
Using Predictive Modeling for Cross-Program Design Space

Exploration in Multicore Systems∗

Salman Khan, Polychronis Xekalakis†, John Cavazos, and Marcelo Cintra

School of Informatics
University of Edinburgh

{salman.khan, p.xekalakis}@ed.ac.uk, {jcavazos, mc}@inf.ed.ac.uk

Abstract

The vast number of transistors available through modern

fabrication technology gives architects an unprecedented

amount of freedom in chip-multiprocessor (CMP) designs.

However, such freedom translates into a design space that is

impossible to fully, or even partially to any significant frac-

tion, explore through detailed simulation. In this paper we

propose to address this problem using predictive modeling,

a well-known machine learning technique. More specifi-

cally we build models that, given only a minute fraction of

the design space, are able to accurately predict the behav-

ior of the remaining designs orders of magnitude faster than

simulating them.

In contrast to previous work, our models can predict per-

formance metrics not only for unseen CMP configurations

for a given application, but also for unseen configurations

of a new application that was not in the set of applications

used to build the model, given only a very small number of

results for this new application.

We perform extensive experiments to show the efficacy

of the technique for exploring the design space of CMP’s

running parallel applications. The technique is used to pre-

dict both energy-delay and execution time. Choosing both

explicitly parallel applications and applications that are

parallelized using the thread-level speculation (TLS) ap-

proach, we evaluate performance on a CMP design space

with about 95 million points using 18 benchmarks with up

to 1000 training points each. For predicting the energy-

delay metric, prediction errors for unseen configurations of

the same application range from 2.4% to 4.6% and for con-

figurations of new applications from 3.1% to 4.9%.

∗This work was supported in part by the EC under grant HiPEAC IST-

004408.
†The author was supported in part by a Wolfson Microelectronics

scholarship.

1 INTRODUCTION

When designing a modern chip-multiprocessor (CMP)

the architect is faced with choosing the values for a myriad

of system and microarchitectural parameters (e.g., number

of cores, issue width of each core, cache sizes, branch pre-

dictor type and size, etc.). Simulation is the tool of choice

for evaluating each design point in this large design space.

Unfortunately, the complexity of modern cores and CMP’s,

together with the complexity of modern workloads, has in-

creased the time required for accurate simulation of the de-

sign space beyond practical levels.

Alternative approaches such as analytical modeling, sim-

plified kernel workloads, and reduced input sets are in-

creasingly undesirable as they cannot accurately capture the

intricacies of realistic architectures, workloads, and input

sets. Recently, statistical sampling has received much at-

tention [19, 25]. These techniques have been shown to cut

simulation time by 60 times in many cases with error rates

of around 3%. Whether such techniques will keep pace with

the increased complexity of future architectures and work-

loads is an open question. In this paper we explore a differ-

ent and complementary approach to reducing the time re-

quired to explore the large design space of CMP’s running

a variety of applications: predictive modeling.

Predictive modeling using statistical machine learning

(e.g., regression and multilayer neural networks) has re-

cently received much attention [7, 8, 11]. The key idea is

to build models that once trained for a given program on

a number of design points (configurations) can predict the

behavior of different configurations. Constructing a model

requires simulation results for only a small fraction of the

entire configuration space. Both model creation and using

the models to predict the performance of new configura-

tions takes orders of magnitude less time than simulating

these configurations. Thus, these techniques can cut down

the time needed to explore a large design space by several



orders of magnitude.

Unfortunately, the simulations required for constructing

predictive models are still expensive and previous work re-

quires a set of simulations for every application [7, 8, 11].

In this paper, we take this technique a step further to cut

down model creation time. We show that it is possible to

create a model using only a subset of the applications of in-

terest and then use this model to accurately predict the be-

havior of new configurations for new unseen applications.

This is achieved with a technique we term reaction-based

characterization, that requires only a very small number of

simulations for every new application not in the training set.

The key intuition is that when given such a new application

the model tries to automatically match this application’s be-

havior against that of applications with similar behavior in

the training set. If such an application exists then the model

can accurately predict the behavior of the new application

without having to pay the cost of the model creation for the

application. The idea is depicted in Figure 1. Figure 1(a)

shows the case where no predictive modeling is used and

the designer must simulate all the configurations for all the

applications of interest. Figure 1(b) shows what happens

when predictive modeling is used as in previous work. In

this case, only a small fraction of the configurations must

be simulated (0 < α << 1) and the rest can have their be-

havior predicted. Figure 1(c) shows our proposed reaction-

based predictive modeling. In this case, only a subset of

the applications have to be simulated for the small fraction

of the configurations while the rest can have their behavior

predicted after only an even smaller number of simulations

(0 < β << α << 1). The benefits can be seen in Figure 2,

where the speedup in simulation time, when compared to an

exhaustive simulation of the space, and accuracies are pre-

sented for different predictive modeling techniques for each

application. As can be seen, cross-program prediction with

the reaction technique - the technique proposed in this paper

- can be two to three orders of magnitude faster. Moreover,

the reaction-based approach achieves these speedups while

maintaining comparable accuracy.

An additional contribution of this paper is to demon-

strate that this technique can be used to accurately predict

not only performance but also energy-delay 1(ED) results.

Energy-delay is an important metric since it is able to quan-

tify whether or not a power-efficient design achieves a re-

duction in the overall energy.

To evaluate our approach we use both explicitly parallel

applications and applications parallelized using the thread-

level speculation (TLS) approach. We show that, despite the

complexity of the CMP architectures and the applications

studied, we are able to perform accurate cross-program pre-

dictions. Specifically, for a CMP design space with about

95M points using 18 applications with up to 1000 training

1 ED = Energy * Execution Time

(a) (b) (c)

Figure 1. Fraction of the space simulated and

predicted shown for (a) full simulation with
no prediction (b) per program prediction and

(c) cross program prediction.

points each we can predict energy-delay results with errors

ranging from 3.1% to 4.9% for cross-application predic-

tions, that is, training a model on a subset of applications

and using the model to predict configurations for a new, un-

seen application.

To summarize, the main contributions of this paper are:

• We show that highly accurate cross-application predic-

tions are feasible through the use of a technique we

term reaction-based modeling.

• We perform predictions of both execution time and

energy-delay. We thus show that our techniques work

for designs that target only performance and those that

target performance within a given power envelope.

• We thoroughly evaluate our models using explicitly

parallel and TLS applications. We show that our mod-

els can accurately predict explicitly parallellized scien-

tific applications and can predict equally well for the

more complex TLS design space.

The rest of this paper is organized as follows. Section

2 presents background information and Section 3 describes

our predictive model and reactions. Section 4 outlines the

experimental framework and the design parameters consid-

ered and Section 5 presents results. We discuss related work

in Section 6 and draw some conclusions in Section 7.

2 BACKGROUND

2.1 The CMP Design Space

Chip-multiprocessors (CMP’s) offer a myriad of system-

level parameters to choose from, such as the number of

cores in the chip, the configuration and sizes of caches, and

the number and width of memory channels etc. Addition-

ally, despite the fact that focus has shifted from core design



1

10

100

1000

10000

100000

bzi
p2

cr
af

ty
gap

gzi
p

par
se

r

tw
olf

vo
rt
ex vp

r

bar
nes

ch
ole

sk
y fft ffm lu

oce
an

ra
dio

si
ty

ra
yt

ra
ce

w
at

er
-n

sq
uar

ed

w
at

er
-s

pat
ia

l

av
er

ag
e

S
p

e
e
d

u
p

 o
v
e
r 

F
u

ll
 S

im
u

la
ti

o
n

s
 

(i
n

 t
h

o
u

s
a
n

d
s
)

0

1

2

3

4

5

6

7

8

M
e
a
n

 E
rro

r %

no cross-program speedup 2 reactions speedup 4 reactions speedup

no cross-program accu. 2 reactions accu, 4 reactions accu.

Figure 2. Comparison of accuracy in energy-delay prediction and speedup over simulation of the full
space (in thousands).

to system design in CMP’s, these systems also offer a large

number of choices of microarchitectural parameters, such as

issue width, type and size of branch predictor, and number

and type of functional units, just to name a few. Some of the

current CMP’s also offer the possibility of multithreading,

and future CMP’s are likely to offer the possibility of het-

erogeneity of core types on the same chip. Overall, given

the sheer number of possible CMP configurations it is in-

creasingly important to be able to quickly explore the design

space of these systems. Unfortunately, the subtle interac-

tions among all these parameters make accurate simulation

extremely expensive and make alternative approaches, such

as analytical modeling, increasingly inaccurate.

2.2 Parallel Applications

Perhaps even more than sequential applications, parallel

applications exhibit a great degree of variability in behavior,

depending not only on the algorithm but also on the imple-

mentation and the parallelization mechanism. For instance,

scientific applications based on arrays and parallelized with

the single program multiple data (SPMD) paradigm usu-

ally have simple and predictable control and communica-

tion patterns. On the other hand, parallel applications writ-

ten with a more general threading model tend to be more

unpredictable. Unfortunately, the complex behavior of such

applications make the use of alternative approaches to full

simulation, such as simplified kernels and reduced input

sets, also increasingly inaccurate.

For our study we chose parallel applications from two

very different backgrounds. Namely, scientific applications

built with explicit, shared-memory, threads (the Splash-2

suite [23]), and desktop applications written in sequential

form (the SPEC int 2000 suite [21]) parallelized with the

thread-level speculation (TLS) technique. Arguably, TLS

applications exhibit behavior even more complex than other

parallel applications, due to the possibility of squashes and

re-execution of threads and processor stalls. For complete-

ness, we present a very brief overview of the TLS technique

below. Readers familiar with the technique may skip to the

next section.

Under the thread-level speculation (also called spec-

ulative parallelization or speculative multithreading) ap-

proach, sequential sections of code are speculatively exe-

cuted in parallel hoping not to violate any sequential se-

mantics. The control flow of the sequential code imposes

a total order on the threads. At any time during execu-

tion, the earliest thread in program order is non-speculative

while the others are speculative. The terms predecessor

and successor are used to relate threads in this total order.



Stores from speculative threads generate unsafe versions of

variables that are stored in some sort of speculative buffer,

which can be simply the private caches or some additional

storage dedicated to speculative parallelization. If a specu-

lative thread overflows its speculative buffer it must stall and

wait to become non-speculative. Loads from speculative

threads are provided with potentially incorrect versions. As

execution proceeds, the system tracks memory references

to identify any cross-thread data dependence violation. If

a dependence violation is found, the offending thread must

be squashed, along with its successors, thus reverting the

state back to a safe position from which threads can be re-

executed. In addition to this implicit memory communica-

tion mechanism, some hardware environments for specula-

tive parallelization allow synchronized memory and register

communication between neighbor threads. When the execu-

tion of a non-speculative thread completes it commits and

the values it generated can be moved to safe storage (usu-

ally main memory or some shared higher-level cache). At

this point its immediate successor acquires non-speculative

status and is allowed to commit. When a speculative thread

completes it must wait for all predecessors to commit be-

fore it can commit. After committing, the processor is free

to start executing a new speculative thread. Usually a pro-

cessor that completes the execution of a speculative thread

before the predecessor threads have committed is not al-

lowed to start execution of a new speculative thread.

3 Predictive Modeling Using Reactions

3.1 Predictive Modeling

Predictive modeling describes the process of creating

models that try to approximate the behavior of a system.

In this black-box approach, the system can be thought of as

a complex function that given some input will return some

result. The set of inputs to the model is known as the input

vector and the behavior that has to be learned as the tar-

get function. Creating such a model is a three step process.

First, the input vectors and the target function have to be

choosen. For our task, this translates to choosing the set

of architecture parameters to vary that will be used as input

the model (e.g., branch predictor size) and deciding on the

behavior of the architecture we want to predict (e.g., energy-

delay). Second, the model then has to be trained with tuples,

each of which consists of an input vector and an expected

output. These tuples should exhibit representative behavior,

so that the model can infer accurate predictions for unseen

input vectors once trained. The training algorithm depends

on the target function, the type of input data, and the im-

plementation of the prediction model. Third, we validate

the performance of the model by feeding it previously un-

seen input vectors and comparing its predicted output to the

expected output.

3.2 Reaction-based Modeling

This section describes reaction-based modeling, a tech-

nique for building accurate models that can predict the be-

havior of unseen programs on a large set of architecture

configurations simply by observing the program’s behav-

ior on a very small subset of configurations chosen a pri-

ori. Previous works [7, 8, 11, 12] have used automatic

techniques to build predictive models. However, these tech-

niques have required building a model for every new bench-

mark as shown in Figure 3. As shown in this figure, in pre-

vious approaches a new model is trained for every bench-

mark whose behavior we want to predict. Each model is

trained by feeding input vectors, each of which consists of

different architecture parameters (t1 through tn) that make

up each configuration (c1 through cm) and trying to learn a

benchmark’s behavior of interest, e.g., energy-delay (EDi
c1

through EDi
ck

). For example, Figure 3(a) shows the train-

ing of model M1 for benchmark B1 and model Mk for

benchmark Bk. Model M1 can used to accurately predict

the behavior of benchmark B1 on unseen architecture con-

figurations, cm+1 through cm+j , that it was not trained with.

However, we can not use any of these previously trained

models to reliably predict the behavior of a new benchmark

Bk+1, as in Figure 3(b).

Figure 4 depicts our new technique which solves this

problem. The approach works as follows. First, we ran-

domly choose a small set of architectural configurations, we

call canonical configurations, that will be used as a charac-

terization of a benchmark. We then obtain the energy-delay,

for each benchmark in the training set on the canonical con-

figurations. We call these results reactions. For example, in

Figure 4(b) we obtain the set of reactions R1 through Ry for

each benchmark. Suppose we use two canonical configura-

tions, configurations A and B, to obtain reactions for each

benchmark. The set of reactions will consist of obtaining

energy-delay by running each benchmark with configura-

tions A and B, giving us reaction R1 for configuration A

and R2 for configuration B. Again, the reactions serve as

a characterization or signature of each benchmark and are

used as inputs into our model along with each of the config-

urations we use to train the model. The model then learns

for each benchmark the metric (e.g., energy-delay) obtained

when running that benchmark on each training configura-

tion. Note, as depicted in Figure 4(a), that we only have to

train one model now for all the benchmarks in our training

set.

This model can be used to predict the performance of

new unseen configurations (cm+1 through cm+j) for each

of the training benchmarks. However, the main difference

between our approach and previous approaches in perfor-



(a) (b)

Figure 3. Building a predictor per program. The predictor is (a) trained and (b) probed for a prediction.

(a) (b)

Figure 4. Using reactions to do cross program prediction. The predictor is (a) trained and (b) probed

for a prediction.

mance prediction is that we can use our trained model to

accurately predict the performance of unseen benchmarks

not in the training set, which we show in Figure 4(b), by

predicting the behavior of benchmark Bk+1. When training

the model without using reactions, we simply use the con-

figuration (t1t2...tn) as input. However, in reaction-based

modeling, we extend the input with the reactions for each

canonical configuration (R1...Ry). To use the model to pre-

dict energy-delay for a new unseen benchmark, we simply

need to obtain energy-delay results (reactions) for the new

application by running it with the pre-determined canoni-

cal configurations. These reactions are then used as inputs

into the model along with the architecture configuration we

want a prediction of. The intuition is, if previously studied

programs had similar reactions, the new program may be

classified to be similar to one or a combination of some of

these previously seen programs.

This technique requires y program runs for obtaining y

reactions used as input to the predictor. However, we em-

pirically show in Section 5 that we can keep y very small

(less than or equal to 8), and still get accurate predictions.

We formally describe the particular predictive model we

chose in the next section.

3.3 Building the model using ANNs

There exist many modeling techniques that can be used

to automatically produce a predictive model. In this paper

we use a feed-forward ANN (Artificial Neural Network),

with one hidden layer of ten units. Such an ANN is robust

to noise in its input and capable of learning real-valued out-

puts - both characteristics of our problem domain. ANNs

are well studied and have been used in a wide range of do-

mains [4] and our current experience suggests that ANNs

may be practical for this prediction problem.

The model is constructed as follows: the inputs are the y

reactions and the architecture configuration whose energy-

delay (or performance) impact we want to predict, and the

output is the predicted energy-delay (or performance) of the

target configuration.

More formally, we build a model f which takes as in-

puts the reactions (e.g., energy-delay) of the program P

R1(c1; P ), . . . , Ry(cy; P ) to y canonical architecture con-

figurations, c1, . . . , cy , and a new architecture configura-

tion t. We use the model to predict the metric (ŝ), e.g.,

energy-delay, on new programs and architecture configura-

tions: f(R1(c1; P ), . . . , Ry(cy; P ), t) = ŝ. The model can



not only be trained specific to a program, it can be trained

on multiple programs, and can be applied to any unseen pro-

gram thereafter, simply by running the unseen program with

the canonical configurations. Figure 4 depicts the training

and usage of our ANN models for both the case of using re-

actions. In the figure, the superscript on each variable t cor-

responds to an individual attribute (e.g., L1 DCache size) of

the configuration.

The y reactions (or canonical) architecture configura-

tions are chosen at random and provide a characteristization

of the program behavior to be used to discriminate between

the training programs.

4 EVALUATION METHODOLOGY

4.1 Applications

To evaluate our techniques for predictive modeling of

CMP configurations we chose parallel applications from

two very different backgrounds. The first set of applica-

tions are from the Splash-2 suite [23]. These are explicitly

parallel, shared-memory, scientific applications and kernels

written with a generic programming model based on locks

and barriers. From these we did not include radix and vol-

rend because we could not correctly run them on our simu-

lator. The second set of parallel applications are from the

SPEC int 2000 suite [21], which were parallelized using

the thread-level speculation (TLS) technique. From these

we did not include eon because it is in C++ and gcc, mcf,

and perlbmk because our TLS compiler infrastructure (Sec-

tion 4.2) failed to compile them.

4.2 Compilation, Simulation, and Model-
ing Environments

The SPEC int TLS applications were compiled with the

POSH compiler infrastructure [13], which is based on gcc

3.5. For these applications, we exclude initialization and

execute code sections that correspond to 500 million com-

mitted instructions in the original sequential version (note

that with TLS the same dynamic instruction may “commit”

multiple times when a thread is squashed and re-executed).

The reference input sets were used for these applications.

The Splash-2 applications were compiled with the MIPSPro

SGI compiler at the 03 optimization level. These applica-

tions were executed to completion using the reference input

sets.

For the detailed execution driven simulations we used

the SESC simulator [17]. This simulator models in detail

the CMP system and the internal microarchitecture of each

core. The timings and power consumption estimates used

by this simulator are based on CACTI 3.0 models [20]. For

the TLS applications the CMP is augmented with hardware

support for TLS, which is built into SESC. This hardware

support is described in [18]. For the neural network models

we used Matlab and the neural network toolbox.

4.3 Learning Model

We use a standard two layer feedforward neural network

for prediction. The network has hyperbolic tangent sigmoid

activation for hidden layer neurons and linear activation for

the output. Each configuration is presented as a 9 dimen-

sional input vector to the ANN. For cross-program predic-

tion, this input vector is extended with the reactions. To

avoid overfitting, we use regularization using a bayesian ap-

proach for parameter selection [14]. Regularization incor-

porates the sum of squared weights from the network into

the error function. Keeping the weight value low keeps the

function that the network represents smooth and thus im-

proves generalization. It has the added advantage over early

stopping that we can train on all the data rather than keep-

ing some for a stopping set. For all our predictions, we use

a network with one hidden layer of 10 neurons.

4.4 Designs Evaluated

As discussed in the previous sections, we look at a CMP

design space. More specifically, we look into different

branch prediction sizes, issue/rename/commit widths, re-

order buffer sizes, window and load-store queue size, differ-

ent numbers of L1 and L2 miss handling registers (MSHR)

and different register file sizes. The detailed values for the

parameters we varied can be seen in Table 1. We choose not

to vary the instruction cache parameters, because our appli-

cations have very small instruction miss-rates and even sub-

optimal configurations did not affect their performance. For

the branch predictor, we used a hybrid bimodal-gshare [15],

a well established and reasonably accurate predictor. Due to

its fast learning component (bimodal), it is also ideal for the

thread-switch behavior of TLS systems. We assume a one

cycle access latency and a minimum of 11 cycles branch

misprediction latency. We also employ speculative updates

of the global history register similar to previous work [9].

We use a four core CMP for all our experiments. The total

number of possible value combinations (design space) is in

excess of 95 million.

5 EXPERIMENTAL RESULTS

We run a number of experiments to establish a base-

line and evaluate the improvements in prediction accuracy

achieved by using reactions. We concentrate on predic-

tions for the energy-delay metric but present some results

for predictions of execution time. We first evaluate predic-

tions without using reactions in Section5.2. We then look at



Parameter Values

Fetch/Issue/Retire Width 2, 3, 4

L1 DCache (4-way) 8K, 16K, 32K, 64K, 128K

L1 MSHR 1 - 21 with a step of 2

L2 MSHR 4 - 32 with a step of 4

I-Window 20 - 240 with a step of 20

Branch Predictor 12, 24, 48, 96 Kbit

ROB 20 - 240 with a step of 20

LSQ 20 - 100 with a step of 10

Register File 20 - 150 with a step of 10

Total: 9 parameters Total: 95,800,320 combinations

Table 1. Parameters of architectures consid-

ered in our Design Space Exploration

cross-program prediction using reactions in Section5.3 and

Section5.4

5.1 Characteristics of the Design Space

The design space we look at is described in Section 4.4.

We see fairly high variation in the energy-delay and exe-

cution time across the space, as can be seen in Figure 5.

This is not a trivially predictable space. For instance, if we

use the mean of the energy-delay as a prediction, we have

mean absolute error of 30.5% in the energy-delay predic-

tions across the 1500 samples per benchmark we obtained.

We observe clustering in the space between similarly

behaving applications. This is demonstrated in Figure 6,

where we see that vpr and bzip show similar behavior, as do

fmm and fft. Here we show the 55 configurations with high-

est energy-delay (i.e., those at the right end of Figure 5).

This suggests that predictions can be made by assigning

benchmarks to existing clusters, as is implicitly done by re-

actions.

5.2 Predict Same Benchmark from N
Training Points

First we train a predictor per benchmark on randomly

chosen configurations and predict energy-delay and execu-

tion time for the same benchmark on new configurations.

The results for varying number of training points are shown

in Figure 7. As would be expected, increasing the size of

the training set improves prediction accuracy significantly.

For energy-delay, mean error across all the benchmarks for

125 training samples is 15.2%, dropping to 3.7% for 1000

training samples. For execution time, the mean error is

5.6% for 125 training samples and 0.9% for 1000. We

see the error dropping as we increase the training set up

to 1000 points.We expect small further improvements with

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

Configurations sorted by energy delay

N
o

rm
a

li
z
e

d
 e

n
e

rg
y

 d
e

la
y

Figure 5. Normalized energy-delay averaged
across all benchmarks. Configurations are

sorted by increasing energy-delay.

additional training points. Figures 8(a) and 8(b) show the

mean error in energy-delay and performance prediction for

the benchmarks when trained on 1000 configurations. We

see that performance is more easily predicted with mean er-

ror of 0.9% compared to energy-delay with 3.7% across the

benchmarks. It can be seen from Figure 8 that there is some

variation in the predictability of different programs. It is

also interesting to see that, for the same number of train-

ing samples, energy-delay is consistently harder to predict

accurately. The three programs with worst prediction accu-

racy are the same for energy-delay and performance: ocean,

cholesky and barnes.

5.3 Cross-Program Prediction with Seen
Configurations

We now train a predictor using training points from N-

1 benchmarks and attempt to do cross-program prediction.

First we predict only configurations already seen in the

training set. We perform two sets of experiments. First

we train only on programs from the same benchmark suite

as the program to be predicted. For all these predictions we

use eight randomly chosen reactions. From Figure 9 we

see that the predictor generalizes well across programs. We

then predict each program with a model trained from all the

other programs, from both suites. For all these predictions

we again use eight randomly chosen reactions. The result-

ing mean errors are in Figure 10. We see that the mean

absolute error ranges between 3.4% for raytrace and crafty

and 6.0% for ocean, with a mean error of 3.9% across the

benchmarks.



945 950 955 960 965 970 975 980 985 990 995
1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

Configurations sorted by average energy delay

N
o

rm
a

li
z
e

d
 e

n
e

rg
y

 d
e

la
y

 

 

bzip

vpr

fmm

fft

Figure 6. Normalized energy-delay for four
benchmarks. Configurations are sorted by

increasing energy-delay.

5.4 Cross-Program Prediction for New
Configurations

Again, our training set consists of randomly sam-

pled configurations from N-1 benchmarks, and we predict

energy-delay and execution time for unseen configurations

for the Nth benchmark. We first train models on each of

the benchmark suites seperately. For each benchmark, we

train the model on the rest of the programs from that bench-

mark suite and repeat the process for each program. The

mean prediction errors for 1000 training points per bench-

mark are in Figure 11. We then put all the programs into

one bag and cross predict performance and energy-delay.

The results for this are detailed in Table 2. We evaluate

predictions with different numbers of reactions, starting at

zero. When no reactions are used for cross-program predic-

tion, only the configuration vector is used for training and

prediction. This incorporates no program specific informa-

tion. This, surprisingly, performs relatively well. With 1000

training points per benchmark, mean error for energy-delay

is 5.5% and that for performance is 4.2%. This suggests

that the programs in the pool scale fairly similarly to each

other across the configuration space. We can improve the

prediction using reactions, however. When we extend the

feature vector to use two reactions instead of none, we see

the error rate drop by about 20% on average. We see fur-

ther incremental improvements if we increase the number of

reactions. We see that on some of the hard to predict bench-

marks, the error rate drops sharply as we add reactions; by

as much as 42% for water-spatial. We also see the variance

of the errors dropping with adding reactions. The change in

the error as we change the number of reactions can be seen

graphically in Figure 13. For training with 1000 training

points per benchmark, and using 8 reactions, the mean error

observed in energy-delay predictions is 4.3%, and for 4 re-

actions it is 4.5%. In contrast, if we train on samples from

the same benchmark, we would require at least 500 to 750

samples to achieve the same prediction accuracy as we do

with 4 or 8 reactions. Predictions for execution time show

the same trend. The mean error for 8 reactions is 2.5% and

for 4 reactions is 2.5% as well. This is better than the error

obtained by training a model with 250 simulation results for

just the same benchmark. Hence, using information from

previously executed benchmarks, we can very quickly pre-

dict the behaviour of a new program.

Error rates using cross-program prediction compare fa-

vorably with the error rates observed when models are

trained on the same program with many more simulations

required. A direct comparison is made in Figure 2. As can

be seen from the figure, this technique provides the option

of trading less than 1% in mean absolute error for very sig-

nificantly reducing the number of simulations needed.

-10

-5

0

5

10

15

20

25

30

35

40

125 250 375 500 750 1000

Training Points

M
e
a
n

 E
rr

o
r 

%

Figure 7. Mean absolute error in energy-delay

predictions for increasing size of training

data.

6 RELATED WORK

6.1 Predictive Modeling for Architecture
Design Space Exploration

There has been significant interest recently in using pre-

dictive modeling to accelerate design space exploration. We

discuss the work most closely related to ours.

Recently, Ipek et al. [7] proposed the use of an ANN (Ar-

tificial Neural Network) to predict the impact of hardware

parameter variations (e.g., cache size, memory latency, etc)

on the performance behavior of a target architecture. Af-

ter training on less than 1% of the design space, the model



Reactions barnes cholesky fft fmm lu ocean radiosity raytrace water n water s bzip2 vortex parser crafty vpr gzip twolf gap

For 1000 Points

0 6.99 5.46 4.73 5.00 6.10 7.45 5.83 4.08 6.54 6.20 4.05 5.76 5.77 4.58 5.22 5.20 5.36 5.82

2 6.81 4.59 4.50 4.18 5.22 5.34 5.11 4.45 4.13 4.14 3.81 5.59 4.02 3.64 3.56 3.59 4.16 4.66

4 5.79 4.94 4.65 4.28 5.32 5.64 5.12 3.82 4.19 3.73 3.79 5.09 3.49 3.61 3.86 3.75 4.05 5.32

8 6.12 5.23 4.66 3.91 5.10 5.09 4.65 3.87 3.91 3.62 4.05 4.88 3.82 3.76 3.52 3.63 3.75 4.12

For 750 Points

0 7.04 5.82 4.95 5.10 6.20 7.48 5.60 4.31 6.53 6.48 4.44 6.16 5.88 5.00 5.13 5.54 5.69 6.51

2 6.19 5.38 4.50 4.57 5.09 5.35 5.76 4.59 5.26 4.37 4.00 5.41 4.14 4.27 3.95 4.19 4.10 4.94

4 5.73 5.61 4.81 3.61 5.79 5.83 5.49 4.19 4.52 4.13 3.78 4.51 3.93 3.85 4.30 3.65 4.46 5.60

8 6.60 5.52 5.23 4.04 5.40 5.15 4.79 3.83 4.11 4.40 3.97 5.02 4.13 3.56 3.53 3.93 4.14 5.17

For 500 Points

0 7.80 6.15 5.47 5.89 6.31 7.64 6.12 5.37 7.13 6.79 4.65 5.89 6.32 5.12 5.30 5.86 5.83 6.41

2 7.22 5.16 5.28 4.66 6.19 5.93 6.16 5.15 6.56 4.26 4.65 5.60 5.74 3.90 4.32 4.34 4.74 5.93

4 6.68 5.47 4.89 4.61 5.85 6.27 6.13 4.78 4.19 4.71 4.04 5.70 3.82 3.90 4.12 4.19 4.34 5.28

8 6.33 6.26 4.88 4.08 5.09 6.46 5.15 4.81 4.07 4.24 3.74 5.40 4.04 3.97 3.64 4.02 4.15 5.05

For 250 Points

0 8.21 7.08 7.86 6.45 7.59 9.11 7.98 6.68 7.54 7.48 7.45 6.33 7.43 5.92 6.98 7.10 6.28 7.64

2 8.37 6.84 6.02 5.88 7.70 8.94 6.98 5.92 6.21 7.26 5.84 6.23 7.12 4.97 6.19 5.87 5.28 6.86

4 7.46 5.92 6.53 5.21 6.53 7.70 6.61 5.43 4.42 5.18 5.51 5.58 4.93 5.42 5.33 5.61 5.12 6.90

8 8.22 6.74 6.81 5.46 6.26 6.81 6.07 5.47 5.65 5.72 5.27 7.25 4.55 5.02 5.16 5.18 4.23 5.95

Table 2. Mean absolute error with varying number of reactions and training points for Splash-2

benchmarks

0.00

1.00

2.00

3.00

4.00

5.00

6.00

bar
nes

ch
ole

sk
y fft ffm lu

oce
an

ra
dio

si
ty

ra
yt

ra
ce

w
at

er
-n

sq
uar

ed

w
at

er
-s

pat
ia

l

bzi
p2

cr
af

ty
gap

gzi
p

par
se

r

tw
olf

vo
rt
ex vp

r

av
er

ag
e

%
 M

e
a
n

 E
rr

o
r

(a)

0.00

0.50

1.00

1.50

2.00

2.50

bar
nes

ch
ole

sk
y fft ffm lu

oce
an

ra
dio

si
ty

ra
yt

ra
ce

w
at

er
-n

sq
uar

ed

w
at

er
-s

pat
ia

l

bzi
p2

cr
af

ty
gap

gzi
p

par
se

r

tw
olf

vo
rt
ex vp

r

av
er

ag
e

M
e
a
n

 E
rr

o
r 

%

(b)

Figure 8. Mean absolute error of predictions for (a) energy-delay and (b) execution time. A model is

trained per program from 1000 randomly sampled configurations for the same program.

can still accurately predict performance variations with less

than 5% error. One model is built for each benchmark, i.e.,

the model does not learn across benchmarks as ours does.

Lee and Brooks [11] use piecewise polynomial regres-

sion to predict IPC and power on a multiprocessor design

space. They obtain 4,000 random samples from a design

space with approximately 1 billion points. Each sample

maps a set of architectural and application-specific pre-

dictors to observed performance and power. These sam-

ples are used to formulate models that predict the perfor-

mance and power of previously unseen architecture config-

urations. The authors obtain error rates as low as 4.1% for

performance and 4.3% for power. Again, the models are

benchmark-specific, that is, several thousand sample points

from the design space are required to build accurate models

for any new program.

In another paper, Lee et al. [12] build predictors for mul-

tiprocessor application performance when varying the ap-

plication’s input parameters. They compare piecewise poly-

nomial regression and neural network approaches on two

multiprocessor applications for three different multiproces-

sor platforms. Both regression and neural networks are

accurate with median rates ranging from 2.2% to 10.5%.

These models, too, need to be built per benchmark and no

cross-program prediction is done.

Joseph et al. [8] describe using radial basis function RBF

networks to predict CPI for several SPEC CPU2000 bench-

marks. The RBF’s can capture non-linear effects in the

space being modeled and are compared to and outperform

linear regression models. The models are benchmark, in-

put, and architecture specific and a new model must be con-

structed if either one of these changes. In contrast, the mod-



0

1

2

3

4

5

6

7

bzi
p2

cr
af

ty
gap

gzi
p

par
se

r

tw
olf

vo
rt
ex vp

r

av
er

ag
e

M
e
a
n

 E
rr

o
r 

%

(a)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

bar
nes

ch
ole

sk
y fft ffm lu

oce
an

ra
dio

si
ty

ra
yt

ra
ce

w
at

er
-n

sq
uar

ed

w
at

er
-s

pat
ia

l

av
er

ag
e

M
e
a
n

 E
rr

o
r 

%

(b)

Figure 9. Mean absolute error for energy-delay predictions for (a) TLS programs and (b) Splash-2

programs. For each program predicted, the model is trained on 1000 configurations from each of the

other programs in the same suite. Only configurations present in the training set are predicted.

0

1

2

3

4

5

6

7

8

bzi
p2

cr
af

ty
gap

gzi
p

par
se

r

tw
olf

vo
rt
ex vp

r

av
er

ag
e

M
e

a
n

 E
rr

o
r 

%

(a)

0

1

2

3

4

5

6

7

8

bar
nes

ch
ole

sk
y fft ffm lu

oce
an

ra
dio

si
ty

ra
yt

ra
ce

w
at

er
-n

sq
uar

ed

w
at

er
-s

pat
ia

l

av
er

ag
e

M
e
a
n

 E
rr

o
r 

%

(b)

Figure 11. Mean absolute error for energy-delay predictions using 8 reactions for (a) TLS programs
and (b) Splash-2 programs. For every prediction, the model is trained on 1000 configurations from

each of the remaining programs of the same suite. Predictions are made for configurations not found
in the training set.

els described in this paper can accurately predict new un-

seen programs.

6.2 Fast Simulation Techniques

Orthogonal to the aforementioned techniques, and to

ours, is the effort to cut down the time of individual simu-

lations. Initial efforts to provide faster simulations resorted

to simple truncated execution, that is, skipping a number of

instructions to avoid capturing initialization behavior, and

then simulating a further, hopefully representative, section

of the program. Unfortunately, as noted in [24], the results

obtained this way are in many cases far from representative.

To alleviate this problem, statistical simulation tech-

niques have been proposed. Sherwood et al. [19] propose

first to profile the benchmark to find simulation points rep-

resentative of the overall behavior and then simulating only

those. The results obtained, are then further processed to

generate the final simulation results. Ipek et. al. [7]

demonstrate that this technique is mostly orthogonal to the

use of ANN based predictive modeling. A similar approach

has been followed by Wunderlich et al. [25], with the main

difference being that profiling is not used to determine sim-

ulation points. Instead, the simulated points are periodically

selected. In order to avoid picking a sub-optimal sampling

frequency, the mechanism tries to estimate the error and reg-

ulate the frequency accordingly.

Karkhanis et al. [10] propose an analytical model for

hardware exploration that captures the key performance fea-

tures of superscalar processors. This model can potentially



0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

bar
nes

ch
ole

sk
y fft ffm lu

oce
an

ra
dio

si
ty

ra
yt

ra
ce

ra
yt

ra
ce

w
at

er
-n

sq
uar

ed

bzi
p2

cr
af

ty
gap

gzi
p

par
se

r

tw
olf

vo
rt
ex vp

r

av
er

ag
e

M
e
a
n

 E
rr

o
r 

%

(a)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

bar
nes

ch
ole

sk
y fft ffm lu

oce
an

ra
dio

si
ty

ra
yt

ra
ce

ra
yt

ra
ce

w
at

er
-n

sq
uar

ed

bzi
p2

cr
af

ty
gap

gzi
p

par
se

r

tw
olf

vo
rt
ex vp

r

av
er

ag
e

M
e
a
n

 E
rr

o
r 

%

(b)

Figure 12. Mean absolute error using 8 reactions for predictions of (a) energy-delay and (b) execution

time. For every prediction, the model is trained on 1000 configurations each from all of the remaining

programs. Predictions are made for configurations not found in the training set.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

bar
nes

ch
ole

sk
y fft ffm lu

oce
an

ra
dio

si
ty

ra
yt

ra
ce

w
at

er
-n

sq
uar

ed

w
at

er
-s

pat
ia

l

bzi
p2

cr
af

ty
gap

gzi
p

par
se

r

tw
olf

vo
rt
ex vp

r

av
er

ag
e

M
e
a
n

 E
rr

o
r 

%

Figure 10. Mean absolute error for energy-

delay prediction of all programs using 8 reac-

tions. For each program predicted, the model
is trained on 1000 configurations each from

all the other programs. Only configurations
already present in the training set are pre-

dicted.

be used for software exploration, unfortunately this work is

not directly applicable to the multicore environment we are

interested in. More specifically the model does not capture

thread interaction due to shared resources which inevitably

renders it inaccurate. Eeckhout et al. [6] use statistical sim-

ulation to similarly capture processor characteristics, and

generate synthetic traces that are later run on a simplified

superscalar simulator. After any program transformation,

a new trace needs to be generated if this approach were to

be used for software exploration, requiring a full functional

simulation.

Recently, IBM has highlighted the issue of software tun-

0

1

2

3

4

5

6

7

8

250 500 750 1000

Training Points

%
 M

e
a

n
 E

rr
o

r

0 Reactions 2 Reactions 4 Reactions 8 Reactions

Figure 13. Average Mean Error with varying

number of reactions and training points.

ing early on in the design cycle. For the Blue Gene/L, it was

shown that an approximate but fast performance model, as

a replacement for more detailed but slow simulators, can

be very useful in practice [2]; still, the approximate model

proposed was designed manually and in an ad-hoc manner.

6.3 Predictive Modeling for Compilation

Machine learning has recently also been investigated by

a number of researchers in the area of compiler optimiza-

tion. Much of the prior work in machine learning-based

compilation relies on program feature-based characteriza-

tion. For instance, Monsifrot et al. [16], Stephenson et

al. [22], and Agakov et al. [1] all use static loop nest fea-

tures. Cavazos et al. [5] considered a reaction-based scheme

that uses the sequence of transformations applied to a pro-

gram as an input to a learnt model.



7 CONCLUSIONS

In this paper we evaluate cross-program prediction to

speed up the exploration of CMP design spaces. We employ

neural network based predictive models to predict energy-

delay and execution time. For cross-program prediction, we

use a technique based on reactions to allow prediction for

new programs with a very small number of additional sim-

ulations, once the model has been built for other programs.

We show that for two parallel application classes, Thread

Level Speculation (TLS) and the Splash-2 benchmarks, we

can get prediction accuracies similar to a model learnt with

many hundreds of configuration points (involving running

as many simulations) with as little as 2-8 reactions, thus re-

sulting in a significant reduction in simulation time for these

predictions.

REFERENCES

[1] F. Agakov, E. Bonilla, J.Cavazos, B.Franke, G. Fursin, M. O’Boyle,

J. Thomson, M. Toussaint, and C. Williams. “Using Machine Learn-

ing to Focus Iterative Optimization.” Intl. Symp. on Code Genera-

tion and Optimization, pages 295-308, March 2006.

[2] L. Bachega, J. Brunheroto, L. DeRose, P. Mindlin, and J. Moreira.

“The Bluegene/L Pseudo Cycle-Accurate Simulator.” Intl. Symp. on

Performance Analysis of Systems and Software, pages 36-44, March

2004.

[3] H. Berry, D. G. Prez, and O. Temam. “Chaos in computer perfor-

mance.” Chaos, 16(1), December 2005.

[4] C. Bishop. Neural Networks for Pattern Recognition. Oxford Uni-

versity Press, 2005.

[5] J. Cavazos, C. Dubach, F. Agakov, E. Bonilla, M. O’Boyle,

G. Fursin, and O. Temam. “Automatic Performance Model Con-

struction for the Fast Software Exploration of New Dardware De-

signs.” Intl. Workshop on Compiler and Architecture Support for

Embedded Systems, pages 24-34, October 2006.

[6] L. Eeckhout, R. H. Bell Jr., B. Stougie, K. D. Bosschere, and L. K.

John. “Control Flow Modeling in Statistical Simulation for Accu-

rate and Efficient Processor Design Studies.” Intl. Symp. on Com-

puter Architecture, pages 350–363, June 2004.

[7] E. Ipek, S. A. McKee, B. R. de Supinski, M. Schulz, and R. Caru-

ana. “Efficiently Exploring Architectural Design Spaces via Predic-

tive Modeling.” Intl. Conf. on Architectural Support for Program-

ming Languages and Operating Systems, pages 195-206, October

2006.

[8] P. J. Joseph, K. Vaswani and M. J. Thazhuthaveetil. “A Predictive

Model for Superscalar Processor Performance.” Intl. Symp. on Mi-

croarchitecture, pages 161-70, December 2006.

[9] S. Jourdan, J. Stark, T. H. Hsing, and Y. N. Patt. “Recovery Require-

ments of Branch Prediction Storage Structures in the Presence of

Mispredicted-Path Execution.” Intl. Journal of Parallel Program-

ming, 25(5), pages 363-383, 1997.

[10] T. Karkhanis and J. E. Smith. “A First-Order Superscalar Processor

Model.” Intl. Symp. on Computer Architecture, pages 338–349, June

2004.

[11] B. C. Lee and D. M. Brooks. “Accurate and Efficient Regression

Modeling for Microarchitectural Performance and Power Predic-

tion.” Intl. Conf. on Architectural Support for Programming Lan-

guages and Operating Systems, pages 185-194, October 2006.

[12] B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz, K. Singh,

and S. A. McKee. “Methods of Inference and Learning for Perfor-

mance Modeling of Parallel Applications.” Symp. on Principles and

Practice of Parallel Programming, pages 249-258, March 2007.

[13] W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, and J. Tor-

rellas. “POSH: A TLS Compiler that Exploits Program Structure.”

Symp. on Principles and Practice of Parallel Programming, pages

158-167, March 2006.

[14] D. J. C. MacKay. “Bayesian Interpolation.” Neural Computation,

4(3), pages 415-447, 1992.

[15] S. McFarling. “Combining Branch Predictors.” WRL Technical

Note, TN-36, 1993.

[16] A. Monsifrot, F. Bodin, and R. Quiniou. “A Machine Learning

Approach to Automatic Production of Compiler Heuristics.” Intl.

Conf. on Artificial Intelligence: Methodology, Systems, Applica-

tions, LNCS 2443, pages 41–50, 2002.

[17] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,

S. Sarangi, P. Sack, K. Strauss, and P. Montesinos. SESC Simulator.

http://sesc.sourceforge.net, January 2005.

[18] J. Renau, J. Tuck, W. Liu, L. Ceze, K. Strauss, and J. Torrellas.

“Tasking with Out-of-Order Spawn in TLS Chip Multiprocessors:

Microarchitecture and Compilation.” Intl. Conf. on Supercomput-

ing, pages 179-188, June 2005.

[19] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. “Automati-

cally Characterizing Large Scale Program Behavior.” Intl. Symp. on

Architectural Support for Programming Languages and Operating

Systems, pages 45-57, December 2002.

[20] P. Shivakumar, and N. P. Jouppi. CACTI 3.0: An Integrated Cache

Timing, Power, and Area Model. WRL Research Report, 2001/2.

[21] SPEC Benchmark Suite. http://www.spec.org.

[22] M. Stephenson and S. P. Amarasinghe. “Predicting Unroll Factors

Using Supervised Classification.” Intl. Symp. on Code Generation

and Optimization, pages 123-134, March 2005.

[23] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. “The

SPLASH-2 Programs: Characterization and Methodological Con-

siderations.” Intl. Symp. on Computer Architecture, pages 24-36,

June 1995.

[24] J. J. Yi, S. V. Kodakara, R. Sendag, D. J. Lilja, and D. M. Hawkins.

“Characterizing and Comparing Prevailing Simulation Techniques.”

Intl. Symp. on High-Performance Computer Architecture, pages

266-277, February 2005.

[25] R. Wunderlich, T. F. Wenish, B. Falsafi, and J. C. Hoe. “SMARTS:

Accelerating Microarchitectural Simulation via Rigorous Statistical

Sampling” Intl. Symp. on Computer Architecture , pages 84-95, June

2003.


