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Abstract
High-level loop optimizations are necessary to achieve good perfor-
mance over a wide variety of processors. Their performance impact
can be significant because they involve in-depth program transfor-
mations that aiming to sustain a balanced workload over the com-
putational, storage, and communication resources of the target ar-
chitecture. Therefore, it is mandatory that the compiler accurately
models the target architecture and the effects of complex code re-
structuring.

However, because optimizing compilers (1) use simplistic per-
formance models that abstract away many of the complexities of
modern architectures, (2) rely on inaccurate dependence analysis,
and (3) lack frameworks to express complex interactions of trans-
formation sequences, they typically uncover only a fraction of the
peak performance available on many applications. We propose a
complete iterative framework to address these issues. We rely on
the polyhedral model to construct and traverse a large and expres-
sive search space. This space encompasses only legal, distinct ver-
sions resulting from the restructuring of any static control loop nest.

We first propose a feedback-driven iterative heuristic tailored
to the search space properties of the polyhedral model. Though, it
quickly converges to good solutions for small kernels, larger bench-
marks containing higher dimensional spaces are more challenging
and our heuristic misses opportunities for significant performance
improvement. Thus, we introduce the use of a genetic algorithm
with specialized operators that leverage the polyhedral representa-
tion of program dependences. We provide experimental evidence
that the genetic algorithm effectively traverses huge optimization
spaces, achieving good performance improvements on large loop
nests.

1. Introduction
In recent years, feedback-directed iterative optimization has be-
come a promising direction to harness the full potential of future
and emerging processors with modern compilers. Building on op-
eration research, statistical analysis and artificial intelligence, it-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00

erative optimization generalizes profile-directed approach to inte-
grate precise feedback from the runtime behavior of the program
into optimization algorithms. Through the many encouraging re-
sults that have been published in this area, it has become apparent
that achieving better performance with iterative techniques depends
on two major challenges.

Search space expressiveness. To achieve strong and portable per-
formance with iterative techniques, it is essential that transfor-
mation search space be expressive enough to let the optimiza-
tions target all important architecture components and address
all dominant performance anomalies,

Search space traversal. It is also important to construct search
algorithms (analytical, statistical, empirical) and acceleration
heuristics (performance models, machine learning) that effec-
tively traverse the search space by exploiting its static and dy-
namic characteristics.

This paper targets the optimization problem of selecting an
affine transformation to optimize imperfectly nested loops. Gir-
bal et al. show that complex sequences of loop transformations are
needed to generate efficient code for full-size loop nests on mod-
ern architectures [19]. They also show that such transformation se-
quences are out of reach of classical loop optimization frameworks,
although multidimensional affine scheduling [18, 15] can success-
fully model them as one single optimization step [47], and scales to
large loop nests with hundreds of array references [19]. Within this
space of complex sequences of loop transformations, our work is
the first to simultaneously address the two above-mentioned chal-
lenges.

We make the following contributions.

1. By considering multidimensional schedules, we tackle any pos-
sible static-control loop nest in a program, a major leap for-
ward from the state-of-the-art iterative optimization on one-
dimensional schedules [35]. We simultaneously extend the ap-
plication domain — applicability and scalability to larger codes
— and search space expressiveness — construction of more
complex sequences of transformations.

2. To harness the combinatorial explosion of the optimization
problem, we present a scalable traversal heuristic and origi-
nal genetic operators, tailored to efficiently traverse a space
of legal, distinct multidimensional schedules. These operators
leverage the algebraic structure and statistical properties of the
space.



3. We simultaneously demonstrate good performance gains and
excellent convergence speed on huge search spaces, even on
larger loop nests (up to 20 loops) where iterative affine schedul-
ing has never been attempted before.

4. We demonstrate significant performance improvements on
three different architectures.

The paper is structured as follows. Section 2 introduces multi-
dimensional scheduling in the polyhedral model. Section 3 con-
structs the search space of legal, distinct versions (multidimen-
sional schedules) for a program, and the key properties of this
space. Section 4 proposes a first heuristic to efficiently traverse this
space in the case of small kernels. Section 5 defines a genetic algo-
rithm with specialized mutation and reproduction operators that can
effectively traverse huge search spaces associated with larger loop
nests. We show that our custom genetic algorithm achieves good
performance improvements despite the poor statistical distribution
of performance-enhancing schedules. Section 6 discusses related
work, before we conclude in Section 7.

2. Thinking in Polyhedra
Most compilers’ internal representations match the inductive se-
mantics of imperative programs (syntax tree, call tree, control-flow
graph, SSA). In such reduced representations of the dynamic exe-
cution trace, a statement of a high-level program occurs only once,
even if it is executed many times (e.g., when enclosed within a
loop). Representing a program this way is not convenient for ag-
gressive optimizations which often need to consider a representa-
tion granularity at the level of dynamic statement instances. For
example, complex transformations like loop interchange, fusion or
tiling operate on the execution order of statement instances [48].
Due to compilation-time constraints and to the lack of an adequate
algebraic representation of the semantics of loop nests, classical
(non-iterative) compilers are unable to adapt the schedule of state-
ment instances of a program to best exploit the architecture re-
sources. For example, compilers can typically not apply any trans-
formation if data dependences are non-uniform (unimodular trans-
formations, tiling), if the loop trip counts differ (fusion) or simply
because profitability is too unpredictable. As a simple illustration,
consider the Ring-Roberts edge detection filter shown in Figure 1.
While it is straightforward to detect a high level of data reuse be-
tween the two loop nests, none of the compilers we considered —
Open64 4.0, ICC 10.0, PathScale 3.0, GCC 4.2.0 — were able to
apply loop fusion for a potentially 50% cache miss reduction when
arrays do not fit in the data cache (plus additional scalar promotion
and instruction-level-parallelism improvements). Indeed, this ap-
parently simple transformation actually requires a non-trivial com-
position of (two-dimensional) loop shifting, fusion and peeling.

/* Ring blur filter */
for (i=1;i<length-1;i++)

for (j=1;j<width-1;j++)
R Ring[i][j]=(Img[i-1][j-1]+Img[i-1][j]+Img[i-1][j+1]+

Img[i][j+1] + Img[i][j-1] +
Img[i+1][j-1]+Img[i+1][j]+Img[i+1][j+1])/8;

/* Roberts edge detection filter */
for (i=1;i<length-2;i++)

for (j=2;j<width-1;j++)
P Img[i][j]=abs(Ring[i][j]-Ring[i+1][j-1])+

abs(Ring[i+1][j]-Ring[i][j-1]);

Figure 1. Ring-Roberts edge detection for noisy images

To build complex loop transformations, a well known alterna-
tive is to represent programs in the polyhedral model. It is a flexi-
ble and expressive representation for loop nests with statically pre-

dictable control flow. The polyhedral model captures control-flow
and data-flow with three linear algebraic structures, described in
the following subsections. Such loop nests amenable to algebraic
representation are called static control parts (SCoP) [16, 19].

2.1 Iteration Domains
Iteration domains capture the dynamic instances of all statements
— all possible values of surrounding loop iterators — through a
set of affine inequalities. For example, statement R in Figure 1 is
executed for every value of the pair of surrounding loop counters,
called the iteration vector: the iteration vector of statement R is
~xR = (i, j). Hence, the iteration domain of R is defined by its
enclosing loop bounds:

DR = {i, j | 1≤ i≤ length−1∧1≤ j ≤ width−1},

which forms a parametric polyhedron (a space bounded by inequal-
ities, a.k.a. hyperplanes or faces). Each integral point inside this
polyhedron corresponds to exactly one execution of statement R.
This model allows the compiler to manipulate statement execution
and iteration ordering at the most precise level.

2.2 Subscript Functions
Subscript functions capture the data locations on which statement
operate. In static control parts, memory accesses are performed
through array references (a variable being a particular case of an
array). We restrict ourselves to subscripts of the form of affine
expressions which may depend on surrounding loop counters (e.g.,
i and j for statement R) and global parameters (e.g., length and
width). Each subscript function is linked to an array that represents
a read or a write access. For instance, the subscript function for
the read reference Img[i-1][j] of statement R is simply f (i, j) =
(i−1, j).

2.3 Multidimensional Schedules
Iteration domains define exactly the set of dynamic instances for
each statement. However this algebraic structure does not describe
the order in which each instance has to be executed with respect
to each other. Of course, we do not want to rely on the inductive
semantics of the sequence and loop iteration for this purpose, as it
would break the algebraic reasoning about loop nests.

A convenient way to express the execution order is to give each
instance an execution date. It is obviously impractical to define
them one by one since instance number may be either very large
or unknown at compile time. An appropriate solution is to do it at
the statement level by defining, for each statement, a scheduling
function that specifies the execution date for each instance of a
corresponding statement. For tractability reasons, we restrict these
functions to be affine (relaxation of this constraint may exists [6],
but challenges the code generation step [7]).

This work deals with multidimensional schedules: given a state-
ment S, it is an affine form on the outer loop iterators ~xS and the
global parameters~n. It is written

θS(~xS) = TS

~xS
~n
1


where TS is a matrix of constants (possibly not integers). Multi-
dimensional dates can be seen as clocks: the first dimension cor-
responds to days (most significant), next one is hours (less sig-
nificant), the third to minutes, and so on. Unlike one-dimensional
affine schedules, every static control program has a multidimen-
sional affine schedule [18]. Hence the application domain of the
present work extends to all static control parts in general programs.



For a concrete intuition of scheduling functions, lets go back
to Ring-Roberts example of Figure 1. A possible multidimensional
schedule is: θR(i, j) = (i, j) and θP(i, j) = (i + length−2, j). This
means the schedule of statement R orders its instances according
to i first and then j. This matches the structure of the first loop
nest. This is similar for statement P, except for the offset on the
first time-dimension which states that the first nest runs before the
second one: while the largest value of the first time-dimension for
R is length− 2, the smallest value of the first dimension of P is
length− 1. Hence the loop surrounding P “starts” after the loop
surrounding R. Efficient algorithms and tools exist to generate a
target code from a polyhedral representation with multidimensional
affine schedules [38, 7]. Recent work by Girbal et al. [19] and
Vasilache et al. [43] improved these algorithms to scale up to
thousands of statements.

2.4 Benefits of a Polyhedral Representation
Reasoning about programs in a polyhedral representation has many
advantages, for both program analysis and transformation.

1. exact dependence analysis is possible [16, 36, 30];

2. there exist efficient algorithms and tools to regenerate impera-
tive code [38, 7];

3. loop transformation sequences of arbitrary complexity can be
constructed and transparently applied in one single step.

A more complete description of static control parts was given by
Xue [49] and their applicability to compute intensive, scientific or
embedded applications have been extensively discussed by Girbal
et al. [19, 32]. Frameworks to highlight SCoPs in general programs
and to extract both iteration domains and subscript functions al-
ready exist or are in active development in compiler platforms like
WRAP-IT/URUK for Open64 [19], and Graphite for GCC [33].

Multidimensional affine schedules support arbitrary complex
compositions of a wide range of program transformations. Several
frameworks have been designed to facilitate the expression of such
transformations [22], or to enable their composition and semi-
automatic construction [19, 44]. As illustration, a trivial loop fusion
is not possible to improve data locality on the Ring-Roberts kernel
in Figure 1. Because of both data dependences and non-matching
loop bounds, only a partial loop fusion is possible, which translates
into a sequence of, e.g., fusion, shifting and index-set splitting [48].
Using multidimensional schedules, a correct transformation (found
using chunking [8]) is simply: θR(i, j) = (i, j) and θP(i, j) = (i +
2, j). One may care to check, using any polyhedral code generator,
that the corresponding target code corresponds to a quite complex
composition of syntactic transformations.

3. Generating Program Versions
The space of multidimensional affine schedules is very expressive.
Each point in the space corresponds to potentially very different
program versions, exposing a wide spectrum of interactions be-
tween architectural components and back-end compiler optimiza-
tions. This section presents the formal construction of the space of
legal, distinct schedules only. We also give a practical heuristic to
reduce the combinatorics of any algorithm to traverse this space
while preserving the legality property.

3.1 Generating All Legal Schedules
Nisbet [31], then Long and Fursin [28] noticed that choosing a
schedule at random likely to lead to an illegal program version,
and that the probability of finding a legal one (which do not alter
semantics) decreases exponentially with program size.

This challenge can only be tackled when integrating data de-
pendence information into the construction of the search space.

Two statement instances are in dependence if they access the same
memory location and at least one of these accesses is a write. Main-
taining the relative order of such instances is a sufficient condition
to preserve the original program semantics [9].

Dependences in static control parts can be expressed by depen-
dence polyhedra whose formal description has been proposed by
Feautrier [16]. A dependence polyhedron DR,S is a subset of the
Cartesian product of the iteration domains of statements R and S.
Each integral point of a dependence polyhedron corresponds to a
pair of instances of the statements in dependence. Thus, a schedule
does not change the semantics of the original program if it satisfies
the precedence constraint: for all pairs of iteration vectors ~xR and
~xS in all dependence polyhedra,

θR(~xR)≺ θS(~xS),

where ≺ denotes the lexicographic ordering.1
The affine form of Farkas lemma allows to translate such con-

straints into an affine equivalent [40]. Feautrier used this result to
express every constraint that a one-dimensional schedule must re-
spect to preserve the semantics of the original program [17]. Those
constraints bound a space where each integral point corresponds to
a legal schedule. Pouchet et al. showed it is possible to traverse this
space efficiently for small programs that accept one-dimensional
schedules [35]. But dealing with multidimensional schedules leads
to a combinatorial explosion.

Using one-dimensional schedules, all dependences have to be
satisfied within a single time dimension: the precedence constraint
is simply θR(~xR) < θS(~xS) and θ is a row vector. In multidimen-
sional schedules, the legality constraints can also be built time di-
mension per time dimension, with the difference that a dependence
needs to be weakly solved — θS(~xS)− θR(~xR) � 0 — for the first
time dimensions until it is strongly solved — θS(~xS)−θR(~xR) > 0
— at a given time dimension d. Once a dependence has been
strongly solved, no additional constraint is required for legality at
dimensions d′ > d. Reciprocally, a dependence must be weakly
solved for all d′′ < d. There is freedom to decide at which time
dimension a dependence will be strongly solved. Each possible de-
cision leads to a potentially different search space. Furthermore, it
is possible to arbitrarily increase the number of time dimensions of
the schedule, resulting in an infinite set of scenarios in general.

The ouptut is in the form of a list of polyhedra of legal sched-
ules, one for each time dimension.

A naive solution to build (a representative subset of) all multidi-
mensional schedules would be to restrict the possible scenarios by
setting an upper bound on the number of time dimensions (e.g., the
loop nest depth + 1), which is already unrealistic for programs of
more than a few dependences.

Note that loop tiling (a.k.a. blocking) is not directly expressible
on multidimensional schedules. It requires modifications of the it-
eration domain (insertion of new dimensions) [2, 19] or specific
handling in the code generator [39]. Because of this, our search
space does not currently encompass loop tiling. Recent results by
Renganarayanan et al. and Bondhugula et al. are promising direc-
tions towards fully integrating loop tiling with affine scheduling
algorithms [39, 11].

3.2 Building a Practical Search Space
We have to face a double combinatorial problem. First, there are too
many polytopes to be considered. For instance, the Ring-Roberts
filter shown in Figure 1 has 12 dependence polyhedra, from which
follows a huge number of possible strongly/weakly solved depen-
dence scenarios. Second, one needs to limit the search to bounded

1 (a1, . . . ,an)≺ (b1, . . . ,bm) iff there exists an integer 1≤ i≤ min(n,m) s.t.
(a1, . . . ,ai−1) = (b1, . . . ,bi−1) and ai < bi.



polytopes. Yet, even the smallest bound leads to polytopes that are
too large to be explored exhaustively for complex loop nests.

Feautrier found a systematic solution to the explosion of the
number of polyhedra: he considers a space of legal schedules lead-
ing to maximum fine-grain parallelism [18, 45]. To achieve this, a
greedy algorithm maximizes the number of dependences solved for
a given dimension. While this solution is interesting because it re-
duces the number of dimensions and exhibits inner parallelism, it
is not practical enough for several reasons. First, it needs to solve
a system of linear inequalities involving every schedule coefficient
plus a decision variable per dependence [18]. This makes the prob-
lem untractable for all but small kernels. Moreover, minimizing
the number of dimensions often translates into big schedule coeffi-
cients; these generally lead to algorithmic complexity and control
overhead after generation of the target imperative code [22].

We suggest a simple variation to overcome those issues. The
following algorithm sketches our search space construction for a
given static control part:

1. Compute the exact set G of dependences for the SCoP through
instancewise analysis [16]

2. d← 1

3. while G 6= /0 do
(a) Initialize Ld (the space of legal schedules for time dimen-

sion d) to the full-space polyhedron

(b) for each dependence DR,S ∈ G

• Compute WDR,S — the space of legal schedules weakly
satisfying only DR,S — by enforcing, for all pairs of
points in DR,S:
θS(~xs) − θR(~xR) ≥ 0
• Ld ← Ld ∩WDR,S

(c) for each dependence DR,S ∈ G
• Compute SDR,S — the space of legal schedules strongly

satisfying only DR,S — by enforcing, for all pairs of
points in DR,S:
θS(~xs) − θR(~xR) > 0
• if Ld ∩SDR,S 6= /0 then

Ld ← Ld ∩SDR,S

G← G−DR,S

(d) d← d +1

This heuristic outputs for each schedule dimension d a space Ld
of legal solutions.

The algorithm terminates; the proof uses the same argument as
Feautrier’s muldidimensional scheduling algorithm [45]: at least
one dependence can be strongly solved per time dimension d. Nev-
ertheless, it differs from Feautrier’s algorithm as it does not guar-
antee a maximal number of dependences solved per dimension.
Therefore it may not minimize the number of dimensions of the
schedule: this is not an issue as we only consider sequential codes.2
However, this algorithm is efficient and only needs one polyhe-
dron emptiness test per dependence,3 and the elimination of Farkas
multipliers used to enforce the precedence constraint on sched-
ule coefficients is performed dependence per dependence (i.e., on
very small systems) [35]. Since we consider sequential codes only,
we can bound the coefficient values within {−1,0,1} to minimize
control-flow overhead. This would have been very restrictive if we

2 Affine partitioning may be better suited to characterize parallelism in the
polyhedral model [27].
3 Over Ld which contains exactly one variable per schedule coefficient.

were constrained to one-dimensional schedules. In the multidimen-
sional case, although it eliminates some schedules from the space
(e.g., non-unit skewing), these bounds are compatible with the ex-
pression of arbitrary compositions of loop fusion, distribution, in-
terchange, code motion; in the worst case, it translates into addi-
tional time dimensions. Overall, this solution gives an interesting
tradeoff between scalability and expressiveness (performance of
the generated code).

So far, we did not define the order in which dependences are
considered when checking against strong satisfaction. This order
can have a dramatic impact on the constructed space. A long term
approach would be to consider this order as part of the search space,
but this is not currently practical (combinatorial explosion). In-
stead, we use two analytical criteria to order the dependences. First
of all, each dependence is assigned a priority, depending on the
memory traffic generated by the pair of statements in dependence.
We use a simplified version of the model by Bastoul and Feautrier
[8]: for each array A and dimension d, we approximate the traf-
fic as mrA

d , where md is the size of the dth dimension of the array,
and rA is the rank of the concatenation of the subscript matrices of
all references to dimension d of array A in the statement. Thus the
generated traffic evaluation for a given statement is a multivariate
polynomial in the parametric sizes of all arrays. We use profiling to
instantiate these size parameters. Intuitively, maximizing the depth
where a dependence is strongly solved maximizes reuse in inner
loops and minimizes the memory traffic in outer loops. Therefore,
we start with dependences involved in the statements with the less
traffic. Our second criterion is based on dependence interference;
it is used in case of non-discriminating priorities resulting from the
first criterion. Two dependences interfere if it is impossible to build
a one-dimensional schedule strongly satisfying these two depen-
dences. We first try to solve dependences interfering with the lower
number of other dependences, maximizing our chance to strongly
solve more dependences within the current time dimension.

3.3 Scanning the Search Space Polytopes
The algorithm presented in Section 3.2 constructs one polytope
per dimension of the schedule. Picking one point in every poly-
tope fully describes one multidimensional schedule, hence one pro-
gram version: the generated imperative codes will be distinct if the
scheduling matrices are distinct. This is reminiscent of the clas-
sical polyhedron scanning problem [4, 38, 7]; however, none of
the existing algorithms scale to the hundreds of dimensions we are
considering. Fortunately, our problem happens to be simpler than
“static” loop nest generation: we only need to “dynamically” enu-
merate every integral point which respects the set of constraints.

Each program version is represented by a unique scheduling
matrix Θ. The first columns are schedule coefficients associated
with each loop iterator surrounding a statement in the original pro-
gram, for all statements (~i). The next set of columns are sched-
ule coefficients associated with global parameters (~p), for all state-
ments. The last column are the schedule coefficients associated
with the constant (c), for all statements.

Since we represent legal schedules as multidimensional affine
functions, each row Θd of the scheduling function corresponds to
an integer point in the polytope of legal coefficients Ld , built ex-
plicitly for this dimension. A program version in the optimization
space can thus be represented as follows, for a SCoP of l state-
ments, a schedule of dimension s, and the iteration vector~x:



Θ.~x =


~ı11 · · · ~ı1p ~p1

1 · · · ~p1
p c1

1 · · · c1
p

...
...

~ıs1 · · · ~ı
s
p ~ps

1 · · · ~ps
p cs

1 · · · cs
p

 .



~x1
...

~xp
~n1
...

~np
1
...
1


To build each row Θd , we scan the legal polytope Ld , by suc-

cessively instantiating values for each coefficient in a predefined
order.4 Fourier-Motzkin elimination — a.k.a. projection — [5] pro-
vides a representation of the affine constraints of a polytope fit-
ted for its dynamic traversal. Computing the projection of all vari-
ables of a polytope Ld results in an equivalent polytope where
it is guaranteed that the value of vk is a function of v1, . . . ,vk−1,
with affine inequalities involving only v1, . . . ,vk. Thus, the sequen-
tial order to build coefficients is simply the reverse order of the
elimination steps. This scheme guarantees that provided a value in
the projection of v1, . . . ,vk−1, a value exists for vk, for all k.5 In
order to achieve scalability, we use a modified and redundancy-
aware version of the Fourier-Motzkin algorithm. In its basic form,
the algorithm is known to generate many redundant constraints;
these redundancies reduce its scalability on large polyhedra. We
improved it, while maintaining the following properties for each
variable elimination:

1. any constraint defining a hyperplane parallel to an existing con-
straint is removed (this is trivially computed since the con-
straints are kept normalized);

2. any variable which is linearly dependent to any other one(s) is
removed (thanks to implicit equalities detection and Gaussian
elimination);

3. constraints are removed if, once opposed, no point exists in
the solution polytope (we apply the Le Fur descending method
[25]).

In practice, this modified algorithm scales to hundreds of vari-
ables (schedule coefficients) in the original system.

3.4 Schedule Completion Algorithm
For SCoPs with more than 4 or 5 statements, the previous construc-
tion leads to very large search spaces, challenging any traversal
algorithm. It is possible to focus the search on some coefficients
of the schedule with maximal impact on performance, postpon-
ing the instantiation of a full schedule in a second heuristic step.
We show that such a two-step procedure can be designed with-
out breaking the fundamental legality property of the search space.
This approach will be used extensively to simplify the optimization
problem.

The previous projection pass guarantees it is possible to com-
plete — or even correct — any vector, slightly modifying its coef-
ficients to make it lie within a given polytope. We use this property
to design the following completion algorithm. Given a vector ~v of
size n, for k ∈ [1,n]:

1. compute the lower bound and upper bound of vk, provided the
coefficient values for v1 . . .vk−1, and

4 The order has no impact on the completeness of the traversal.
5 The case of holes in Z-polyhedra is handled through a schedule comple-
tion algorithm described in the next section.

2. if vk /∈ [lb,ub], then vk = lb if vk < lb or vk = ub if vk > ub.6

Therefore it is possible to partially build a schedule prefix, e.g.,
values for the~ı coefficients, while setting all other coefficients to
0. Then, applying this correction principle will result in finding
the minimal amount of complementary transformations to make
the transformation lie in the computed legal space. The comple-
tion algorithm motivates the order of coefficients in the Θ matrix.
We showed that the most performance impacting transformations
(interchange, skewing, reversal) are embedded in the first coeffi-
cients of Θ — the~ı coefficients; followed by coefficients usually
involved in fusion and distribution — the ~p coefficients; and fi-
nally the less impacting c coefficients, representing loop shifting
and peeling [34]. The completion algorithm finds complementary
transformations in order of least to most impacting, as it will not
alter any vector prefix if a legal vector suffix exists in the space.

Three fundamental properties are embedded in this completion
algorithm:

1. if v1, . . . ,vk is a prefix of a legal point v, a completion is always
found;

2. this completion will only update vk+1, . . . ,vdmax , if needed;

3. when v1, . . . ,vk are the ~ı coefficients, the heuristic looks for
the smallest absolute value for the ~p and constant coefficients,
which corresponds to maximal (nested) loop fusion — relative
to the~ı coefficients.

Picking coefficients as close as possible to 0 has several advan-
tages in general: smaller coefficients tend to simplify code genera-
tion, improve locality, reduce latency, and increase the size of basic
blocks in inner loops.

4. Traversing the search space
While it is possible to exhaustively traverse the constructed space
of legal versions for little SCoPs, in the case of one-dimensional
schedules, it becomes unpractical in the multidimensional case.
Pouchet et al. give a preliminary answer by means of a heuristic
to narrow this space and accelerate the traversal [35]. We build on
this result to design a powerful heuristic suitable for the multidi-
mensional case.

4.1 A Multidimensional Decoupling Heuristic
Our approach is called the decoupling heuristic as it leverages the
completion algorithm of Section 3.4 to stage the exploration of
large search spaces. It derives from the observation of the per-
formance distribution, where density patterns hinted that not all
schedule coefficients have a significant impact on performance [35,
34]. The principle of the decoupling heuristic for one-dimensional
schedules is (1) to enumerate different values for the~ı coefficients,
(2) to instantiate full schedules with the completion algorithm, and
(3) to select the best completed schedules and further enumerate
the different coefficients for the ~p part.

A direct extension to the multidimensional case exhibits two
major drawbacks. First, the relative performance impact of the
different schedule dimensions must be quantified. Second, an ex-
haustive enumeration of~ı coefficients for all dimensions is out of
reach, as the number of points exponentially increases with the
number of dimensions. Figure 2 illustrates this assertion by sum-
marizing the size of the legal polytopes for different benchmarks,
for all schedule dimensions. We consider 10 SCoPs extracted from
classical benchmarks. The first eight are UTDSP benchmarks [26]
directly amenable to polyhedral representation: compress-dct
is an image compression kernel (8x8 discrete cosine transform),

6 Z-holes are detected by checking if lb > ub.



edge-convolve2d is an edge detection kernel (different from
Ring-Roberts), fir is a Finite Impulse Response filter, lmsfir is
a Least Mean Square adaptive FIR filter, iir is an Infinite Impulse
Response filter, matmult is a matrix multiplication kernel, latnrm
is a normalized lattice filter, and lpc (LPC analysis) is the hot
function of a linear predictive coding encoder. We considered two
additional benchmarks: ludcmp solves simultaneous linear equa-
tions by LU decomposition, and radar is a real code for the anal-
ysis of radar pulses. For each benchmark, we report the number
of (complex) instructions carrying array accesses (#Inst), the num-
ber of loops (#Loops), dependences (#Dep), schedule dimension
(#Dim), and the total number of points for those dimensions (still
only legal schedules).

Relations between schedule dimensions To extend the decou-
pling approach to multidimensional schedules, we need to inte-
grate interactions between dimensions. For instance, to distribute
the outer loop of a nest (which can improve locality and vectoriza-
tion [3]), one can operate on the ~p and c parts of the schedule for
the first dimension (a parametric shift). On the other hand, altering
the~ı parts will lead to the most significant changes in the loop con-
trols. Indeed, the largest performance variation is usually captured
through the~ı parts [34], and a careful selection of those coefficients
is mandatory to attain the best performance; conversely, it is likely
that the best performing transformations will share similar~ı coeffi-
cients in their schedules.

Furthermore, the first dimension is highly constrained in gen-
eral, since all dependences need to be — weakly or strongly —
considered. Conversely, the last dimension is the less constrained
and often carries only very few dependences.7

The decoupling heuristic in a nutshell We conducted an exten-
sive experiment showing that Θ1 (the first time dimension of the
schedule) is a major discriminant of the overall performance dis-
tribution [34]. Therefore, the heuristic starts with an exploration of
values for coefficients of Θ1, completing the schedule with a sin-
gle value for the remaining time dimensions (that is, the rest of
the schedule is set to 0 and the completion algorithm is called on
it). Like the decoupling heuristic, this exploration is limited to the
subspace associated with the~ı coefficients of Θ1, except if this sub-
space is smaller than a given constant L1 — L1 = 50 in our experi-
ments. L1 drives the exhaustiveness of the procedure: the larger the
degree of freedom, the slower the convergence. By limiting to the~ı
class we target only the most performance impacting subspaces.

To enumerate points in the polytopes, we incrementally pick a
dimension then pick an integer in the polyhedron’s projection onto
this dimension. Note that the full projection is computed once and
for all by the Fourier-Motzkin algorithm presented in Section 3.3,
before traversal. Technically, to enumerate integer points of the
subspace composed of the first m columns of Ld , we define the
following recursive procedure to build a points~v:

EXPLORE (~v,k) :

1. compute the lower bound and upper bound of vk, provided the
coefficient values for v1 . . .vk−1;

2. for each x ∈ [lb,ub], set vk = x;
if k < m call EXPLORE (~v,k +1) else output~v.

The enumeration is initialized with a call to EXPLORE (~v,1).
The completion algorithm is then called on each vector~v generated,
to compute a legal suffix for~v (corresponding to the columns [m+
1,n] of Ld), finally instanciating a legal point of full dimensionality.

Then, the heuristic selects the x% best values for Θ1 (x = 5% in
our experiments), it proceeds with the exploration of values for co-

7 This is typically the case when the final dimension is required to order the
statements within an innermost loop.

efficients of Θ2, and recursively until the last but one dimension of
the schedule. The last dimension (corresponding to the innermost
nesting depth in the generated code) is not traversed, but completed
with a single value: exploring it would yield a huge number of it-
erations, with limited impact on the generated code, and negligible
impact on performance. Eventually, the exploration is bound with
a static limit — 1000 evaluations in our experiments.

4.2 Experiments
We consider three target architectures. The AMD Alchemy Au1500
is an embedded SoC with a MIPS32 core (Au1) running at
500MHz. We used GCC 3.2.1 with the -O3 flag (version of
GCC and option with peak performance numbers, according to
the manufacturer). The STMicroelectronics ST231 is an embed-
ded SoC with a 4-issue VLIW core running at 400MHz and a
blocking cache. We used st200cc 1.9.0B (Open64) with the flags
-O3 -mauto-prefetch -OPT:restrict. The AMD Athlon X64
3700+ has a 1MB L2 cache and runs at 2.4GHz. It runs Mandriva
Linux and the native compiler is GCC 4.1.1. We used the following
optimization settings for this platform which are known to bring ex-
cellent performance: -O3 -msse2 -ftree-vectorize . For this
particular machine, hardware counters were used to collect fine-
grained cycle counts, and we used a real-time priority scheduler to
minimize OS interference. We picked the average of 10 runs for all
performance evaluations.

We implemented an instancewise dependence analysis, the con-
struction of the space of legal transformations, and the efficient
scanning algorithms introduced in this paper.8 We used free soft-
ware such as PipLib [16, 46] (a polyhedral library and parametric
integer linear programming solver) and CLooG [7] (an efficient code
generator for the polyhedral model). For each point in the search
space, (1) we generated the kernel C code with CLooG,9 (2) then we
integrated this kernel in the original benchmark along with instru-
mentation to measure running time (we use performance counters
when available), (3) we compiled this code with the native compiler
and appropriate options, (4) and finally run the program on the tar-
get architecture and gather performance results. The original code
is included in this procedure starting at the second step, for appro-
priate performance comparison. Finally, the full iterative compila-
tion and execution process takes a few seconds on the heuristics,
and up to a few minutes on the GA described Section 5 for the
largest benchmark (up to 1000 tested versions). The time to com-
pute the legal space and to generate points is negligible with respect
to the total running time of the tested versions.

Results Figure 3 shows the results for the three architectures we
considered. We report the total numbers of tested versions (Tested),
the run index of the best performing version (Id Best; the lower,
the earlier), and the performance improvement in percentage (Perf.
Imp.). We also imposed a static limit of evaluating 1000 data points
in the search space.10

All UTDSP experiments use the reference parameters. Increas-
ing data size would emphasize locality effects, yielding higher
speedups. E.g., matmult on Athlon with n = 250 yields 3.61
speedup, n = 64 yields 3.18 speedup, whereas the reference value
n = 10 yields 1.43% speedup.

Discussion Our results show significant improvement on all ker-
nels of the UTDSP suite. In addition, about 50 runs were sufficient
for kernels with less than 10 statements (all but lpc and radar).

8 LETSEE, the LEgal Transformation SpacE Explorator, beta version avail-
able at http://www-rocq.inria.fr/∼pouchet/software/letsee
9 We use CLooG version 0.14.0 with default options.
10 It matches the maximum number of versions considered by the genetic
algorithm in Section 5.



Benchmark #Inst. #Loops #Dep. #Dim. dim 1 dim 2 dim 3 dim 4 Total

compress-dct 6 6 56 3 20 136 10857025 n/a 2.9×1010

edge 3 4 30 4 27 54 90534 43046721 5.6×1015

iir 8 2 66 3 18 6984 > 1015 n/a > 1019

fir 4 2 36 2 18 52953 n/a n/a 9.5×107

lmsfir 9 3 112 2 27 10534223 n/a n/a 2.8×108

matmult 2 3 7 1 912 n/a n/a n/a 912
latnrm 11 3 75 3 9 1896502 > 1015 n/a > 1022

lpc 12 7 85 2 63594 > 1020 n/a n/a > 1025

ludcmp 14 10 187 3 36 > 1020 > 1025 n/a > 1046

radar 17 20 153 3 400 > 1020 > 1025 n/a > 1048

Figure 2. Search space statistics

compress-dct edge iir fir lmsfir matmult latnrm lpc ludcmp radar Average
#Runs 480 243 1000 77 1000 81 1000 1000 1000 1000

AMD Athlon Id. Best 19 11 34 33 51 16 6 489 37 405
Perf. Imp. 37.11% 5.58% 37.50% 40.24% 30.98% 42.87% 15.11% 31.15% 4.50% 6.42% 25.14%

#Runs 480 243 1000 77 1000 81 1000 1000 1000 1000
ST231 Id. Best 39 12 6 2 9 16 13 158 391 709

Perf. Imp. 15.11% 3.10% 24.91% 17.96% 10.17% 17.91% 2.61% 1.99% 6.33% 4.12% 10.42%
#Runs 480 243 1000 77 1000 81 1000 1000 1000 1000

Au1500 Id Best 30 17 38 27 11 17 43 82 175 454
Perf. Imp. 22.37% 2.51% 3.12% 14.00% 15.80% 20.18% 15.19% 14.08% 3.66% 3.39% 11.43%

Figure 3. Results of the decoupling heuristic for AMD Athlon, ST231 and Au1500

For all benchmarks, the best program version is syntactically
very far from the original one.

A good illustration of this is given for the Ring-Roberts run-
ning example, which achieve a 1.47 speedup on a full HD image
on AMD Athlon; hardware counter details show a 54% reduction
of the L1 hit/miss ratio and a 51% of the data TLB misses. This
complex transformation is the result of multidimensional shifting
and peeling of the iterations preventing from fusion, and the com-
plete fusion of the remaining iterations.

The limited performance improvement for edge-convolve2d
is directly correlated to the code structure: this benchmark performs
a convolution of a 3x3 kernel, and is an excellent candidate for
optimization with loop unrolling — a transformation not embedded
in our search space. Our technique is fully compatible with other
iterative search techniques such as parameters tuning [1], and it is
expected that this combination would bring excellent performance
in this case.

We also noticed that performance improvements are often the
result of indirect enabling of back-end compiler optimizations (e.g.,
vectorization or scalar promotion), in addition to the direct im-
pact on hardware components (e.g, locality). Modern compiler op-
timization heuristics are still very fragile, and the interactions be-
tween optimization phases are not captured in their design. Pre-
dicting this interaction on non-trivial codes is still out of reach,
and slight syntactic differences can trigger different optimization
results. Testing different source code having the same semantics is
one way to circumvent the compiler’s optimization unpredictabil-
ity.

In addition, the best iteratively found transformation for a given
benchmark is different when considering a different target architec-
ture. This is due to different interactions with the compiler, as well
as different architectural features to optimize for. Note that it is not
a consequence of working with more expressive schedules: we al-
ready highlighted a similar pattern for the case of one-dimensional
schedules [35]. It confirms the complexity of the optimization prob-
lem and the relevance of a feedback-directed approach.

The heuristic heavily relies on the observation that the first
dimension of the schedule contains very few points — it traverses
this dimension exhaustively. However, exhaustive enumeration is
only possible for small kernels, such as most UTDSP benchmarks.
Unfortunately, for larger programs like lpc, ludcmp, radar, and to
some extent on latnrm, this approach does not scale.

To address this scalability issue, we substitute the exhaustive
search with a genetic algorithm.

5. Evolutionary Traversal of the Polytope
This section introduces novel genetic operators tailored to the
traversal of polytopes of legal affine schedules.

Genetic algorithms (GA) [20] are known for their genericity:
we chose an evolutionary approach because of the natural encoding
of the geometric properties of the search space into crossover and
mutation operators. The two main properties are the following:

1. to enforce legality and uniqueness of the program versions, the
search space polytope must be closed for the genetic operators;
we construct dedicated mutation and crossover operators satis-
fying this property;

2. unlike random search, the traversal is characterized by its non-
uniformity (from the initial population and the crossovers); this
is utterly important as the largest part of the search space is
generally plagued with poor or similar performing versions
[35, 34].

Genetic algorithms have often be used in program optimization.
Our contribution is to reconcile fine-grain control of a transforma-
tion heuristics — as opposed to optimization flag or pass selection
[42, 1] — with the guaranteed legality of the transformed program
— as opposed to filtering approaches [31, 29, 28] or always-correct
transformations [41, 24].



5.1 Genetic Algorithm
Using classical GA operators would not be an efficient way to gen-
erate data points in our search space. This is because legal sched-
ules lie in affine bounds that are strongly constrained and changing
them at random has a very low probability of preserving legality.
Moreover, in general, this probability decreases exponentially with
the space dimension [31]. We thus need to understand the proper-
ties of the space of legal schedules, and to embed them into dedi-
cated GA operators.

Some properties of affine schedules The construction algorithm
outputs one polytope per schedule dimension. We can deduce nu-
merous properties on these polytopes, either deriving from the con-
struction algorithm or from affine scheduling itself. In the follow-
ing, the term affine constraint refers to any dependence, iteration
domain, or search bound constraint on coefficients of the schedule
— the columns of Θ.

1. No affine constraint involves coefficients from different rows
of Θ, since those coefficients are computed from distinct poly-
topes. Of course, multiple coefficients inside a row can be in-
volved in a constraint.

2. Multiple coefficients involved in a constraint are called depen-
dent. Each row can be partitioned into classes of dependent co-
efficients, where no constraint involves coefficients from dif-
ferent classes. E.g., in the polyhedron defined by {x1 + x2 ≥
0∧ x3 ≥ 0} we say that the set {x1,x2} is independent from the
set {x3}. Legality preservation is local to each class of depen-
dent coefficients.

We design novel genetic operators exploiting and preserving
these properties.

Initialization We first introduce an individual with a statically
computed schedule, computed by applying the completion algo-
rithm on all schedule coefficents (which were previously all set to
0). This choice shares its motivation with the decoupling heuristic
in Section 4.1.

The rest of the population is initialized by performing aggres-
sive mutations on this static schedule; we generate 30 to 100 indi-
viduals, depending on the space dimension. The initial population
is heavily biased towards a particular subspace (typically the sub-
space of the~ı coefficients), emphasizing the non-uniformity of the
traversal.

Mutation The mutation operator starts with the computation of
the distribution of probabilities to alter every coefficient. This prob-
ability is driven by three factors; the first one derives directly from
the heuristic of the one-dimensional case [35]:

• coefficients of the iteration vectors have a dramatic impact on
the structure of the generated code; minor modifications trigger
wild jumps in the search space;
• conversely, coefficients with little linear dependences with oth-

ers may require ample mutations to trigger significant changes.
• the schedule dimension considered: lower dimensions and es-

pecially the scalar ones usually have a lower impact on perfor-
mance.

In addition, we weigh the probabilities with a uniform annealing
factor, to tune the aggressiveness of the mutation operator along
with the maturation of the population.

We randomly pick a value within the legal bounds for this
coefficient, and according to the distribution of probabilities. As
this mutation may cause other coefficients to become incorrect, we
then update the schedule with the completion algorithm depicted in
Section 3.4; it is a simple update because the schedule prefix can

be kept in the legal space, computing mutated coefficients in the
reverse order of Fourier-Motzkin elimination.

We also experimented a simpler mutation operator, where the
bounds to pick mutated values where not adjusted to the corre-
sponding polytope of legal versions, applying our correction mech-
anism a posteriori. This approach did not prove very effective as
coefficients are often correlated or severely constrained: randomly
picking values for multiple correlated coefficients often leads to
identical schedules after correction. Only an incremental applica-
tion of the correction mechanism avoids the generation of many
duplicates (which strongly degrade the effectiveness of the muta-
tion operator).

Crossover We provide two crossover operators. The row crossover
is dedicated to compensating the row-wise aspect of the mutation
operator. Given two individuals represented by Θ and Θ′, the row
crossover operator randomly picks rows of either Θ or Θ′ to build
a new individual Θ′′. This operator obviously preserves legality
since there are no dependences between rows. Since the mutation
operates within a schedule dimension, it may succeed in finding
good candidates for a given row of Θ or Θ′, but may mix these
with ineffective rows. Combining these rows may lead to a good
schedule, with a much higher probability than with mutation alone.

The column crossover, is dedicated to crossing independent
classes of schedule coefficients (represented by sets of columns not
connected by any affine constraint); this operator is quite original
and specific to the geometrical properties of the search space. It can
be seen as a finer-grained crossover operator. From two individuals
Θ and Θ′, it randomly selects an independent class from either
parent — at every dimension — to build Θ′′. When there is only
one independent class in a given schedule dimension this operator
behaves like the row crossover. We rely on the geometric properties
of the polytope to compute linearly independent sets of variables
for a given schedule dimension. These sets are computed once and
for all, immediately after the search space polytope is built. This
operator preserves legality as it only modifies independent sets of
schedule coefficients.

Dependences constrain schedule coefficients in pairs of state-
ments. Several transitive steps are needed to characterize all cor-
relations between coefficients in a dependent class. This operator
carefully refines the grain of schedule transformations, while pre-
serving legality as it only modifies independent sets of coefficients.

Selection The selection process is a classical numerus clausus fil-
tering, keeping half of the current population for the next genera-
tion. A better option would be to combine multiple metrics, includ-
ing performance predictors (to avoid running the code) or hardware
counters. We are currently investigating such techniques.

5.2 Experimental Results
Figure 4 summarize the results of the genetic algorithm applied
to all benchmarks for all architectures. Row Heuristic/GA shows
the fraction of the speedup achieved by the decoupling heuristic
w.r.t. the genetic algorithm, and fractions are averaged for the
benchmarks of less than 10 statements versus more than 10. We
initialized the population with 30 to 100 individuals, and performed
at most 10 generations; therefore, the maximum number of runs for
each program was 1000.

Comparing these results with the table in Figure 3 shows the
efficiency and scalability of our method. The genetic algorithm
achieves strong speedups for the larger kernels; these speedups are
much stronger than those of the decoupling heuristic for the larger
benchmarks. On the other hand, the decoupling heuristic exposes
78–100% of the speedup obtained with genetic algorithms within
the first 50 runs, for all kernels of less than 10 statements



Architecture compress-dct edge iir fir lmsfir matmult latnrm lpc ludcmp radar Average
AMD Athlon 44.17% 7.86% 32.18% 40.70% 24.23% 42.87% 28.23% 45.84% 69.63% 40.18% 37.58%

Heuristic/GA 84.31% 82.26% 93.58% 98.86% 80.71% 100% 53.57% 67.68% 6.52% 16.05% 89.95% / 35.95%
ST231 18.42% 3.29% 27.40% 18.81% 8.63% 17.91% 0.86% 3.44% 5.96% 28.32% 13.30%

Heuristic/GA 83.33% 94.52% 90.91% 95.48% 85.14% 100% 92.30% 32.20% 22.26% 30.82% 91.56% / 44.39%
AMD Au1500 25.11% 3.03% 4.07% 14.10% 19.18% 22.67% 27.01% 17.43% 15.71% 30.87% 17.91%

Heuristic/GA 89.21% 82.83% 78.29% 99.50% 81.64% 88.93% 55.55% 82.35% 16.56% 10.91% 86.73% / 41.35%

Figure 4. Results of the genetic algorithm. The Decoupling heuristics succeeds in discovering 78-100% of the speedup achieved by GA for
all benchmarks of less than 10 statements. For larger benchmarks, the GA performs 2.46× better in average, and up to 16× better.

Results are better on AMD Athlon than on embedded proces-
sors, probably because the architecture is more complex: a good
interaction between architectural components is harder to achieve
and brings higher improvements. Conversely, the ST231 and AMD
Au1500 have a predictable behaviour, more effectively harnessed
by the back-end compiler, and showing less room for improvement;
yet our results are still significant for such targets.

We report a detailed study of the representative compress-dct
benchmark, on AMD Athlon. Figure 5 summarizes the results, and
confirms the huge advantage of the GA given the statistically sparse
and chaotic occurrence of performance-enhancing schedules. The
first graph shows the convergence of our GA approach versus a Ran-
dom traversal in the space of legal schedules (only legal points are
drawn). The GA algorithm ran for 10 generations from an initial
population of 50 individuals. Both plots are an average of 100 com-
plete runs. On the second graph, we report the performance distri-
bution of the legal space. We exhaustively enumerated and eval-
uated all points with a distinct value for the~ı +~p coefficients of
the first schedule dimension, combined with all points with a dis-
tinct~ı value for the second one; a total of 1.29×106 schedules are
evaluated. For each distinct value of the first schedule dimension
(plotted in the horizontal axis), we report the performance of the
Best schedule, the Worst one, and the Average for all tested values
of the second schedule dimension. The third graph shows the per-
formance distribution for all tested points of the second schedule
dimension, provided a single value for the first one, sorted from
the best performing one to the worse (the best performing sched-
ule belongs to this chart). The difficulty to reach the best points in
the search space is emphasized by their extremely low proportion:
only 0.14% of points achieve at least 80% of the maximal speedup,
while only 0.02% achieve 95% and more. Conversely, 61.11% de-
grade performance of the original code, while in total 10.88% de-
grade the performance by a factor 2.

Figure 5(a) shows that our GA converges much faster than ran-
dom search: in 500 runs, the random search is only able to dis-
cover a 18% performance improvement; the GA takes only 120
runs to match this figure, converging towards the space maximal
44.1% improvement after 350 runs, at the 7th generation (i.e.,
before the imposed limit of 10 generations). This the maximum
speedup available, as shown by the exhaustive search experiments
in Figure 5(b). The effectiveness of the genetic operators is illus-
trated by the decorrelation of the performance improvements and
the actual performance distribution. Conversely, random traversal
follows the shape of the performance distribution, and in average is
not able to reach the best performing schedules — as their density
in the space is very low.

Finally, we studied the behavior of multiple schedules for
the compress-dct benchmark, analyzing hardware counters on
Athlon. This study highlights complex interactions between the
memory hierarchy (both L1 and L2 accesses must be minimized
to achieve good performance), vectorization, and the activity of
functional units. The best performing transformation reduces the
numbers of stall cycles by a factor of 3, while improving the L2

hit/miss ratio by 10%. Transformation sequences achieving the op-
timal performance are opaque at first glance: they involve complex
combinations of skewing, reversal, distribution and index-set split-
ting. These transformations address specific performance anoma-
lies of the loop nest, but they are often associated with the interplay
of multiple architecture components. Moreover, we observe that the
best optimizations are usually associated with more complex con-
trol flow than the original code. The number of dynamic branches
is increased in most cases [34], although stall cycles are heavily
reduced due to locality and ILP improvements.

Overall, our results confirms the potential of iterative optimiza-
tion to accurately capture the complex behavior of the processor
and back-end compiler, and extends its applicability to optimiza-
tion problems far more complex than those commonly solved in
adaptive compilation.

6. Related Work
In recent years, the benefits of iterative compilation have been
widely reported [23, 13, 14, 21]. Iterative compilation is often
able to find optimization sequences that out-perform the highest
optimization settings in commercial compilers.

Kulkarni et al. [24] introduce the VISTA system, an interactive
compilation system which concentrates on reducing the time to find
good solutions. Another system that attempted to speedup iterative
compilation was introduced by Cooper et al. called ACME [12].
Triantafyllis et al. [42] develop an alternative approach to reduce
the total number of evaluations of a new program. Here the space
of compiler options is examined off-line on a per function basis and
the best performing ones are classified into a small tree of compiler
options.

Iterative optimization has been used effectively on a variety
of compilation and parallelization problems and its applicability
and practicality has been demonstrated beyond the academic world
[37]. Although multidimensional affine scheduling is an obvious
target for iterative optimization, its profitability is one of the most
difficult to assess, due to (1) the model’s intrinsic expressiveness
(the downside of its effectiveness) and (2) its lack of analytical
models for the impact of transformations on the target architec-
ture. Hence, related work has been very limited up to this point. To
the best of our knowledge, Nisbet pioneered research in the area
with one of the very first papers in iterative optimization. He de-
veloped the GAPS framework [31] which used a genetic algorithm
to traverse a search space of affine schedules for automatic paral-
lelization. In addition, Long and O’Boyle [29] considered a larger
search space of transformation sequences represented as multidi-
mensional affine schedules. Both of these approaches suffer from
under-constraining the search space by considering all possible
schedules, including illegal ones. Downstream filtering approaches
do not scale, due to the exponentially diminishing proportion of
legal schedules with respect to the program size. For instance, Nis-
bet obtains only 3−5% of legal schedules for the ADI benchmark
(6 statements). Moreover, under-constraining the search space lim-
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Figure 5. Performance Distribution of compress-dct, AMD Athlon. GA discovers the maximum speedup available in the search space.

its the possibility to narrow the search to the most promising sub-
spaces.

Pouchet et al. demonstrated a more efficient approach, by em-
bedding program dependences and affine scheduling properties into
the search space itself. However, this approach was only applied to
small kernels with single dimensional schedules. We remove the
expressiveness limitations of this prior result, extending the search
space construction, preconditioning and traversal algorithms to ar-
bitrary multidimensional affine schedules.

7. Conclusion
Present day compilers fail to model the complex interplay between
different optimizations and their effect on code on all the different
processor architecture components. Empirical search has become
essential to achieve portable high performance in spite of the ana-
lytically intractable hardware complexity. Most iterative compila-
tion techniques target compiler optimization flags, parameters, de-
cision heuristics, or phase ordering [10, 14, 41, 24, 42, 1]. We take
a more aggressive stand, aiming for the construction and tuning of
complex sequences of transformations.

Affine schedules build a very expressive search space, since a
single schedule can represent an arbitrarily complex sequence of
loop transformations. The first attempts to traverse such a space
faced legality problems and showed poor results because only few
legal affine schedules were found [31, 29]. Pouchet et al. recently
proposed a solution for a restricted class of loop nests and trans-
formations [35]. This paper targets all static control programs and,
by construction, enables iterative optimization in a closed space of
semantics-preserving transformations. To overcome the combina-
torial nature of the optimization search space, we designed heuris-
tics and a genetic algorithm with specialized operators that leverage
the algebraic properties of this space, embedding the legality con-
straints into the operators themselves. We simultaneously demon-
strate good performance gains and excellent convergence speed on
huge search spaces, even on larger loop nests where fully iterative
affine scheduling has never been attempted before.

For future work, we intend on looking at automatic paralleliza-
tion, and at incorporating loop tiling for both locality and paral-
lelism. While the back-end compiler may support some form of
tiling, early experiments show that applying it as a post-pass does
not significantly improve performance. Complexity of the gener-
ated code is partly responsible for this.
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