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Abstract. Iterative optimization has been shown to improve the perfor-
mance of benchmarks significantly, but its application involves challenges
such as the requirement of an expressive search space and the design of
efficient search techniques. In this paper, we apply iterative optimization
to the problem of optimizing in the polyhedral model, a powerful alge-
braic representation of any static control program, by using affine mul-
tidimensional schedules to represent arbitrarily complex transformation
sequences. We propose to study the performance distribution of the search
space of affine multidimensional schedules built specifically to guarantee
legality and uniqueness of each program version. We extensively study the
optimization of 5 representative benchmarks in this representation, and
highlight a series of static and dynamic characteristics of the search space.
We show how the space can be decoupled into subspaces, which can be
statically ordered with respect to their impact on performance. Finally,
we present a practical search method leveraging these properties to tra-
verse the search space, yielding a 32.56% speedup on eight representative
kernels.

Keywords Iterative optimization, polyhedral model, affine scheduling, loop trans-
formations.

1 Introduction
Loop nest optimizations are some of the most important compiler transformations
to fully exploit all the features of a given architecture. Unfortunately, as archi-
tecture complexity grows, static optimization techniques hard-wired in modern
compilers usually fail to achieve the maximum performance for a given program.
In recent years, iterative optimization has proven to be successful at addressing
this issue. The main idea of iterative optimization is to optimize and run several
versions of a program on the target architecture, searching for the best set of
transformations for each specific program. This search is directed by the actual
performance feedback of all tested versions, in contrast to an analytical model
which typically is not accurate enough to reflect both architecture and compiler
complexity.

Iterative optimization has two inherent challenges: (a) the construction of an
expressive search space that includes the best performing program versions; and



(b) the design of efficient search mechanisms to traverse this space. Approaches
proposed to date have faced problems with illegal program versions being gen-
erated [8] and only covering some compiler options or a fraction of the available
set of possible loop transformations [1, 7]. We propose to tackle these problems
by considering iterative optimization in the context of the polyhedral model [11,
4], a powerful algebraic representation of any static control program. Within this
model, one can represent an arbitrarily complex sequence of loop transformations
with a single transformation, namely a transformation in an affine schedule rep-
resentation of the program [4–6]. Moreover, critical properties such as legality or
uniqueness of the generated version can be directly modeled in the search space,
dramatically improving the convergence of search techniques [10, 9].

In this paper, we propose to study and characterize the performance distri-
bution of a search space of multidimensional schedules by means of statistical
analysis of results over an extensive set of program versions. We show how the
search space can be decoupled into subspaces ordered with respect to their impact
on performance. We build upon these results to motivate an heuristic mechanism
to traverse such a search space, leveraging various static properties of the space.
Finally, we show that this technique enables us to discover significant speedups
in a very limited number of runs.

The paper is organized as follows. Section 2 describes how to construct a
search space encompassing only legal, distinct program versions. In Section 3,
we study the performance distribution of 5 representative UTDSP kernels. Next,
we derive from this study an efficient heuristic search mechanism in Section 4.
Finally, we conclude in Section 5.

2 Generating Program Versions

Programs are represented in the polyhedral model by means of three compo-
nents for each statement in the original code. First, an iteration domain exactly
describes the set of executed instances of each statement (typically statements
enclosed in loops). Second, a set of array subscript functions describes, over the
iteration domain, each array index accessed by the statement. Third, a multi-
dimensional schedule (which assigns a multidimensional timestamp to each in-
stance of the statement) specifies the execution order of all those instances. This
schedule is represented by a matrix Θ whose coefficients are called the schedule
coefficients. Each of these three components are affine forms: more complex forms
are beyond the scope of our tool. Finally, source code for the program can be
regenerated from the polyhedral representation through the use of efficient code
generation algorithms [2]. The reader can refer to [4, 5, 10] for a comprehensive
description of this representation.

While any loop transformation can be represented by means of affine multi-
dimensional schedules [11], we choose to limit this study to the more tractable
compositions of interchange, skewing, reversal, fusion, distribution, peeling and
shifting (and indirectly index-set splitting).3

3 This does not forbid the compiler to apply any other transformation, we simply do
not model them in our representation.



2.1 Building the Search Space

It is not possible to apply any scheduling function to a program without changing
its semantics. Scheduling must preserve the relative order of dependent statement
instances to preserve the original program semantics. Choosing a schedule at
random is likely to lead to an illegal program version, i.e., one that changes
the semantics of the program, since the probability of finding a legal schedule
(which does not alter semantics) decreases exponentially fast with the length of
the program [10]. Previous works on using a polyhedral approach for iterative
compilation showed poor results, in particular, because they did not consider the
data dependence problem early enough [7, 8].

Basically, two statement instances are in a dependence relation if they access
the same memory location and at least one of these accesses is a write [3]. To
ensure that a schedule does not alter the semantics, it has to satisfy the precedence
constraint, for all pairs of instances which are in a dependence relation:

θR(xR) ≺ θS(xS)

Where ≺ denotes the lexicographic ordering,4 θR (θS) is the multidimensional
affine schedule of a statement R (S), xR (xS) is an iteration vector of the state-
ment (that is, xR (xS) takes any value in the iteration domain), and there is
a dependence S → R. Dependences in a static control part (SCoP) are exactly
expressed by dependence polyhedra whose formal description has been proposed
by Feautrier [4]. A SCoP is a maximal set of consecutive statements where the
control flow and data accesses can be fully described at compile time (by affine
forms, in the polyhedral model).

In multidimensional schedules, some dependences may be entirely satisfied5

at a given dimension d of the schedule (the dth row of θ). We refer to these
dependences as strongly solved at dimension d. In contrast, other dependences
may still have some points such that their schedule are only equal for the d first
dimensions, we call them weakly solved dependences at dimension d [5].

Building a search space of affine multidimensional schedules reveals to two
combinatorial problems. First, there exist many distinct solutions to the problem
of deciding which dependences will be strongly or weakly solved at a given dimen-
sion, and each of them leading to potentially different search spaces. Second, the
constructed search spaces are too large to be explored exhaustively for complex
programs.

Feautrier found a very interesting solution with the space of all legal schedules
leading to maximum fine-grain parallelism [5]. To achieve this, he proposed a
greedy algorithm to maximize the number of dependences strongly solved for a
given schedule dimension. This solution is interesting because it tends to reduce
the number of schedule dimensions — hence reducing the search space size — and
exhibits parallelism that one may exploit. But this greedy algorithm faces a lack
4 (a1, . . . , an) ≺ (b1, . . . , bm) iff there exists an integer 1 ≤ i ≤ min(n, m) s.t.

(a1, . . . , ai−1) = (b1, . . . , bi−1) and ai < bi.
5 For dependences to be satisfied, all instances in the dependence relation must respect

the precedence constraint.



of scalability due to the size of the integer programs to be resolved. Moreover,
maximal reduction of the schedule dimension is likely to translate into large
scheduling coefficients which are known to be a source of heavy control overhead
when generating the target code for sequential targets [2]. Finally, we want to
explore several possible values for a schedule, and not limit ourselves to a single
solution computed with the help of a cost function.

We suggest a simple variation to overcome these issues. The following algo-
rithm sketches our search space construction for a given static control part:

1. Compute the exact set G of dependences for the SCoP by performing in-
stancewise analysis [4]. Mark all dependences as weakly solved. Initialize di-
mension to d = 1.

2. While all dependences are not strongly solved:
(a) Initialise Ld, the space of legal schedules for dimension d, to universe

(”full” polyhedron).
(b) For each non-solved dependence D ∈ G:

– Express the space TD of legal schedules respecting the precedence
constraint for D and not violating any other dependences in G (see
Pouchet et al. for a formal description of TD computation [10]).

– If Ld ∩ TD is not empty, then Ld ← Ld ∩ TD and mark D as strongly
solved.

(c) Remove all strongly solved dependences from G, d← d + 1 and go to 2.

This algorithm outputs for each schedule dimension d a space Ld of legal
values for the dth row of Θ. Intuitively, a schedule of dimension s means that the
s outer most loops of any loop nest in the generated program will be sequential
loops (this implies there exists depth − s level of parallelism in the generated
program, where depth is the maximal loop depth in the SCoP).

The algorithm terminates since at least one dependence can be strongly solved
per dimension [5]. It differs from the algorithm proposed by Feautrier as it does
not guarantee to maximize the number of dependences solved per dimension.
It follows that it may not minimize the schedule dimensionality. However, this
algorithm is efficient and only needs one polyhedron emptiness test6 for each
dependence. Since in this study we address the problem of optimizing sequential
codes, exposing parallelism is less critical and we bound the coefficient values
between [−1, 1] to avoid control overhead at code generation [2]. While this may
restrict us from finding any solution if we are constrained to one-dimensional
schedules [10], it may just translate to additional dimensions on multidimensional
schemes. Hence, this solution gives an interesting trade-off between scalability,
efficiency, and parallelism extraction for further studies.

2.2 Picking Points in the Space
The algorithm presented in Section 2.1 constructs a polytope Ld per sequential
schedule dimension d, for a given program. Our iterative optimization must tra-
verse these polytopes to build different legal versions of the original program,
hence, we must provide efficient mechanisms for this traversal.
6 Over Ld which contains exactly one variable per schedule coefficient



Each program version is represented by a unique scheduling matrix Θ. First,
are schedule coefficients attached to each loop iterator surrounding a statement
in the original program, for all statements (i). Second, are schedule coefficients
attached to global parameters (p), for all statements. Third, are the schedule
coefficients attached to the constant (c), for all statements. Since we represent
legal schedules as multidimensional affine functions, each row Θd of the scheduling
function corresponds to an integer point in the polytope of legal coefficients Ld,
built explicitly for this dimension. A program version in the optimization space
can thus be represented as follows, for a SCoP of l statements, a schedule of
dimension s, and the iteration vector x:

Θ.x =
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...
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To build each row Θd, we apply a dynamic scanning over the legal polytope Ld,
by sequentially picking values for each coefficient in a fixed order. We first shape
the polytopes by computing their complete projection,7 thanks to a modified
Fourier-Motzkin algorithm improved for scalability [9].

It is possible to efficiently complete or even correct any vector, i.e. slightly
modify its coordinates to make it lie in the polytope of legal schedules. This
simple correction procedure works as follows. Given a vector v of size n, for
i ∈ [1, n], first, compute the lower bound and upper bound of vi, provided the
values for v1 · · · vi−1 and second, if vi /∈ [lb, ub], then vi = lb if vi < lb or vi = ub if
vi > ub. Hence it is possible to partially build a schedule prefix (e.g., pick values
for the i coefficients and set all other coefficients to 0) and applying this correc-
tion principle on it will result in finding the minimal amount of complementary
transformations needed to make this transformation sequence legal. We refer to
this mechanism as the completion algorithm.

Three fundamental properties are embedded in this completion algorithm.
Given a point v:

1. provided a legal value for v1 · · · vi, a completion always exists;
2. this completion will only update vi+1 · · · vn, if needed;
3. the smallest legal value for the p coefficients (i.e. the minimal correction of

the 0 value) translates into the maximal fusion available for the picked i
coefficients.

In practice this algorithm is extremely powerful: it allows us to build only
parts of the schedule, focusing on some of its properties, and the heuristic will
automatically complete the schedule with a minimal amount of correction to
make it legal. It also motivates the order of coefficients in the Θ matrix. We as-
sert that the most performance impacting transformations (interchange, skewing,
reversal) are embedded in the first coefficients of Θ — the i coefficients; followed

7 It implies the order to compute coefficient values is the reverse order of the variable
projection, that is from i1 to cp



by coefficients involved in fusion and distribution — the p coefficients; and fi-
nally the less impacting c coefficients, representing loop shifting and peeling. The
correction algorithm will find complementary transformations in order of least to
most impacting, as it will not correct any prefix if a legal suffix exists.

3 Performance Distribution
The polyhedral representation of programs offers a compact way to represent
arbitrarily complex sequences of transformations, significantly increasing the ex-
pressiveness of the search space. Moreover, the design of traversal methods for
such spaces is facilitated by the algebraic properties of the model. For instance
it is possible to consider only legal sequences, dramatically narrowing the search.
We propose to go deeper and expose static characteristics of the space correlated
to performance distribution. We extensively study the performance distribution
of some representative benchmarks to assess the following hypotheses.

1. It is possible to statically order the impact on performance of transforma-
tion coefficients, that is, decompose the search space in subspaces where the
performance variation is maximal or reduced.

2. The more a schedule dimension impacts a performance distribution, the more
it is constrained.

As a result of this hypothesis, traversal techniques can be designed to focus
on the most promising subspaces first, notably increasing the efficiency of the
search method.

3.1 Experimental Protocol
For each tested point of the search space, we generate the corresponding C code
with ClooG [2], add all the required instrumentation to the code, then compile
and run it on the target machine. Our target architecture is an AMD Athlon X64
3700+ (single core), running at 2.4GHz (configured with 64KB+64KB L1 cache
and 1024k L2 cache). The system is Mandriva Linux and the native compiler is
GCC 4.1.2. All generated programs (as well as the original codes) were compiled
using the following optimization settings, known to bring excellent performance
for this platform: -O3 -msse2 -ftree-vectorize. The performance data are
collected using hardware counters, using the PAPI library. We collected counters
for cycles, L1 and L2 hits and misses, and branches taken and mispredicted. To
limit OS interference to the minimum, all program versions are run with real-time
priority scheduler and averaged over 100 executions.

3.2 Study of the dct Benchmark
The dct benchmark presented in Figure 1 computes a 32x32 Discrete Cosine
Transform (M=32). This well known kernel is a good candidate for aggressive
optimizations, and representative of several challenges for compilers. It is imper-
fectly nested, has 35 dependences and exposes possible multi-level fusion. Also,
the cos1 array can be reused, by means of a complex transformation sequence.

The latnrm benchmark presented in Figure 2 is a normalized lattice filter,
and will be studied in Section 3.3.



for (i = 0; i < M; i++) {
for (j = 0; j < M; j++) {

temp2d[i][j] = 0.0;
for (k = 0; k < M; k++) {

temp2d[i][j] += block[i][k] *
cos1[j][k];

}
}

}
for (i = 0; i < M; i++) {

for (j = 0; j < M; j++) {
sum = 0.0;
for (k = 0; k < M; k++) {

sum += cos1[i][k] * temp2d[k][j];
}
block[i][j] = ROUND(sum2);

}
}

Fig. 1. Source Code for dct

for (i = 0; i < M; i++) {
top = data[i];
for (j = 1; j < N; j++) {

left = top;
right = internal_state[j];
internal_state[j] = bottom;
top = coefficient[j-1] * left -

coefficient[j] * right;
bottom = coefficient[j-1] * right +

coefficient[j] * left;
}

internal_state[N] = bottom;
internal_state[N+1] = top;
sum = 0.0;
for (j = 0; j < N; j++)

sum += internal_state[j] *
coefficient[j+N];

outa[i] = sum;
}

Fig. 2. Source Code for latnrm

Statistics of the search space for dct The space of legal affine multidimen-
sional schedules is built according to the algorithm presented in Section 2.1. This
technique builds a search space where 3 sequential dimensions are necessary to
respect the program dependences (the Θ matrix has 3 rows). Its statistics are
summarized in Figure 3. For each schedule dimension, we report the degree of
freedom (that is, the number of different legal schedules) decomposed in 3 dif-
ferent classes. The i class represents all the schedules with a distinct i prefix
(that is, where iterator coefficients are going to be different, typically distinct
legal combinations of interchange, skewing, reversal); then respectively for the
i + p class (adding fusion, distribution); and the i + p + c class (adding peeling,
shifting). Finally, the size of the search space for the entire program is shown in
the Total combined row, for each 3 classes (multiplying the degree of freedom for
each schedule dimension).

Schedule dimension i i + p i + p + c

Dimension 1 39 66 471

Dimension 2 729 19683 531441

Dimension 3 60750 1006020 64855485

Total combined 1.7× 109 1.3× 1012 1.6× 1016

Fig. 3. Search Space Statistics for dct

It is worth recalling that each program version corresponds to an arbitrarily
complex sequence of transformations applied to the original program. It is possi-
ble to limit the degree of freedom to (a part of) the i or i + p classes, by simply
relying on our completion algorithm to find the minimal set of complementary



transformations (contained in the larger classes) to make the current sequence
legal. In this case we do not explore the numerous possibilities to make this se-
quence legal, but instead use the completion algorithm to generate only one of
them.

Performance distribution To limit the set of tested program versions, we rely
upon two empirical observations. First, it is expected that the degree of freedom
for peeling and shifting will have a low impact on the performance distribu-
tion [10], hence we can safely limit the traversal to the i + p class. Second, for
the dct benchmark, it is expected that the third schedule dimension will have a
low impact on performance: it will only affect the inner-most scheduling of two
statements with a regular memory pattern, thus very little improvement can be
expected.8 Eventually, we consider a search space of 1.29×106 different program
versions, where each schedule coefficient that is not explored is computed with
the completion algorithm.

Figure 4 shows the performance distribution of all versions generated for the
dct program. Figure 4(a) plots the best, worst, and average performance for
each of the 66 possible values for Θ1 (represented in the x axis). For each of
these values, we evaluated the 19683 possible values for Θ2, and reported the
performance. The performance of the original code is represented by the bold
horizontal bar: each point above this bar improves the original code. Figure 4(b)
plots the raw performance (sorted from the best to the worse) of all the 19683
points of Θ2, using the value of Θ1 of the best found version.
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Fig. 4. Performance Distribution for dct

The first observation is that an important speedup can be discovered: the best
optimization achieves a speedup of 61.7%. Also, as what was pointed out in [10],
several program versions achieve a similar performance.
8 We performed sampling also in the i + p + c class as well as for the third schedule

dimension: it always confirmed these assumptions.



The difficulty to reach the best improving points in the search space is empha-
sized by their extremely low proportion: only 0.14% of points achieves at least
80% of the maximal speedup, while only 0.02% achieves 95% and more. Con-
versely, 61.11% degrades performance of the original code, while in total 10.88%
degrades the performance by a factor 2. Hence in this context it is expected that
pure random approaches will fail to converge quickly to the best speedup.

We note that there are several values for the first schedule dimension from
which it is impossible to attain the maximal performance. However, the maximal
performance is attainable from more than one point in the first dimension. We
conclude that effectively searching for points in Θ1 is important in obtaining good
performance, but cannot be the only criterion in designing search techniques when
performing iterative optimization in the polyhedral representation.

Statistical analysis This section describes a finer grain analysis by capturing
the relative impact of the schedules coefficients on the performance distribution.
We first compute the variance of each schedule coefficient on the set of versions
achieving at least 80% of the maximum speedup. Coefficients with little to no
variance among points with good speedups means that those coefficients are
important in obtaining that good performance. We observe that 7 (out of 12)
coefficients of the i class of Θ1 have the same value, as well as 2 (out of 5)
coefficients of the p class. Also, 3 (out of 12) coefficients of the i class of Θ2 have a
very low variance, emphasizing that the second dimension Θ2 plays an important
role in obtaining a good characterization of the performance distribution. The
impact of the coefficients with low variance on the complete distribution shape
is confirmed by correlating the performance of a program version with a non-
optimal value of these coefficients. For example, we found that slight changes to
any of the i low variance coefficients of Θ1 translated into major performance
variations.

We observe that a relevant ordering of the impact of the several classes of
coefficients is i < p < c, and studying the variance of the coefficients confirmed
our first hypothesis stated in Section 3.

Hardware counters details Figure 5 gives more details on source of perfor-
mance improvements and degradations. It reports the behavior for the L1 ac-
cesses, L2 accesses and Branch count metrics.9 The performance of the original
code is represented by a bold horizontal bar.

The metric that seems to capture the performance distribution shape best is
the L1 accesses curve. We observe that all transformations access the L1 cache
more than the original code does. The transformed code performs at least 8%
more L1 accesses than the original code. Also, the lowest L1 accesses points cor-
responds exactly to the peaks of highest speedup reported in Figure 4(a). On the
other hand, several transformed program versions access the L2 cache less than
the original code. Hence, the criterion in terms of memory accesses for optimal
performance is to minimize L1 and L2 accesses. Note, we increase the number

9 Accesses = hits + misses, count = taken + mispredicted
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Fig. 5. Hardware Counters Distribution for dct

of L1 accesses as compared to the original code because there are more hits to
the L1 cache, thereby minimizing L2 accesses. The last reported performance
counter statistic is Branch count. We can correlate this statistic with the con-
trol statements added in the transformed code. The polyhedral code generation
algorithms are likely to generated many complicated control statements (if and
modulos) when highly complex transformations are applied. While not directly
correlated to the performance distribution itself, this metric shows that the space
contains many complicated versions, and in most cases a transformation sequence
leads to more branches than the original code.

Discussion of the performance counter statistics The best performing
transformations reduce the numbers of stall cycles by a factor of 3, while improv-
ing the L2 hit/miss ratio by 10%. Transformation sequences achieving the optimal
performance are not obvious at first glance: they involve complex combinations
of skewing, reversal, distribution and index-set splitting. These transformations
address specific performance anomalies of the loop nest, but they are often associ-
ated with the interplay of multiple architecture components. Overall, our results
confirm the potential of iterative optimization to find program versions that bet-
ter exploit the complex behavior of current superscalar processors. Also, we have
extended iterative optimization to optimization problems far more complex than
those commonly solved in adaptive compilation.

3.3 Evaluation of Highly Constrained Benchmarks

We established in the previous sections a connection between the i class and
the dispersion of the performance distribution, on a representative benchmark
offering a large degree of freedom for scheduling. In this section, we study the
influence of a strong limitation of the degree of freedom of the i class. In partic-
ular, such a situation may derive from the greedy algorithm of Section 2.1 which
tends to reduce the degree of freedom for the i class of the first dimension.

Search space statistics on more examples In the following we focus on four
representative benchmarks extracted from the UTDSP suite. Namely latnrm, a



normalized lattice filter (shown in Figure 2); fir, Finite Impulse Response filter;
lmsfir, a Least Mean Square adaptive FIR filter; and iir, an Infinite Impulse
Response filter. Figure 6 shows the search space statistics for the first schedule
dimension for the i, p, and c classes. We also report, for each benchmark, the
number of statements (# St.), the number of dependences (# Deps.) and the
number of schedule dimensions (# Dim.) needed to represent the program.

Benchmark # St. # Deps. # Dim. i i + p i + p + c

latnrm 11 75 3 1 9 27

fir 4 36 2 1 9 18

lmsfir 9 112 2 1 9 27

iir 8 66 3 1 9 18

Fig. 6. Search Space Statistics

We observe for each benchmark that the degree of freedom of the i class, for
the first dimension, is null: there is only one sequence of interchange, reversal and
skewing available for the first schedule dimension in the search space. This situa-
tion is not connected to usual program indicators such as number of statements
or dependences, it is necessary to build the search space to detect this static
property. Moreover, the four benchmarks we consider are syntactically different,
and representative of many kernels in embedded computing.

We show in the following how this lack of degree of freedom translates into
regularities of the performance distribution, and in performance improvements.

Performance distribution We conducted for each of these benchmarks the
same study as presented in Section 3.2. We exhaustively traverse the i+p class, for
the first two schedule dimensions. Figure 7 shows the performance distributions
from this search.
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Fig. 7. Performance Distribution for 3 UTDSP benchmarks

Again, we see there is significant speedup to be discovered: more than 30%
speedup can be achieved for each of these benchmarks. Hence, for these bench-



marks, the limited degree of freedom of the first schedule dimension does not
restrict significant speedups.

The performance distribution is almost flat, another evidence of the impact of
transformation coefficient freedom. We can conclude that the degree of freedom
in the i class translates into variations in the performance distribution.

We also conducted variance studies to capture the relative impact of schedule
coefficients. We observe that the impact on performance distribution of the p
coefficients is lower than the i ones, while the impact of the c coefficients is almost
negligible. Overall, all the conducted experiments confirm our initial hypothesis
from Section 3.

3.4 Addressing the Generalization Issue
In order to assess the hypothesis that schedule coefficients can be ordered with
respect to their impact on performance, we need to distinguish two different
concerns: the generalization to other programs, and the generalization to other
architectures.

Generalization to other programs We showed a positive correlation between
the amount of variation in the performance distribution and the degree of freedom
in the i class, especially for the first schedule dimension. Hence, it is expected
that a traversal of each possible value for this class will be necessary to guarantee
to achieve the maximal performance. Nevertheless, in the general case, particular
fusions and distributions can achieve a dramatic impact on performance, and the
full i+p class is of interest for traversal. Finally, traversing the degree of freedom
for peeling and shifting is almost useless, as the aim of those transformations
usually is program legality and not program performance.

Generalization to other architectures Generalizing the results obtained on
AMD Athlon64 to other architectures must be done with care. First, even if it
is clear that the i class will still have a large impact on performance regardless
of the architecture, one has to pay attention to fusion and distribution: which
are important transformations for several embedded architectures. Hence, mo-
tivating the traversal of the degree of freedom offered by the i + p class. We
also conducted experiments on the ST231 embedded VLIW processor, though
different from the AMD Athlon, we still observed a similar impact of the i class
to the shape of the performance distribution. Although smaller speedups were
found (the regular VLIW architecture is easier to model and well exploited by the
STMicroelectronics compiler), our framework is still able to discover performance
improvements on all tested benchmarks, with an average of 13.3%.

Performance distribution discussion From this study of the performance
distribution of several programs, we deduce the following facts.

1. The degree of freedom in the i class of Θ1, the first row of Θ, translates into
variation in the performance distribution.

2. When the degree of freedom in the i class of Θ1 is nonexistent, the perfor-
mance distribution is almost flat.



3. The impact of coefficients on performance is ordered: Θ1 impacts performance
more than Θ2, and inside a schedule row, i coefficients impacts performance
more than p and c.

We leverage these characteristics of the search space to motivate the design
the traversal heuristic introduced in our previous work [9]. We detail the traversal
heuristic, and present its performance on 8 benchmarks.

4 Efficient Search Space Traversal Heuristic

The traversal approach we propose relies upon the computation of the degree
of freedom available for the i class of Θ1 (refereed to as card(Li

1)). Depending
on its value, the heuristic will apply more or less of the available transformation
sequences. In addition, we apply a feedback-driven filter. Experiments showed
that Θ1 is a good indicator of the overall performance distribution, hence we can
start by traversing several values for Θ1 with a unique value for the remaining
Θk, and in a second step traverse several values for Θk provided the best found
value(s) for Θ(1...k−1). Finally, we rely on our completion algorithm to compute
the schedule coefficients which are not explored.

The traversal heuristic can be depicted as follows:

1. Θk = completion(0,Lk), for all row k of Θ
2. d = 1
3. if card(Li+p

d ) < L1, L
′

d = Li+p
d else L′

d = Li
d

4. For each point v in L′

d

(a) Θd = completion(v,Ld), keep Θk, k 6= d
(b) Evaluate Θ (generate code, compile and run)

5. Keep Θd from the best performing schedule Θ, d = d + 1, go to 3

The parameter L1 drives the size of the search space explored: the larger the
degree of freedom, the slower the convergence. By limiting to the i class typically
for inner schedule dimensions, we target only the most promising subspaces at the
expense of possibly missing the optimal program version. Also, one may note that
this heuristic approach can be coupled with a static limit. In our experiments, we
used a value of 50 for L1 and a static limit of 1000 program versions evaluated.

Figure 8 shows the results for dct along with seven other kernels from the
UTDSP suite that were amenable to the polyhedral representation without code
modification.10 We report the number of statements (# Stm.), the size of the
i class for the first schedule dimension, the size of the search space considered
(Space), the run number at which the best performing version was found (Id
Best: the lower, the earlier), and the speedup achieved (Speedup). The overhead
of picking a point in the search space and building its syntactic representation is
negligible in comparison to the execution time of the program version, and several
points can be tested within a second. Finally, the procedure is fully automated.

10 matmult is a 2 statement matrix multiplication, for 10× 10 matrices. See [10] for an
extensive study of this kernel



dct matmult lpc edge-c2d iir fir lmsfir latnrm

#Inst. 5 2 12 3 8 4 9 11

i 39 76 243 1 1 1 1 1

Space 1.6×1016 912 > 1025 5.6×1015 > 1019 9.5× 107 2.8× 108 > 1022

Id Best 46 16 489 11 34 33 51 6

Speedup 57.1% 42.87% 31.15% 5.58% 37.50% 40.24% 30.98% 15.11%

Fig. 8. Heuristic Performance for AMD Athlon

The heuristic succeeds in discovering an average speedup of 32.56% for the
8 tested benchmarks. All the best versions are the result of the application of
a complex transformation sequence, syntactically very different from the origi-
nal code. Analysis of the performance counters for these transformations shows
improvements in memory behavior, combined with a better workload of the pro-
cessor units which is likely to be the result of hard to predict interaction between
the compiler optimizations and the processor features.

The limited performance improvement for edge is directly correlated to the
code structure: this benchmark performs a convolution of a 3x3 kernel, and is
an excellent candidate for optimization with loop unrolling — a transformation
not embedded in our search space. Our technique is fully compatible with other
iterative search techniques such as parameters tuning [1], and it is expected that
this combination would bring excellent performance.

For the case of highly constrained benchmarks, we also specifically studied
the performance of a single statically computed schedule: the one computed at
step 1 of the traversal heuristic (i.e. the application of the completion algorithm
on all schedule coefficients). This schedule performs extremely well, and succeeds
in discovering 75%–99% of the maximum speedup available in the space, without
evaluation. Hence, the proposed heuristic can be coupled with the detection of
the special case where card(Li

1) = 1 to avoid traversing a space leaving few room
for further improvements (as it is expected that the performance distribution
will be almost flat). This approach leads to a an average 17.8% speedup on the 5
benchmarks where this criteria applies, without any further evaluation required.

5 Conclusion
Analytical approaches to drive compiler optimizations fail to model the complex
interplay between hardware and compiler features. Iterative optimization tech-
niques has become essential in overcoming the problems with model. However,
high-level loop transformations challenge the design of such methods because 1)
expressing complex restructuring sequences is a hard problem and 2) efficient
methods to traverse huge and complex search spaces have to be designed.

Applying iterative optimization to the polyhedral model provides a significant
breakthrough to the challenges of expressiveness and applicability. It enables
searching in a space where every point is relevant: each point corresponds to
a legal, distinct program version resulting in the application of an arbitrarily
complex sequence of transformations [9, 10].



To explore the construction of efficient space traversing techniques, we present
a detailed analysis of the performance distribution of affine multidimensional
schedules. We build upon this analysis to characterize performance distributions
relating static and dynamic properties of different program versions. From the
static point of view, we show that a relative ordering of the subspaces (i.e., the
different classes of coefficients of the schedule) of the search space can be achieved
with respect to their impact on performance. We show that it dramatically helps
to narrow the search to the subspaces that impact performance the most. ¿From
the dynamic point of view, we show that the number of program versions that
achieve a significant fragment of the maximal speedup available is extremely low.
We build upon these static and dynamic characteristics to construct a power-
ful heuristic traversal method that exposes an average speedup of 32.56% on 8
representative kernels on an AMD Athlon64.
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