeans and SSCA2
tips the scales in favor of ThrELA2 over ThrELA1 (which only uses Mutex and NOrec).

It is worth noting that KMeans and SSCA2 transactions match simple patterns that can be detected
statically: the S mcas likely and S trivial patterns, respectively. The ExpertStatic policy, which has
access to the static analysis of each program, can thus choose Nano for SSCA2 under X semantics
(TLRW at ≥ 2 threads under ELA) and Mutex for KMeans with 2–4 threads. These choices have
a striking impact on overall performance. ELA performance improves from 0.83 to 0.92. Under X
semantics, performance rises from 0.91 to 0.93.

Apart from Bayes, ExpertStatic performance is excellent. While we include Bayes performance
in our evaluation, we are generally suspicious of this workload. The number and size of transactions
run by each thread is dependent on the interleaving of a few transactions executed early in the
workload; eager STM algorithms (particularly with visible reads) seem to cause a bad initial commit
order, which can cause an order of magnitude slowdown. Similarly, a round-robin scheduling of
transactions can occasionally cause a superlinear (> 4×) speedup at 2 threads.

Lastly, we observe that ExpertStatic outperformed ExpertDynamic (where conditions like
S trivial and S mcas likely are detected statically) and ExpertHybrid (ExpertStatic + the dynamic

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article TBD, Publication date: March 2012.

TBD:14 Q. Wang et al.

read-only ratio). In the latter case, adding read-only ratio did not affect how we adapted, but added
computation during adaptivity. In the former case, there was a conflict between the accuracy of our
profiles and the aggressiveness of our policies. For example, ExpertDynamic never chooses Nano,
because the cost of choosing Nano incorrectly is significant, and dynamic profiles are an approx-
imation. This is particularly true for heterogeneous workloads: Bayes, Labyrinth, and KMeans all
have both tiny transactions and large transactions for which Nano is unacceptable.

7.5. Ripper Performance
Our ML policies based on rule induction did not offer a significant advantage over using a single
algorithm or the ThrX/ThrELA policies. Ripper output is human readable, and there is much room
for an expert to fine-tune Ripper output.

Our analysis identified two factors that reduced performance. First, Ripper repeatedly chose a bad
fallback algorithm: if no rule was invoked, it selected the low-performance TMLLazy algorithm,
where LSA and NOrec would have been better choices. Second, and more significant, is variance in
Ripper’s ability to deduce ranges. For example, if two training experiments showed that TLRW was
best at 2 threads with 8 D ROReads and at 2 threads with 12 D ROReads, Ripper should output
a rule of the form 8 ≤ D ROReads ≤ 12, but sometimes produces D ROReads ∈ {8, 12}. The
latter is clearly less general. We are currently investigating quantizing strategies for the training
workloads, so that the framework can specify ranges, rather than relying on Ripper to learn them.

With these limitations, Ripper’s best “X” policy only reached 0.71 speedup (0.78 with Bayes
excluded), and under ELA semantics, reached as high as 0.79 (0.87 without Bayes). This is signifi-
cantly better than ANJI and competitive with ThrELA if we exclude Bayes. With a richer interface
between our framework and Ripper (especially by quantizing profiles within the framework) as well
as better static analysis of microbenchmarks, Ripper performance should improve.

7.6. CBR Performance
We explored all combinations of CBR features and considered all three training workload sets.
Given this large search space, we were able to find policies that offered strong performance on
STAMP, even without static profiles. With ELA semantics, the use of a single feature, D AllReads,
achieved a 0.92 speedup. This surpasses all other ELA adaptivity policies. With X semantics, our
best performing policy only reached 0.89. This policy combined D TxTime and D NonTxWork,
each of which independently achieved a 0.89 performance.

Table V shows the effectiveness of each individual dynamic feature on each STAMP benchmark,
for both ELA and X semantics. The predictive power of each feature on a workload is clearly
dependent on the set of available algorithms. For example, using D AllReads outperforms the oracle
on SSCA2. In contrast, time-based metrics (D TxTime and D NonTxTime) provide a better metric
for the Labyrinth workload. We caution the reader against placing too much emphasis on these
specific results, as the interplay between the set of available algorithms and the similarity of training
workloads’ transactions to test workloads’ transactions is very nuanced. Still, there are clear and
logical trends. For example, under X semantics the best performing algorithm often requires a CAS
per location written, and we see that D AllWrites is more predictive than D AllReads. Under ELA
semantics, the best algorithms either have a single CAS regardless of the number of writes (NOrec)
or have very high overhead on each read (TLRW and BitLock variants). In these cases, D AllReads
is more predictive.

7.7. Impact of Training Data
In Figure 4, we show the effect that different training data has on the effectiveness of our best CBR
policies and on our Ripper policy. Our CBR policies without exception performed best when trained
only on the S1 training workloads. Ripper, on the other hand, showed different preferences under
ELA and X semantics. Note that in the training workloads, S1 is drawn from STM microbench-
marks, whereas S2 models behaviors that we expect of future TM programs.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article TBD, Publication date: March 2012.

A Transactional Memory with Automatic Performance Tuning TBD:15

Table V. Performance of individual dynamic features for CBR adaptivity policies on STAMP.
Column labels of “X” and “E” correspond to weak and ELA semantics, respectively.

D AllReads D RORatio D TxTime D NonTxTime D AllWrites
Training Data X E X E X E X E X E

Bayes 0.69 0.79 0.73 0.03 0.83 0.88 0.84 0.94 0.65 0.81
Genome 0.89 0.99 0.83 0.67 0.93 0.82 0.93 0.91 0.91 0.95
Intruder 0.95 0.91 0.91 0.89 0.90 0.95 0.86 0.90 0.85 0.95
KMeans (high) 0.62 0.84 0.95 0.97 0.82 0.73 0.83 0.73 0.83 0.73
KMeans (low) 0.71 0.87 0.94 0.96 0.80 0.75 0.84 0.77 0.87 0.80
Labyrinth 0.92 0.93 0.84 0.62 1.05 1.06 1.04 1.08 1.06 0.99
SSCA2 1.06 1.05 0.89 0.90 0.92 0.74 0.89 0.90 0.90 0.89
Vacation (high) 0.98 0.98 0.96 0.68 0.90 0.95 0.88 0.95 0.99 0.92
Vacation (low) 0.96 0.99 0.96 0.73 0.94 0.97 0.93 0.96 0.89 0.94
All 0.84 0.92 0.88 0.18 0.89 0.86 0.89 0.89 0.87 0.88

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
1

S
2

S
1

+
S

2

S
1

S
2

S
1

+
S

2

S
1

S
2

S
1

+
S

2

S
1

S
2

S
1

+
S

2

CBR Read (ELA) Ripper (ELA) CBR Time RO (X) Ripper (X)

S
p
e
e
d
u
p
 v

s
.
O

ra
c
le

Fig. 4. Impact of training data. The best-performing CBR policies degrade significantly when trained improperly.

For CBR, the explanation is simple: S2 contains many entries that, on a per-metric basis, are indis-
tinguishable to our CBR similarity functions (which simply match patterns). Thus the S2 workloads
can cause our policies to reject an otherwise valid choice of algorithm from S1, due to a similarity
collision. In the cases where S2 data led to a better decision than S1, it was by a small margin,
whereas when S2 led to a worse decision than S1, it was by a large margin.

Ripper does not rely on pattern matching, but analyzes the training data to produce rules describ-
ing how features should influence adaptivity. The rules produced from the S2 data were typically
long (15 different if statements, with 1–4 conditions per statement), whereas the rules produced
from the S1 data were short (5 if statements). In both cases, Ripper chose the low-performance
TMLLazy algorithm when all other conditions evaluated to false. By leading to generation of more
opportunities to pick something other than TMLLazy, the S2 data set produced better policies.

7.8. Evaluation of Learning Features
By evaluating each combination of features from within the CBR classifier, we gained a sense for
their predictive power. Table V provides a summary. The results illustrate the importance of dynamic
profiling, since D AllReads, D AllWrites, and D TxTime are features collected by ProfileTM. How-
ever, individual features have high variance, depending on semantics and training data.

As discussed previously, our training harness was not compatible with our static analysis, since
all transactional code was reached via virtual dispatch from within a single source-level transaction.
However even the performance of ExpertStatic (Tables III and IV) shows the effectiveness of the
static features: SSCA2 exhibits the S trivial property, KMeans exhibits the S mcas likely
property, and Labyrinth exhibits S costly aborts.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article TBD, Publication date: March 2012.

TBD:16 Q. Wang et al.

Table VI. Ripper rules for weak semantics. Rules were produced from static features, using leave-one-out cross
validation on STAMP. “ST” is an abbreviation for “sometimes”.

Bayes, SSCA2 Genome, KMeans Intruder, Vacation Labyrinth
if (S costly aborts == ST) if (S costly aborts == ST) if (S costly aborts == ST) if (S txsites >= 15)

return NOrec return NOrec return NOrec return OrecFair
else return LSA else if (S txsites >= 15) else if (S txsites >= 15) else if (S txsites >= 10)

return OrecFair return OrecFair return Nano
else return LSA if (S txsites >= 1 else return LSA

return Nano
else return LSA

Table VII. Ripper rules for ELA semantics. Rules were produced as in Table VI.

Bayes Genome, SSCA Intruder, KMeans, Vacation, Labyrinth
if (S txsites >= 10) return NOrecPrio if (S trivial == always)

return BitLazy return BitLazy
else if (S txsites >= 5) else return NOrecPrio

return TLRW
else return NOrecPrio

To gain further insight, we performed leave-one-out cross validation on the STAMP benchmark
suite, by training a Ripper policy for one benchmark using the performance and static features of
the other 6 benchmarks as inputs. Tables VI and VII show the resulting rules (note that at 1 thread,
Mutex is always used). While S trivial and S costly aborts appear in the Ripper output,
emphasis is placed on S txsites, the number of source-level transactions. Furthermore, while
LSA and NOrecPrio are good final choices, Nano could be chosen inappropriately. In practice, the
policy always chooses LSA for X semantics, achieving 0.91 speedup. For ELA semantics, the policy
chooses between BitLazy and NOrecPrio, attaining 0.80 speedup.

7.9. Combining ML with Expert Policies
Throughout the conduct of this research, we were tempted to exploit expert knowledge, rather than
allow our ML systems to operate as “black boxes”. Section 7.8 provides an example of the cost:
the inclusion of Nano in our training data resulted in its selection at inappropriate times. Experts
would not expect Nano to be a good choice simply because there are between 10 and 14 source-level
transactions. Experts would expect Nano to be a good choice only if every source-level transaction
within a program phase is known to be trivial. The reasonable performance of the cross validation
Ripper policy was pure luck, in that Nano was never selected in our experiments.

Special-purpose algorithms like TML and Nano are hard for a general-purpose ML system to
understand. To show a classifier that the algorithms are worthy of consideration, one must train on
workloads where the algorithms perform well. This, in turn, leaves the classifiers free to attribute
the success of those algorithms to the wrong features.

However, these special-purpose algorithms are easy for experts to exploit. Our expert policies
combine two approaches: they first identify a set of easily detectable cases, for which the expert
knows exactly how to achieve peak performance. Two prominent examples are using TML when
the read-only ratio is above 95%, and using Nano when all transactions are statically known to be
extremely small. At some point, the cases became too hard to specify, and the “best” algorithm for
a case became little more than a guess. At this point, the expert policies adopt a one-size-fits-all
approach, by falling back to ThrX or ThrELA.

In Section 7.7, we showed that our CBR policies performed best when their training workloads
did not exhibit the S mcas likely and S trivial features (set S2). Even with these features
in the training set, our CBR policies never achieved 0.95 speedup or higher for KMeans, SSCA2, or
Labyrinth, the STAMP benchmarks that possess these features. In contrast, our ExpertStatic policy
consistently performed well on these workloads, since the features are easy for an expert to exploit.

We now discuss policies that combine expert knowledge and ML-based learning. In these policies,
the expert specifies cases that they can easily detect, and for which they know exactly which algo-

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article TBD, Publication date: March 2012.

A Transactional Memory with Automatic Performance Tuning TBD:17

0.000

0.200

0.400

0.600

0.800

1.000

1.200

B
a

y
e

s

G
e

n
o

m
e

In
tr

u
d

e
r

K
M

e
a

n
s

(H
ig

h
)

K
M

e
a

n
s

(L
o

w
)

L
a

b
y
ri

n
th

S
S

C
A

2

V
a

c
a

ti
o

n
(H

ig
h

)

V
a

c
a

ti
o

n
(L

o
w

) A
ll

S
p
e
e
d
u
p
 v

s
.
O

ra
c
le

Expert CBR Expert+CBR

Fig. 5. Combining ExpertStatic with CBR D TxTime+D NonTxWork. For ELA semantics, the overall performance in-
creases to 0.95. X semantics (not shown) reaches a 0.93 speedup.

rithm to select. When the most profitable cases are exhausted, the policy employs machine learning.
Furthermore, the training set for the ML-based fallback excludes those cases handled by the ex-
pert. Figure 5 shows performance under ELA semantics when combining expert and ML policies.
Overall performance increases to 0.95. With weak semantics, the policy achieves 0.93 speedup.

On a benchmark-by-benchmark basis, our hybrid policies always matched the best performance
of the sub-policies on which they were based. Thus even though we have not yet evaluated ML-
based policies trained on static profiles, we believe that this technique of combining expert intuition
with an ML-based fallback is likely to provide the best performance. In particular, we believe the
technique of letting the expert completely specify the use of high-risk, high-reward algorithms is a
significant advancement over previous ML-influenced systems research.

8. FUTURE WORK
Section 7 focused on performance on single chip “Nehalem”-class x86 systems. To fully demon-
strate the generality of a ML system for adaptive TM, further evaluation on other architectures (both
other ISAs and other versions of the x86 ISA) is needed. We briefly summarize our findings for the
STAMP Vacation benchmark on a 1.165 GHz, 64-way Sun UltraSPARC T2 with 32 GB of RAM,
running Solaris 10. On this “Niagara2”-class machine, individual cores are very simple (in-order,
single issue), but 8-way threaded (using fine-grained hardware multithreading). The L2 cache has
low access times and is shared among all cores, but CAS instructions are slow as they are imple-
mented out of core at the L2. These characteristics have a noticeable effect on Vacation.

— The “Mutex” STM implementation was the best performer at 1 and 2 threads. On the x86, Mutex
was only best at 1 thread. This observation requires a redesign of “ThrX” and “ThrELA” policies.

— TLRW always outperforms TLRWLazy for low contention, and TLRWLazy always outperforms
TLRW for high contention workloads. On the x86, TLRWLazy was always faster.

— The difference in performance between LSA and OrecLazy was much smaller.
— NOrec performed poorly on the Niagara (it was among the best “ELA” performers on x86).

To evaluate the implications of these observations, we created a few simple expert policies for the
Niagara2. In each case, Mutex is used at 1 and 2 threads, and a single algorithm for all higher thread
counts (we tested up to 56 threads, which is the limit for our version of TLRW). We call these
policies NiagLSA, NiagOrecLazy, NiagTLRW, and NiagTLRWLazy. Their performance for X and
ELA semantics is summarized in Table VIII.

In these specific cases, it is quite easy for the expert policy to perform extremely well. Nonethe-
less, it clearly holds that the expert policy must be architecture-aware. As future work, we intend
to explore whether less dramatic variations in architecture (e.g., implementations of the same ISA)

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article TBD, Publication date: March 2012.

TBD:18 Q. Wang et al.

Table VIII. Harmonic mean speedup (vs. Oracle) of STAMP Vacation on the Niagara2.

Low High Low High
Algorithm X ELA X ELA Algorithm X ELA X ELA
TLRWLazy 0.75 0.80 0.76 0.83 NiagTLRWLazy 0.87 0.93 0.88 0.97
TLRW 0.82 0.88 0.65 0.72 NiagTLRW 0.92 0.99 0.71 0.8
LSA 0.89 N/A 0.9 N/A NiagLSA 0.98 N/A 0.99 N/A
OrecLazy 0.88 N/A 0.85 N/A NiagOrecLazy 0.99 N/A 0.97 N/A

would result in new tradeoffs, and also the degree to which expert policies can perform well on the
Niagara2 for more challenging workloads.

Another direction is the exploration of adaptive policies for Hybrid TM (HyTM) systems [Da-
lessandro et al. 2011; Riegel et al. 2011]. One of the biggest questions here relates to detecting when
to adapt. In HyTM, aborts due to conflict are more common. Aborts also occur due to capacity limi-
tations, transient faults (e.g., TLB misses), context switches, and forbidden instructions. The coarse
mechanism of consecutive aborts may not apply here, and perhaps it will be necessary to learn how
to respond to various abort types. The payoff could be significant, particularly when transactions
frequently overflow the hardware capacity. In such a scenario, a variation of our mechanisms could
improve performance by switching to a pure STM.

In both HyTM and STM, another exciting opportunity lies in the use of low-level performance
counter data as features for training and adapting. Yen recently proposed a suite of simple TM-
specific counters to aid in profiling [Yen 2009]. Both Yen’s counters, and general hardware perfor-
mance counters, will likely provide a wealth of information for characterizing workloads, though
not all features will have predictive value. We believe that the relationship between low-level hard-
ware events and high-level program behaviors will be easier to explore by using ML techniques
such as those presented in this paper.

There is a question of whether STM algorithms should be “adaptivity-aware”. For example, one
could tune algorithms like Nano and TML, so that they dynamically detect when they are inappro-
priate choices and force an adaptation. This technique could also enable quicker detection of phase
changes, especially in workloads like Genome.

Another important direction is to ensure the training data provides good coverage of the true fea-
ture space of TM applications. While we used a variety of microbenchmarks based on past publica-
tions, other options, such as EigenBench [Hong et al. 2010] may ultimately provide better coverage.
There are certainly tradeoffs; for example, EigenBench does not have a means of distinguishing be-
tween “multiword CAS” and “read N write N” patterns, and its classification of accesses into three
contention categories does not map cleanly to hierarchical data structures, particularly trees. The
use of a small number of targeted microbenchmarks to capture specific behaviors and EigenBench
for a resilient backup training data set may ultimately be the best choice.

Further afield, while we currently support choosing among variations of a single algorithm, there
is likely to be significant benefit from tuning an STM algorithm using ML. For example, many
algorithms have been proposed and evaluated on single-chip systems with small core counts. The
danger is that certain parameters have been hard-coded for the development system, which could
cause poor performance on next-generation systems with much higher core counts. We expect that
using ML to tune STM internal parameters, such as backoff and granularity of conflict detection,
will deliver significant performance improvements.

9. CONCLUSIONS
We believe that adaptive synchronization is necessary for high-performance shared memory pro-
grams. To that end, this paper introduces a system for combining static analysis, low-overhead
dynamic profiling, and machine learning. It also presents a set of simple program characteristics
that are suitable for making adaptivity decisions, and shows that our system can use these features
to create TM libraries that automatically improve their performance. To the best of our knowledge,
it is the first ML-based adaptivity system for synchronizing parallel programs.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article TBD, Publication date: March 2012.

A Transactional Memory with Automatic Performance Tuning TBD:19

Our best performance came from combining expert knowledge with machine learning. This ap-
proach allowed the expert to completely specify how high-risk, high-reward STM algorithms should
be used. It also simplified the task of training ML-based adaptivity policies, by removing from the
training set cases difficult for the ML algorithms, but easily handled by the expert.

Our experiences show the power that automatic ML-based adaptivity offers for solving hard sys-
tems problems. The combination of performance, maintainability, and flexibility in ML systems
(which can even be retrained after deployment) make them an appealing approach for maximizing
performance despite the complexity and heterogeneity intrinsic to parallel computing.

REFERENCES
AAMODT, A. AND PLAZA, E. 1994. Case-Based Reasoning: Foundational Issues, Methodological Variations, and System

Approaches. Artificial Intelligence Communications 7, 1, 39–59.
AGAKOV, F., BONILLA, E., CAVAZOS, J., FRANKE, B., FURSIN, G., O’BOYLE, M. F. P., THOMSON, J., TOUSSAINT,

M., AND WILLIAMS, C. K. I. 2006. Using Machine Learning to Focus Iterative Optimization. In Proc. of the Intl.
Symp. on Code Generation and Optimization. New York, NY.

ANJI HOME. 2005–2010. ANJI: Another NEAT Java Implementation. http://anji.sourceforge.net/.
ANSARI, M., KOTSELIDIS, C., JARVIS, K., LUJAN, M., KIRKHAM, C., AND WATSON, I. 2008. Lee-TM: A Non-trivial

Benchmark for TM. In Proc. of the Intl. Conf. on Algorithms and Architectures for Parallel Processing.
CAVAZOS, J. AND O’BOYLE, M. 2005. Automatic Tuning of Inlining Heuristics. In Proc. of the ACM/IEEE Conf. on

Supercomputing.
CAVAZOS, J. AND O’BOYLE, M. F. P. 2006. Method-specific Dynamic Compilation Using Logistic Regression. In Proc. of

the 21st ACM Conf. on Object-Oriented Programming, Systems, Languages, and Applications. Portland, OR.
COHEN, W. 1995. Fast Effective Rule Induction. In Proc. of the 12th Intl. Conf. on Machine Learning. Lake Tahoe, CA.
COOPER, K. D., GROSUL, A., HARVEY, T. J., REEVES, S., SUBRAMANIAN, D., TORCZON, L., AND WATERMAN, T.

2005. ACME: Adaptive Compilation Made Efficient. In Proc. of the ACM Conf. on Languages, Compilers, and Tools
for Embedded Systems. Chicago, Illinois, USA.

DALESSANDRO, L., CAROUGE, F., WHITE, S., LEV, Y., MOIR, M., SCOTT, M., AND SPEAR, M. 2011. Hybrid NOrec: A
Case Study in the Effectiveness of Best Effort Hardware Transactional Memory.

DALESSANDRO, L., SPEAR, M. F., AND SCOTT, M. L. 2010. NOrec: Streamlining STM by Abolishing Ownership Records.
In Proc. of the 15th ACM Symp. on Principles and Practice of Parallel Programming. Bangalore, India.

DICE, D., SHALEV, O., AND SHAVIT, N. 2006. Transactional Locking II. In Proc. of the 20th Intl. Symp. on Distributed
Computing. Stockholm, Sweden.

DICE, D. AND SHAVIT, N. 2010. TLRW: Return of the Read-Write Lock. In Proc. of the 22nd ACM Symp. on Parallelism
in Algorithms and Architectures. Santorini, Greece.

FELBER, P., FETZER, C., AND RIEGEL, T. 2008. Dynamic Performance Tuning of Word-Based Software Transactional
Memory. In Proc. of the 13th ACM Symp. on Principles and Practice of Parallel Programming. Salt Lake City, UT.

FURSIN, G., MIRANDA, C., TEMAM, O., NAMOLARU, M., YOM-TOV, E., ZAKS, A., MENDELSON, B., BARNARD,
P., ASHTON, E., COURTOIS, E., BODIN, F., BONILLA, E., THOMSON, J., LEATHER, H., WILLIAMS, C., AND
O’BOYLE, M. 2008. MILEPOST GCC: Machine Learning Based Research Compiler. In Proc. of the GCC Devel-
opers’ Summit. Ottawa, Canada.

GOTTSCHLICH, J., VACHHARAJANI, M., AND SIEK, J. 2010. An Efficient Software Transactional Memory Using Commit-
Time Invalidation. In Proc. of the 2010 Intl. Symp. on Code Generation and Optimization. Toronto, ON, Canada.

HARRIS, T. AND FRASER, K. 2003. Language Support for Lightweight Transactions. In Proc. of the 18th ACM Conf. on
Object-Oriented Programming, Systems, Languages, and Applications.

HARRIS, T., LARUS, J., AND RAJWAR, R. 2010. Transactional Memory, 2nd edition. Synthesis Lectures on Computer
Architecture. Morgan & Claypool.

HARRIS, T., PLESKO, M., SHINAR, A., AND TARDITI, D. 2006. Optimizing Memory Transactions. In Proc. of the 27th
ACM Conf. on Programming Language Design and Implementation. Ottawa, ON, Canada.

HONG, S., OGUNTEBI, T., CASPER, J., BRONSON, N., KOZYRAKIS, C., AND OLUKOTUN, K. 2010. Eigenbench: A Sim-
ple Exploration Tool for Orthogonal TM Characteristics. In Proc. of the IEEE Intl. Symp. on Workload Characterization.
Atlanta, GA.

KULKARNI, M., BURTSCHER, M., INKULU, R., PINGALI, K., AND CASCAVAL, C. 2009. How Much Parallelism is There
in Irregular Applications? In Proc. of the 14th ACM PPoPP. Raleigh, NC.

KULKARNI, P., HINES, S., HISER, J., WHALLEY, D., DAVIDSON, J., AND JONES, D. 2004. Fast Searches for Effective
Optimization Phase Sequences. In Proc. of the 25th ACM Conf. on Programming Language Design and Implementation.
Washington, DC.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article TBD, Publication date: March 2012.

TBD:20 Q. Wang et al.

LAU, J., PERELMAN, E., AND CALDER, B. 2006. Selecting Software Phase Markers with Code Structure Analysis. In Proc.
of the Intl. Symp. on Code Generation and Optimization. New York, NY.

LEV, Y., MOIR, M., AND NUSSBAUM, D. 2007. PhTM: Phased Transactional Memory. In Proc. of the 2nd ACM SIGPLAN
Wkshp. on Transactional Computing. Portland, OR.

LI, X., GARZARÁN, M. J., AND PADUA, D. 2004. A Dynamically Tuned Sorting Library. In Proc. of the Intl. Symp. on
Code Generation and Optimization. Palo Alto, CA.

LI, X., GARZARÁN, M. J., AND PADUA, D. 2005. Optimizing Sorting with Genetic Algorithms. In Proc. of the Intl. Symp.
on Code Generation and Optimization. Washington, DC, USA.

MARATHE, V. J., SCHERER III, W. N., AND SCOTT, M. L. 2005. Adaptive Software Transactional Memory. In Proc. of
the 19th Intl. Symp. on Distributed Computing. Cracow, Poland.

MENON, V., BALENSIEFER, S., SHPEISMAN, T., ADL-TABATABAI, A.-R., HUDSON, R., SAHA, B., AND WELC, A.
2008. Practical Weak-Atomicity Semantics for Java STM. In Proc. of the 20th ACM Symp. on Parallelism in Algorithms
and Architectures. Munich, Germany.

MINH, C. C., CHUNG, J., KOZYRAKIS, C., AND OLUKOTUN, K. 2008. STAMP: Stanford Transactional Applications for
Multi-processing. In Proc. of the IEEE Intl. Symp. on Workload Characterization. Seattle, WA.

MONSIFROT, A., BODIN, F., AND QUINIOU, R. 2002. A Machine Learning Approach to Automatic Production of Compiler
Heuristics. In Proc. of the 10th Intl. Conf. on Artificial Intelligence: Methodology, Systems, and Applications. Varna,
Bulgaria.

NI, Y., WELC, A., ADL-TABATABAI, A.-R., BACH, M., BERKOWITS, S., COWNIE, J., GEVA, R., KOZHUKOW, S.,
NARAYANASWAMY, R., OLIVIER, J., PREIS, S., SAHA, B., TAL, A., AND TIAN, X. 2008. Design and Implementa-
tion of Transactional Constructs for C/C++. In Proc. of the 23rd ACM Conf. on Object Oriented Programming, Systems,
Languages, and Applications. Nashville, TN, USA.

POUCHET, L.-N., BASTOUL, C., COHEN, A., AND CAVAZOS, J. 2008. Iterative Optimization in the Polyhedral Model: Part
II, Multidimensional Time. In Proc. of the 29th ACM Conf. on Programming Language Design and Implementation.
Tuscon, AZ.

RIEGEL, T., MARLIER, P., NOWACK, M., FELBER, P., AND FETZER, C. 2011. Optimizing Hybrid Transactional Memory:
The Importance of Nonspeculative Operations. In Proc. of the 23rd ACM Symp. on Parallelism in Algorithms and
Architectures.

SHEN, X., ZHONG, Y., AND DING, C. 2004. Locality Phase Prediction. In Proc. of the 11th Intl. Conf. on Architectural
Support for Programming Languages and Operating Systems. Boston, MA.

SONMEZ, N., HARRIS, T., CRISTAL, A., UNSAL, O. S., AND VALERO, M. 2009. Taking the Heat Off Transactions:
Dynamic Selection of Pessimistic Concurrency Control. In Proc. of the 23rd Intl. Parallel and Distributed Processing
Symp. Rome, Italy.

SPEAR, M. 2010. Lightweight, Robust Adaptivity for Software Transactional Memory. In Proc. of the 22nd ACM Symp. on
Parallelism in Algorithms and Architectures. Santorini, Greece.

SPEAR, M. F., MICHAEL, M. M., SCOTT, M. L., AND WU, P. 2009. Reducing Memory Ordering Overheads in Software
Transactional Memory. In Proc. of the 2009 Intl. Symp. on Code Generation and Optimization. Seattle, WA.

SPEAR, M. F., MICHAEL, M. M., AND VON PRAUN, C. 2008. RingSTM: Scalable Transactions with a Single Atomic
Instruction. In Proc. of the 20th ACM Symp. on Parallelism in Algorithms and Architectures. Munich, Germany.

STANLEY, K. AND MIIKKULAINEN, R. 2002. Evolving Neural Networks Through Augmenting Topologies. Evolutionary
Computation 10, 2, 99–127.

STEPHENSON, M. AND AMARASINGHE, S. 2005. Predicting Unroll Factors Using Supervised Classification. In Proc. of
the Intl. Symp. on Code Generation and Optimization. Washington, DC, USA.

STEPHENSON, M., AMARASINGHE, S., MARTIN, M., AND O’REILLY, U.-M. 2003. Meta Optimization: Improving Com-
piler Heuristics with Machine Learning. In Proc. of the 24th ACM Conf. on Programming Language Design and Imple-
mentation. San Diego, CA.

USUI, T., SMARAGDAKIS, Y., BEHRENDS, R., AND EVANS, J. 2009. Adaptive Locks: Combining Transactions and Locks
for Efficient Concurrency. In Proc. of the 18th Intl. Conf. on Parallel Architecture and Compilation Techniques. Raleigh,
NC.

WELC, A., SAHA, B., AND ADL-TABATABAI, A.-R. 2008. Irrevocable Transactions and their Applications. In Proc. of the
20th ACM Symp. on Parallelism in Algorithms and Architectures. Munich, Germany.

YAO, X. 1999. Evolving artificial neural networks. Proc. of the IEEE 87, 9, 1423–1447.
YEN, L. 2009. Signatures in Transactional Memory Systems. Ph.D. thesis, University of Wisconsin, Madison.
YOTOV, K., LI, X., REN, G., CIBULSKIS, M., DEJONG, G., GARZARAN, M., PADUA, D., PINGALI, K., STODGHILL,

P., AND WU, P. 2003. A Comparison of Empirical and Model-driven Optimization. In Proc. of the 24th ACM Conf. on
Programming Language Design and Implementation. San Diego, CA.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article TBD, Publication date: March 2012.

