
Automatic Tuning of Inlining Heuristics

John Cavazos Michael F.P. O’Boyle
Member of HiPEAC

Institute for Computing Systems Architecture (ICSA), School of Informatics
University of Edinburgh, United Kingdom

Abstract

Inlining improves the performance of programs by re-
ducing the overhead of method invocation and increasing
the opportunities for compiler optimization. Incorrect inlin-
ing decisions, however, can degrade both the running and
compilation time of a program. This is especially important
for a dynamically compiled language such as Java. There-
fore, the heuristics that control inlining must be carefully
tuned to achieve a good balance between these two costs
to reduce overall total execution time. This paper devel-
ops a genetic algorithms based approach to automatically
tune a dynamic compiler’s internal inlining heuristic. We
evaluate our technique within the Jikes RVM [1] compiler
and show a 17% average reduction in total execution time
on the SPECjvm98 benchmark suite on a Pentium-4. When
applied to the DaCapo benchmark suite, our approach re-
duces total execution time by 37%, outperforming all exist-
ing techniques.

1 Introduction

JavaTM is a highly portable programming language and
is the language of choice in adaptive distributed grid en-
vironments. However, this portability is often at the cost
of poor performance [8] and a deterrent to wider usage in
high performance computing. This has encouraged com-
piler researchers to develop optimizations that improve per-
formance without sacrificing its portability.

One of the major areas of interest has been in using
method inlining as a performance enhancing optimization.
It can significantly reduce execution time because it reduces
calling overhead and has the potential to increase opportu-
nities for further optimizations.

Overly aggressive inlining, however, can have a nega-
tive impact on a program’s performance due to a larger run-
time memory footprint and increased I-cache misses. It can
also lead to increased compilation time and memory over-
head. This is especially important in the context of dynam-

ically compiled programming languages, such as Java and
C# where compilation occurs at runtime and is part of the
total execution time of a program. Thus, inlining heuristics
must be carefully tuned to increase inlining benefits while
avoiding its potential costs.

Determining whether or not to inline a method is a dif-
ficult compiler decision and depends on the calling context
of the method, the processor it is running on and the other
optimizations which the compiler considers. This deci-
sion increases in difficulty in the case of Just-In-Time (JIT)
compilation as the potential benefits may be outweighed
by increased compilation time. So, as with many com-
piler optimizations, a heuristic typically controls when and
to what extent inlining should be applied when compiling
a program. These heuristics are carefully tuned by com-
piler experts; a difficult and time-consuming task. How-
ever, the heuristics are inherently static, hard-coded into the
compiler and do not take account changing environment or
platform. In the case of JikesTMResearch Virtual Machine
(Jikes RVM), the compiler considered within this paper, for
instance, the same inline heuristic is used for both the Intel
and PowerPC architectures.

This paper develops a machine learning based technique
that automatically derives a good inlining heuristic. In ef-
fect, it automates part of the compiler expert’s role by tun-
ing a heuristic across a large training set automatically. This
job is performed just once, off-line, each time the compiler
is ported to a new platform and is then incorporated into the
compiler to be used on future application codes.

Optimizing inlining in the case of dynamic compilation
adds another degree of complexity, that of compilation sce-
nario. Dynamic compilers frequently provide the program-
mer with a range of optimization scenarios: from fast non-
optimizing compilation right up to longer full aggressive
optimization. The reason is that as compilation time is part
of execution time, there are occasions where it may be im-
portant to reduce the cost of compilation rather than run-
ning time to reduce the overall cost of a program run or
vice-versa.

In addition dynamic compilers support adaptive or “hot

1

db

mpegaudio

raytrace

jack

javac

compress

jess

geo-mean

0

0.25

0.5

0.75

1

1.25

1.5

1.75

Running Total

(a) Effectiveness of Inlining for Optimizing Compiler.

db

mpegaudio

raytrace

jack

javac

compress

jess

geo-mean

0

0.25

0.5

0.75

1

1.25

1.5

1.75
Running Total

(b) Effectiveness of Inlining for Adaptive Compiler.

Figure 1. Relative time reduction with inlining. Total time = Running time + dynamic compilation time

spot” based compilation where the program is initially com-
piled with a fast non-optimizing compiler and later, when
a frequently used method or hot spot is detected, an op-
timizing compiler is used to recompile it. This attempts
to provided a means of balancing compilation and running
time. In fact we show, in the next section, that the opti-
mization scenario that achieves the shortest execution time
varies from program to program. So, as well as the issue
of adapting optimization heuristics to platform architecture,
we would like the heuristic to be specialized to the particu-
lar compilation scenario chosen by the programmer on the
command-line. Again, in practice, a single heuristic is cur-
rently used across different optimization scenarios.

Clearly the “one-size-fits-all” heuristic is not the best for
each of these compilation scenarios. Instead this paper de-
velops a technique that automatically determines the best
inlining heuristic for each compilation scenario. This is
achieved by using an off-line machine learning algorithm
based on a genetic algorithm. When incorporated into the
Jikes RVM compiler, we show that our approach outper-
forms the best previously known heuristic by 37% on the
SPECjvm98 benchmarks. Thus our approach develops in-
lining heuristics for new platforms, with no human interven-
tion, that are better than hand-crafted approaches. It spe-
cializes the heuristic to the particular compilation scenario
chosen by the programmer and is therefore able to outper-
form existing approaches across all platforms, benchmarks
and compilation options.

The paper is structured as follows, section 2 provides a
motivating example showing the impact of inlining and how
it is difficult to determine the best compiler heuristic. Sec-
tion 3 outlines the various optimization scenarios consid-

ered in this paper and describes our machine learning based
approach to determine the heuristic automatically. Section 4
describes the experimental setup and is followed in section
5 by the methodology used. Section 6 analyses the results
and is followed in section 7 by a review of related work.
This is followed by some concluding remarks in section 8.

2 Motivation

This section shows how inlining heuristics have a vary-
ing impact on performance and are sensitive to the program,
platform and compilation scenario.

Compilation scenario Inlining is one of the most impor-
tant optimizations for several programming languages. It
can have a substantial impact, but incorrectly inlining a
method can have a detrimental effect. Figures 1(a) and 1(b)
show the impact of enabling the existing inling heuristic in
the Jikes RVM compiler across the standard SPECjvm98
suite of Java benchmarks for two different compilation sce-
narios1, full optimization (Opt) and adaptive optimization
(Adapt). Opt always uses an aggressive optimization level
when compiling and is therefore likely to take longer to
compile but produces faster code. Adaptive compilation ini-
tially uses a fast non-optimizing compiler and dynamically
recompiles with higher optimization levels if the method is
a hot-spot. As compilation time is dynamic and part of the
overall execution time, it attempts to strike a balance be-

1We will discuss the different compilation scenarios in more detail in
Section 3.3

2

0 1 2 3 4 5 6 7 8 9 10
7.5

8

8.5

9

9.5

10

10.5

11

11.5

12

Opt Adapt

Inline Depth

E
xe

cu
tio

n
T

im
e

(a) Varying Inlining Depth for Compress.

0 1 2 3 4 5 6 7 8 9 10
6.9

7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

8

8.1

Opt Adapt

Inline Depth

E
xe

cu
tio

n
T

im
e

(b) Varying Inlining Depth for Jess.

Figure 2. Execution time vs Inlining Depth for 2 SPECjvm98 benchmarks.

tween compilation and running time to minimize overall or
total execution time.

We therefore give two performance results:runningtime
andtotal time. Running time indicates the benchmark run-
ning timeswithout compilation time while total time indi-
cate running timeswith compilation. The values are nor-
malised to running and total times without inlining so bars
below 1 indicate performance improvement while bars over
1 indicate performance degradation.

For the full optimization scenario in Figure 1(a), Jikes
RVM is able to achieve a substantial improvement inrun-
ning time for several benchmarks giving an average im-
provement of 24%. However, this comes at the expense of
increased compilation time, which causes a large degrada-
tion for two programs, leading to an an average degradation
of 3% in total execution time. Clearly the compiler devel-
opers have focussed on reducing running time but here the
inliner is overly aggressive and actually slows down pro-
grams on average due to the excessive compilation time. A
more balanced approach is needed.

Under an adaptive compilation scenario the Jikes RVM
inlining heuristic is almost always beneficial (it degrades the
total time of two programs) with an average improvement
in of 23% for running time and 8% for total time. These
graphs show the importance of inlining and that one heuris-
tics is not ideal for differing scenarios.

Parameter Sensitivity It is, in fact, very difficult to de-
termine the right inlining heuristic. The performance of in-
lining is highly sensitive to the heuristic controlling it. Con-
sider Figure 2(a) and 2(b) which shows the execution time
in seconds of two programs when inlining is enabled and
we vary just one of the parameters that controls the inlining
decisions in Jikes RVM: inline depth. This is performed for
the two different compilation scenarios,OptandAdapt.

First of all, it is worth noting that the choice of compila-
tion scenario that is best to use is not always obvious. For
the first program compress,Opt is best and for the second,
jessAdapt is the best choice. This explains the need for
supporting multiple compilation scenarios in dynamic com-
pilers.

Inline depth controls the maximum depth of the call
chain that will be considered for inlining at a particular call-
site and we vary the value of this parameter from 0 to 10 for
the two different programs. The default value used in Jikes
RVM for this parameter is 5. These two graphs indicate that
5 is not the right value to use for both these benchmarks un-
der both compilation scenarios. For compress, 2 is a better
value to use underOpt and 8 is better forAdapt. For jess, 0
is the best value forOpt and 2 is the best value forAdapt.
Interestingly, the Jikes RVM value of 5 is the worst option
for both compilation scenarios for jess.

As can be seen by these graphs inlining is an impor-
tant optimization that can result in substantial increases in
benchmark performance. However, selecting the right val-
ues that control inlining are important to achieving the best
performance from this optimization.

In Jikes RVM, there is generally a fixed heuristic for in-
lining regardless of the compilation scenario Also, there is
no mechanism of telling the compiler that it should optimize

3

toward a different goal, such as reducing running time or the
total execution time. In Section 6, we show results for ma-
chine learning derived heuristics for different compilation
scenarios, for different platforms targetted at different goals
i.e. reducing running time vs. total time. In each case our
automatically derived optimization outperforms the manu-
ally tuned heuristic.

3 Problem and Approach

Manually fine tuning compiler heuristics is a tedious and
complex task. It can take a compiler writer many weeks to
fine tune a heuristic and once a new architecture is targetted
or an optimization is added to the compilation system, the
tuning process must be repeated again. Machine learning
automates this search process and is a desirable alternative
to manual experimentation. Our approach uses a genetic
algorithm to fine tune the inlining heuristic.

The first step in applying genetic algorithms to this prob-
lem requires discovering what parameters control the par-
ticular optimization of interest. Typically, fine tuning opti-
mization heuristics requires experimenting with several dif-
ferent parameters and parameter values. Jikes RVM, for in-
stance, has four or five parameters depending on the com-
pilation scenario being used. Table 1 describes each param-
eter and the range of values we experimented with. Given
the large range of values we were looking at (3×1011), ex-
haustive search is intractable. Genetic algorithms provides
a mechanism that can intelligently search this large space of
values.

The second step is to phrase the problem of tuning a
heuristic as a genetic search problem. This entails being
able to experiment with several parameter values used by
the heuristic and measuring the performance of the particu-
lar setting of these values in order to provide feedback for
the genetic algorithm.

We emphasize that these steps of tuning the heuristic
happenoff-line. We are simply replacing the manual ad hoc
tuning process of a compiler heuristic with an automatic
approach that searches a large space of parameter values.
Once a heuristic is tuned, the compiler is delivered with a
fixed set of values for each different compilation scenario
or architecture of interest and there is no further evolving of
these parameter values. Thus there is no runtime overhead
associated with this approach.

3.1 Applying Genetic Algorithms

We needed an machine learning algorithm that could
search the large space of parameter values efficiently and
that could use a program’s performance to guide the search.
Genetic algorithms are a good candidate. Here we describe

genetic algorithms and then the specifics to how we applied
them to this problem.

Genetic algorithms start with a randomly generated num-
ber of individuals. This population of individuals is then
progressively evolved over a series of generations to find
the best individual based on a fitness function. The evolu-
tionary search uses the Darwinian principle of natural selec-
tion (survival of the fittest) and analogs of various naturally
occurring operations, including crossover (sexual recombi-
nation), mutation, gene duplication, gene deletion.

The genetic algorithm used is called ECJ [11]. This
system is written entirely in Java and has a wide va-
riety of algorithms and options with which it can be
configured. We start with a set of randomly generated
individuals, where each individual is a vector of inte-
gers representing the different values of the parameters
controlling the inlining heuristic. For example, one
individual could be [10,15,5,2000,300] representing
CALLEE MAX SIZE=10,
ALWAYS INLINE SIZE=15, MAX INLINE DEPTH=5,
CALLER MAX SIZE=2000, and
HOT CALLEE MAX SIZE
=300. ECJ allows the specification of a range of values
(cf. Table 1) to search over for each parameter. An initial
population size of 20 was selected and this population was
evolved over 500 generations. Each individual (or set of
parameter values) is given a fitness value which indicates
how “good” a particular set of parameter values is.

Fitness Functions

The fitness value used was the geometric mean of the per-
formance of the SPECjvm98 benchmarks. That is, the fit-
ness value for a particular performance metric is:

Per f(S) = |S|

√
∏
s∈S

Per f(s)

whereS was the benchmark training suite and Perf(s)
was the metric to minimize for a particular benchmarks.

The metrics we are interested in minimizing are: running
time, total time, or abalanceof both. When optimizing for
balancethe following formula for Perf(s) was used.

Per f(s) = f actor∗Running(s)+Total(s)

where f actor= Total(sde f)/Running(sde f) andsde f is a
run of benchmarks using the default heuristic.

3.2 Inlining Heuristic in Jikes RVM

Figure 3 shows a high-level view of the inlining heuris-
tic used in Jikes RVM. This heuristic decides whether or not
to inline based on a series of tests. The first two tests per-
tain to theestimatedsize of the method being considered

4

Inlining Parameters Description Range
CALLEEMAXSIZE Maximum callee size allowable to inline 1−50
ALWAYSINLINE SIZE Callee methods less than this size are always inlined 1−25
MAXINLINE DEPTH Maximum inlining depth at a particular call site 1−15
CALLERMAXSIZE Maximum caller size to inline into 1−4000
HOTCALLEEMAXSIZE Maximum hot callee to inline 1−400

Table 1. Parameters That Were Tuned With Genetic Algorithms.

inliningHeuristic(calleeSize, inlineDepth, callerSize)
if (calleeSize> CALLEE MAX SIZE)

return NO;
if (calleeSize< ALWAYS INLINE SIZE)

return YES;
if (inlineDepth> MAX INLINE DEPTH)

return NO;
if (callerSize> CALLER MAX SIZE)

return NO;
// Passed all tests so we inline
return YES;

Figure 3. Optimizing Inlining Heuristic

for inlining (callee). This size is an estimate of the num-
ber of machine instructions that will be generated for the
method. The first test restricts methods that are particularly
large (greater than the parameter CALLEEMAX SIZE)
from being inlined. The second test causes small methods
(methods less than the parameter ALWAYSINLINE SIZE)
to be inlined. These small methods should generate less
code than the calling sequence and parameter setup if the
call was left in place. The third test imposes an limit on the
maximum depth of the inlining decisions at any given call
site. The forth test checks whether the estimated size of the
caller method is large. If the caller method is larger than a
particular value (CALLERMAX SIZE), we restrict inlin-
ing and further code expansion to avoid excessive compila-
tion times. Finally, if all tests are false, the callee method is
inlined.

Under an adaptive scenario, profiling is used to dis-
cover calls that are frequently executed. When a method
is recompiled, a call site is checked whether it is hot or
not. If the call site isnot hot, the inlining tests described
in the previous paragraph are used. If the call site is
hot, a single test (described in Figure 4) is used to check
whether the estimated callee size exceeds a particular value
(HOT CALLEE MAX SIZE). If it does not exceed this
threshold, then the method is inlined.

3.3 Compilation Scenarios

When running Java programs there are several compi-

inlineHotCallSite(calleeSize)
if (calleeSize> HOT CALLEE MAX SIZE)

return NO;
return YES;

Figure 4. Adaptive Inlining Heuristic

lation scenarios that one can choose from. We ran experi-
ments under two popular Java compilation scenarios: Adap-
tive and Optimizing.

Under the Adaptive (Adapt) scenario, all dynamically
loaded methods are first compiled by the non-optimizing
baseline compiler that converts bytecodes straight to ma-
chine code without performing any optimizations, not even
inlining. The resultant code is slow, but the compilation
times are fast. The adaptive optimization system then uses
online profiling to discover the subset of methods where
a significant amount of the program’s running time is be-
ing spent. These ”hot” methods are then recompiled us-
ing the optimizing compiler and calls in the methods are
subject to the inlining heuristic [2]. Under the Optimizing
(Opt) scenario, an optimizing compiler is used to compile
all methods. This scenario is typically used for long running
programs where compilation is a small fraction of the pro-
gram’s running time. This scenario is also of interest when
running short running programs where the program will not
run long enough for profiling to return useful information.

Total vs Balance As well as the two different compiler
scenariosAdaptandOpt we also considered different op-
timization goals namely: total time, or abalancebetween
running and compilation time. As compilation is part of
the total execution time for dynamic compilers then opti-
mizing for total time will try to minimize their combined
cost. It may be the case however, that reducing total cost
by, say, reducing compilation time may be at the expense of
increasing running time, which is not always advantageous.
Instead, when the program is likely to run for a considerable
length of time, it may be preferable for the user to reduce
the running time at the expense of potentially greater com-
pilation time. In between these two cases, we have probably
the most useful case ofbalance, where we aim to reduce the

5

Program Description
compress Java version of 129.compress from SPEC 95
jess Java expert system shell
db Builds and operates on an in-memory

database
javac Java source to bytecode compiler in JDK

1.0.2
mpegaudio Decodes an MPEG-3 audio file
raytrace A raytracer working on a scene with a di-

nosaur. This is the single-threaded variant
of mtrt

jack A Java parser generator with lexical analysis

Table 2. Characteristics of the SPECjvm98
benchmarks.

total execution time without excessively increasing running
time.

4 Experimental Setup

4.1 Benchmarks

We examine two suites of benchmarks. The first is the
SPECjvm98 suite [14] detailed in Table 2. These were run
with the largest data set size (called 100). We used the
single-threaded version of mtrt, called raytrace, to get easily
reproducible results.

The second set of programs consists of 5 programs from
the DaCapo benchmark suite [13] version beta050224 and
two additional benchmarks: ipsixql and SPECjbb2000 all
described in Table 3. The DaCapo benchmark suite is a col-
lection of programs that have been used for various different
Java performance studies aggregated into one benchmark
suite. We ran the DaCapo benchmarks under its default
setting. We also included ipsixql a real-world application
that implements an XML database and a modified version
of SPECjbb2000 (hence, we call it pseudojbb) that performs
a fixed number of transactions (instead of running for a pre-
determined amount of time) to more easily observe effects
of inlining.

4.2 Platforms

We tuned our inlining heuristics in the Jikes Research Vir-
tual Machine [1] version 2.3.3 for two different architec-
tures: an Intel and a PowerPC architecture. The Intel pro-
cessor is a 2.8 GHz Pentium-4 based Red Hat Linux work-
station with 500M RAM and a 512KB L1 cache. The Pow-
erPC architecture is an Apple Macintosh system with two
533 MHz G4 processors, model 7410 with 640M RAM and

Program Description
antlr parses one or more grammar files and gener-

ates a parser and lexical analyzer for each
fop takes an XSL-FO file, parses it and formats

it, generating a PDF file
jython inteprets a series of Python programs
pmd analyzes a set of Java classes for a range of

source code problems
ps reads and interprets a PostScript file
ipsixql Performs a query against the complete

works of William Shakespeare.
pseudojbb SPECjbb2000 modified to perform fixed

amount of work. Executes 70000 transac-
tions for one warehouse.

Table 3. Characteristics of the DaCapo+JBB
benchmarks.

64KB L1 cache. Both these processors are aggressive su-
perscalar architectures and represent the current state of the
art in processor implementations. We used the OptAdap-
tiveSemispace configuration of Jikes RVM, indicating that
the core virtual machine was compiled by the optimizing
compiler, that an adaptive optimization system in included
in the virtual machine, and that the basic semispace copying
collector was used.

5 Evaluation Methodology

As is customary our learning methodology was to tune
over one suite of benchmarks, commonly referred to in the
machine learning literature as thetraining suite. We then
test the performance of our tuned heuristic over another
”unseen” suite of benchmarks, that we have not tuned for,
referred to as thetestsuite. This makes sense in our case for
following reason. We envision developing and installing of
the heuristic “at the factory”, and it will then be applied to
code it has not “seen” before. To evaluate an inlining heuris-
tic on a benchmark, we consider two kinds of results:total
timeandrunning time.

Total timerefers to the running time of the program in-
cluding compilation time.

Running timerefers to running time of the program with-
out compilation time.

To obtain these numbers, we requested that the Java
benchmark iterate at least twice. The first iteration will
cause the program to be loaded, compiled, and inlined ac-
cording to the appropriate inlining heuristic. We used this
iteration as our total time measure. The remaining itera-
tions should involve no compilation; we use the best of the
remaining runs as our measure of running time.

6

Parameters Compilation Scenarios
Default Adapt Opt:Bal Opt:Tot Adapt (PPC) Opt:Bal (PPC)

CALLEE MAX SIZE 23 49 10 10 47 23
ALWAYS INLINE SIZE 11 15 16 6 10 11
MAX INLINE DEPTH 5 10 8 8 2 8
CALLER MAX SIZE 2048 60 402 2419 1215 240
HOT CALLEE MAX SIZE 135 138 NA NA 352 NA

Table 4. Inlining Parameter Values Found for Intel x86 and PowerPC (PPC)

db

mpegaudio

raytrace

jack

javac

compress

jess

geo-mean

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Running Total

(a) Performance on SPECjvm98

antlr

fop

ipsixql

jython

pmd

ps

pseudojbb

geo-mean

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Running Total

(b) Performance on DaCapo+JBB

Figure 5. Reduction in time relative to Jikes RVM heuristic. Adaptive scenario tuned for balance on x86

6 Experimental Results

We now consider the quality of the inline heuristic pro-
duced by our genetic algorithms. We run experiments under
different compilation scenarios and two different architec-
tures. Initially we consider the adaptive optimization sce-
nario (Adapt) on the x86 platform. As this scenario is aimed
at balancing the cost of compilation with that of running
time, with careful hot spot based recompilation, we only
consider optimizing for balance here. Next, we consider the
optimizing Opt scenario, again for the x86, for both bal-
anced optimization (Opt:Bal) and reducing total execution
time (Opt:Tot). The experiments are repeated on the Pow-
erPC for balanced optimization underAdapt(Adapt(PPC))
and Opt (Opt(PPC)) compilation scenarios. Finally, to
show the flexibility of our approach we consider tuning the
heuristic on each program in order to reducerunning time
on the x86.

For each scenario, we use genetic algorithms to tune
the inlining heuristic for the SPECjvm98 benchmarks. We
then use the tuned heuristic to compile our test benchmarks,
DaCapo+JBB. We present the results for both benchmarks
suites. For each set of results, we compare the running and
total time reduction using our automatically tuned heuris-

tic versus the manually tuned heuristic found in Jikes RVM.
Bars below 1 indicate a performance improvement over the
default heuristic while bars over 1 indicate a performance
degradation.

6.1 Tuned Parameter Values

Table 4 shows the parameter values found by the ge-
netic algorithm for each compilation scenario and for each
architecture. The first column also shows the default val-
ues shipped with Jikes RVM. Notice that values found
by our technique vary widely among the different com-
pilation scenarios and architectures. For both architec-
tures,Adapt tends to have larger values for the parameter
CALLEE MAX SIZE compared toOpt. However, for the
Intel architecture it is preferable to use smaller values un-
der Adapt for parameter CALLERMAX SIZE compared
to Opt, while on the PowerPC the inverse is true. The ta-
ble also shows that for both architectures the default values
for CALLER MAX SIZE are overly aggressive. This will
have a tendancy to cause unecessarily large compile times
which is consistent with our results.

The table shows a wide range of values for the parame-
ter
MAX INLINE DEPTH. This parameter restricts the

7

amount of inlining at any one call site, thus restricting the
limit of growth to each method. For Adapt, larger values
are preferable on the Intel architecture while smaller values
are preferable for PowerPC. This may be due to the smaller
L1 cache size of the PowerPC which may bias towards
smaller footprints. The values found for the parameter
ALWAYS INLINE SIZE are pretty consistent among
compilation scenarios and architectures (ranging from 9
to 16). This is to be expected as methods that are always
beneficial to inline should be relatively small compared to
the call and parameter setup. We now discuss the results
for each compilation scenario and architecture.

6.2 Adaptive Balanced x86 Scenario

The first compilation scenario we experiment with is the
AdaptiveAdaptbalanced optimization scenario on the x86.
Figure 5(a) shows the performance of our tuned heuristic
on SPECjvm98. Our tuned heuristic improves the running
time of 5 benchmarks, obtaining a significant reduction of
27% for raytrace. However, on mpegaudio we degrade per-
formance by 8%. On average, we obtain a good running
time reduction of 6% over the default heuristic. Our tuned
heuristic also obtains reductions in total time (with compi-
lation) for several benchmarks, as much as a 10% reduction
on jess. Overall we get an average reduction in total time
by 3% showing that inlining is a well-studied optimization
in Jikes RVM and the default heuristic has been well-tuned
especially for the SPECjvm98 benchmark suite.

Figure 5(b) shows no significant reductions or degrada-
tions in running time for the DaCapo+JBB test suite and,
on average, we achieve the same running time as the default
heuristic. However, we obtain impressive reductions in to-
tal time on 6 out of 7 of the benchmarks by up to 56%. On
average, we obtain an 29% reduction in total time for these
benchmarks.

Our heuristic performs well on SPECjvm98 benchmarks
which is to be expected as it was tuned over it. However, it
is suprising that we achieved such a significant reductions
in total time for our test benchmarks as our heuristic was
not tuned for these. Furthermore, we can reduce total time
in a compilation scenario,Adaptwhose goal is already to
reduce total time. Clearly, the correct tuning of an inlining
heuristic can have a large impact on performance.

6.3 Optimizing Compilation Scenario

The second compilation scenario we investigate isOpt.
As previously mentioned, under this scenario all methods
that are dynamically invoked are compiled with an aggres-
sive optimizing compiler. We performed two different tun-
ing experiments. Tuning for a good balance and tuning for
reduction in total time.

Tuning for Balance

Figure 6 (a) shows our results for tuning the inlining heuris-
tic to achieve a good balance of running time and total time
for Opt in SPECjvm98. These results show we can im-
prove running time for several benchmarks under this sce-
nario. On average, we obtain a 4% reduction over the de-
fault heuristic. Because we are tuning for a balance, the
genetic algorithm may allow some degradation in running
time if it can achieve reductions in total time. This leads to
an significant average reduction in total time of 16%.

For the test suite, DaCapo+JBB, in Figure 6 (b), we see
even better performance using our tuned heuristic. Our
heuristic obtains large reductions in running time for a 2
benchmarks. We do get degradations on 4 benchmarks,
however, on average we obtain a modest improvement in
running time of 3%. We obtain larger reductions in total
time over the default heuristic and on average, we obtain al-
most a 26% reduction in total time over the default heuristic
on these benchmarks.

Our tuned heuristic performs well on the training suite
as well as on our test suite of benchmarks that we had not
tuned for. We speculate that the default heuristic has been
tuned especially for SPECjvm98, given their popularity as
a benchmark suite for testing the performance of Java com-
pilers.

Tuned For Total Time

Under the third scenario, we tune our inlining heuristic to
obtain the best total times, shown in Figure 72. Intuitively,
the tuned heuristic should be a less aggressive one, not de-
grading the running time of programs too much, but de-
creasing compile time (and therefore total time) substan-
tially. Here, we might be able to achieve a further improve-
ment in compiling time over the improvement we achieved
when tuning for a balance. On average, we can achieve a
reduction in total time of 17% with a slight reduction in
running time on average of 1%.

The result for DaCapo+JBB benchmark suite are even
more favorable. We reduce average total time by more than
35% with a small (4%) increase in running time. This small
increase in running time is to be expected since we are op-
timizing for total time. On several benchmarks in this suite,
we can achieve dramatic reductions in total time (35% for
fop, 46% for pseudojbb, 50% for ipsixql, and 58% for antlr).

6.4 Tuned for a Different Architecture

We repeated two of our tuning experiments for the Pow-
erPC archecture to see how the values of our inlining pa-
rameters would change and what improvements we could

2As we are optimizing for total time, only the average running time is
given

8

db

mpegaudio

raytrace

jack

javac

compress

jess

geo-mean

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Running Total

(a) Performance on SPECjvm98

antlr

fop

ipsixql

jython

pmd

ps

pseudojbb

geo-mean

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Running Total

(b) Performance on DaCapo+JBB

Figure 6. Optimizing scenario, Opt, tuned for balance on x86 (Opt:Bal)

 db

 mpegaudio

 raytrace

 jack

 javac

 compress

 jess

geo-mean

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Running Total

(a) Performance on SPECjvm98

 antlr

 fop

 ipsixql

 jython

 pmd

 ps

 pseudojbb

geo-mean

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Running Total

(b) Performance on DaCapo+JBB

Figure 7. Optimizing scenario, Opt, tuned for Total execution time on x86 (Opt:Tot)

achieve over the default heuristic. We tuned the heuristic
for the Adaptive and the Optimizing compilation scenarios,
both tuned for balance.

Adaptive Compilation Scenario

In Figure 8, we present results from tuning our heuristic for
Adapt for the PowerPC. Our results show we can reduce
running time for several programs, by at least 10% on mpe-
gaudio and jess and by 5% or more for jack and raytrace.
On average we get a good reduction in running time of 5%.
For total time, the only benchmark we significantly reduce
is jess by 8%. For the other benchmarks we either have a
slight increase or decrease or no change at all. On average
we achieve a 1% reduction in total time. Again, since we
are tuning for balance this is to be expected as the genetic
algorithm finds a heuristic where there is the most to be

gained on average from running time and total time. In the
case of the DaCapo+JBB suite, we have the inverse result
where we suffer a 1% increase in running time but reduce
total execution time by 6%.

Optimizing Compilation Scenario

For theOpt scenario, shown in Figure 9, we obtain an even
better result. We improve total time on average by 6%
with large reductions in total time for jack (18%) and javac
(13%) with no change in running time. And, we achieve
nice reductions on our test suite with average reductions in
running time of 4% and total time of 9%. We get signifi-
cant reductions in total and running time for antlr (28% and
33%) and we get good reductions in total time for fop (9%),
pseudojbb (7%), and jython (6%).

9

db

mpegaudio

raytrace

jack

javac

compress

jess

geo-mean

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Running Total

(a) Performance on SPECjvm98

antlr

fop

ipsixql

jython

pmd

ps

pseudojbb

geo-mean

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Running Total

(b) Performance on DaCapo + JBB

Figure 8. Adaptive scenario, Adapt, tuned for balance on PPC (Adapt:PPC)

db

mpegaudio

raytrace

jack

javac

compress

jess

geo-mean

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Running Total

(a) Performance on SPECjvm98

antlr

fop

ipsixql

jython

pmd

ps

pseudojbb

geo-mean

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Running Total

(b) Performance on DaCapo + JBB

Figure 9. Optimizing scenario, Opt, tuned for balance on PPC (Opt:PPC)

6.5 Tuned for Running time of each
benchmark

Although, the main focus of this paper has been in devel-
oping an off-line heuristic to reducing the total exectution
time of programs, there may be occasionally long-running
programs where it is worth while expending effort to find
the best running time as compilation time is relatively in-
significant.

Figure 10 shows results for the best performing heuris-
tic that the genetic algorithm found by tuning the heuris-
tic for each program. For all the SPECjvm98 benchmarks,
we are able to achieve more than 10% improvement in run-
ning time (with 4 out of 7 reduced by almost 15%). The
results for DaCapo+JBB benchmarks were more varied.
We achieve a large reduction of 46% for antlr and for fop,
jython, and pseudojbb we achieve at least 10% reductions

or more. Interestingly, for ps we are not able to find any
signficant reductions. On average, we can achieve a 15%
improvement in running time for all programs.

6.6 Summary of Results

Table 5 shows the average reductions for running times
and total times for both our benchmark suites. Since our
genetic algorithm was tuned over SPECjvm98, as to be ex-
pected we always outperform the default heuristic giving a
6% and 17% reduction in total execution time on the Pow-
erPC and Intel platform respectively. For the DaCapo+JBB
benchmark suite, we almost always are able to outperform
the default heuristic. We do incur a degradation for run-
ning time, when tuning for total time, but this is expected
and this leads to a 37% reduction in total execution time
for the Intel platform. On the PowerPC architecture we

10

mpegaudio

raytrace

compress

db

jack

javac

jess

antlr

fop

ipsixql

jython

pmd

ps

pseudojbb

geo-mean
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Running

(a) Performance of Optimizing Scenario on X86

Figure 10. Running time reduction when tuning for each program in turn

Compilation SPECjvm98 DaCapo+JBB
Scenarios Running Total Running Total
Adapt 6% 3% 0% 29%
Opt:Bal 4% 16% 3% 26%
Opt:Tot 1% 17% -4% 37%
Adapt (PPC) 5% 1% -1% 6%
Opt:Bal (PPC) 0% 6% 4% 9%

Table 5. Average Performance of Genetically
Tuned Heuristic

incur a slight running time degradation for Adapt of 1%
which gives a good reduction in total execution time. These
results suggest that the Jikes RVM heuristic has been pri-
marily tuned for adaptive compilation for the SPECjvm98
benchmark suite on the PowerPC and that our approach is
able to adapt to new benchmarks, platforms and compila-
tion scenarios.

7 Related Work

Here we critically review the most relevant papers in inlin-
ing and machine learning based compilation.

Inlining Arnold et al. [3] formulate the size/speed trade-
offs of inlining as a Knapsack problem. They do not mea-
sure total execution-time, but instead focus on code size and
the running time of the program. This work is however a
theoretical limit study as they assume global knowledge of

the program when making an inlining decison, information
not available to a dynamic compiler. They show there is
the potential to achieve significant speed up in running time
(on average 25%) over no inlining with modest limits on
code expansion (up to 10%). They also show that in several
cases performance degradation of a program’s running time
can occur due to overly aggressive inlining. A central obsta-
cle with the formulation of inlining as a Knapsack problem
to dynamically compiled languages such as Java, is its re-
quirement on a global view of the entire program. However,
this is typically not the case when compiling Java programs
because compilation (and inlining decisions) occurs when
a method is about to be invoked. Therefore, heuristics are
used to make inlining decisions for Java.

Hazelwood et al.[9] describe a technique of using con-
text sensitive information at each call site to control inlining
decisions enabling 10% reductions in code space at the ex-
pense of a degradation in total execution time. When imple-
menting this approach one must take care in not using too
much context sensitivity which can degrade performance.
They suggest several different heuristics for controlling the
amount of context senstivity, but there is no clear winner
among them. This technique is orthogonal to our tuning
process, in fact, this technique actually introduces an addi-
tional heuristic used for inlining which may benefit for our
automatic tuning process.

Dean et al.[7] present a technique for measuring the ef-
fect of inlining decisions for the programming language
SELF, calledinlining trials, as opposed to predicting them
with heuristics. Inlining trials are used to calculate the costs
and benefits of inlining decisions by examining both the ef-

11

fects of optimizations applied to the body of the inlined rou-
tine . The results of inlining trials are stored in a persistent
database to be reused when making future inlining decisions
at similar call sites. Using this technique, the authors were
able to reduce compilation time at the expense of an aver-
age increase in running time. This work was performed on
a language called SELF, which places an even greater pre-
mium on inlining than Java due to its frequently executed
method calls. This technique requires non-trivial changes
to the compiler in order to record where and how inlining
enabled and disabled certain optimizations. We assert that
better heuristics, such as the ones found in this paper, can
predict the opportunities enabled/disabled by inlining and
may achieve much of the benefit of inlining trials.

Cooper et al.[5] actually show a degradation in perfor-
mance of numerically intense Fortran benchmarks from in-
lining. Inlining of certain critical calls lead to poorer sub-
sequent analysis and less effective instruction scheduling
which resulted in an increased number of floating-point
stalls. This study further emphasizes our point that more
intelligent inlining is required and tuning heuristics through
empirical search as opposed to imprecise modeling is bene-
ficial.

Leupers et al. [10] experiment with obtaining the best
running time possible through inlining while maintaining
code bloat under a particular limit. They use this tech-
nique for C programs targetted to embedded processors.
In the embedded processor domain it is essential that code
size be kept to a minimum. They use a search technique
called branch-and-bound to explore the space of functions
that could be inlined. However, this search based approach
requiring multiple executions of the program must be ap-
plied each time a new program is encountered. This makes
sense in an embedded scenario where the cost of this search
is amortised over the products shipped but is not practical
for non-embedded applications.

Machine Learning Stephensonet al. [15] used genetic
programming (GP) to tune heuristic priority functions for
three compiler optimizations: hyperblock selection, regis-
ter allocation, and data prefetching within the Trimaran’s
IMPACT compiler. For two optimizations, hyperblock se-
lection and data prefetching, they achieved significant im-
provements.

However, these two pre-existing heuristics were not well
implemented. The authors even admit that turning off data
prefetching completely is preferable and reduces many of
their significant gains. For the third optimization, register
allocation, they were only able to achieve on average a 2%
increase over the manually tuned heuristic.

Cooperet al. [6] use genetic algorithms to solve the
compilation phase ordering problem. They were concerned
with finding “good” compiler optimization sequences that

reduced code size. Unfortunately, their technique is
application-specific. That is, a genetic algorithm has tore-
train for each program to decide the best optimization se-
quence for that program. Their technique was successful at
reducing code size by as much as 40%.

Cavazoset al. [4] describe an idea of using supervised
learning to control whether or not to apply instruction
scheduling. They induced heuristics that used features of a
basic block to predict whether scheduling would benefit that
block or not. Using the induced heuristic, they were able to
reduce scheduling effort by as much as 75% while still re-
taining about 92% effectiveness of scheduling all blocks.

Monsifrot et al. [12] use a classifier based on decision
tree learning to determine which loops to unroll. They
looked at the performance of compiling Fortran programs
from the SPEC benchmark suite using g77 for two different
architectures, an UltraSPARC and an IA64. They showed
an improvement over the hand-tuned heuristic of 3% and
2.7% over g77’s unrolling strategy on the IA64 and Ultra-
SPARC, respectively.

8 Conclusions

Inlining is an important optimization for many pro-
gramming languages. It has been well-studied and as a
consequence well optimized within Jikes RVM, a high-
performance Java optimizing compiler. However, optimiz-
ing inlining heuristics is a time-consuming and difficult pro-
cess. We describe a technique using a genetic algorithm to
tune inlining heuristics that automates the process of devel-
oping optimizing heuristics that improves on program per-
formance.

Using a genetic algorithm, we can obtain heuristics that
significantly outperform the existing hand-tuned heuristic.
On the set of benchmarks we learned our heuristics on, we
are able to achieve an average reduction of 17% in total
running time on an Intel machine and a 6% reduction on a
PowerPC. More importantly, on an ”unseen” set of bench-
marks we can reduce the average total running time by an
impressive 37% on an Intel machine and by 7% on a Pow-
erPC. Furthermore, when specializing a heuristic for each
application, we can achieve an average reduction of 15%
in running time over the default heuristic. Our results not
only show that automatic optimization is better than man-
ual compiler writer tuning, but that different heuristics are
required for different compilation scenarios and/or architec-
tures. We conclude that genetic algorithms are successful at
finding good inlining heuristics and shows promise for its
application in tuning other compiler heuristics.

12

References

[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,
P.Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F.
Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C.
Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and
J. Whaley. The Jalapeño virtual machine.IBM Systems
Journal, 39(1):211–238, Feb. 2000.

[2] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney.
Adaptive optimization in the Jalapeño JVM. InACM
SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), pages
47–65, Minneapolis, MN, Oct. 2000. ACM Press.

[3] M. Arnold, S. Fink, V. Sarkar, and P. F. Sweeney. A
comparative study of static and profile-based heuristics for
inlining. In 2000 ACM SIGPLAN Workshop on Dynamic
and Adaptive Compilation and Optimization (DYNAMO
’00), Boston, MA, Jan. 2000.

[4] J. Cavazos and J. E. B. Moss. Inducing heuristics to decide
whether to schedule. InProceedings of the ACM SIGPLAN
’04 Conference on Programming Language Design and
Implementation, pages 183–194, Washington, D.C., June
2004. ACM Press.

[5] K. D. Cooper, M. W. Hall, and L. Torczon. Unexpected side
effects of inline substitution: A case study.ACM Letters on
Programming Languages and Systems, 1(1):22–32, March
1992.

[6] K. D. Cooper, P. J. Schielke, and D. Subramanian.
Optimizing for reduced code space using genetic
algorithms. InWorkshop on Languages, Compilers, and
Tools for Embedded Systems, pages 1–9, Atlanta, Georgia,
July 1999. ACM Press.

[7] J. Dean and C. Chambers. Towards better inlining decisions
using inlining trials. InLISP and Functional Programming,
pages 273–282, 1994.

[8] J. G. Forum. Making java work for high-end computing. In
Supercomputing, 1998.

[9] K. Hazelwood and D. Grove. Adaptive online
context-sensitive inlining. InFirst Annual IEEE/ACM
Interational Conference on Code Generation and
Optimization, pages 253–264, San Francisco, CA, March
2003.

[10] R. Leupers and P. Marwedel. Function inlining under code
size constraints for embedded processors. InICCAD ’99:
Proceedings of the 1999 IEEE/ACM international
conference on Computer-aided design, pages 253–256,
Piscataway, NJ, USA, 1999. IEEE Press.

[11] S. Luke. ECJ 11: A Java evolutionary computation library.
http://cs.gmu.edu/∼eclab/projects/ecj/, 2004.

[12] A. Monsifrot and F. Bodin. A machine learning approach to
automatic production of compiler heuristics. InTenth
International Conference on Artificial Intelligence:
Methodology, Systems, Applications (AIMSA), pages 41–50,
Varna, Bulgaria, September 2002. Springer Verlag.

[13] D. Project. DaCapo Benchmarks.
http://www-ali.cs.umass.edu/DaCapo/gcbm.html, 2004.

[14] Standard Performance Evaluation Corporation (SPEC),
Fairfax, VA. SPEC JVM98 Benchmarks, 1998.

[15] M. Stephenson, S. Amarasinghe, M. Martin, and U.-M.
O’Reilly. Meta optimization: Improving compiler heuristics
with machine learning. InProceedings of the ACM
SIGPLAN ’03 Conference on Programming Language
Design and Implementation, pages 77–90, San Diego, Ca,
June 2003. ACM Press.

13

