| mplementing an Open64-based Tool for Improving the
Performance of MPI Programs

Anthony Danalis Lori Pollock

Martin Swany John Cavazos

Department of Computer and Information Sciences
University of Delaware, Newark, DE, 19716

{danalis,pollock,swany,cavazos}@cis.udel.edu

Abstract
While MPI parallel programming has become the primary

approach to achieving performance gains in cluster comput-

ing, the communication overhead inherent in a cluster envi-
ronment continues to be a major obstacle. A promising ap-
proach to improve performance is the use of computation-
communication overlapping, which is enabled by communi-
cation libraries that utilize Remote Direct Memory Access
(RDMA), either directly in the form of one-sided commu-
nication, or via two-sided communication over a low over-

gramming languages, require specialized knowledge from
the application programmer (engineer or domain scientist)
or are not enough to provide a comprehensive solution on
their own. Thus, many parallel applications exist and are
still being written utilizing only simplistic message pass
ing mechanisms (usually small subsetshiPl) although
they could achieve significantly better performance with
network-specific optimizations.

Our goal is to allow the scientific programmer to take ad-

vantage of the RDMA-based communication libraries while

head rendezvous protocol. To spare the scientific program-Sparing them from learning how to utilize these libraries to

mer from learning how to utilize these libraries to effeetiv
maximize computation-communication overlap, we have de-
veloped a tool that automatically transforms an MPI pakalle
program to a semantically equivalent program with selected
data exchange calls in MPI replaced to leverage an RDMA-
targeted communication library. In this paper, we describe
the implementation of this MPI program transformer using
the Open64 compiler.

1. Introduction

Domain scientists typically parallelize their program®ie
ploit cost-effective parallel clusters using a high-lenweds-
sage passing interface such as MPI [2], and rely on the
MPI implementation to achieve high performance. Often,
communication-intensive parallel programs suffer in saich
environment from the layers of communication software be-

effectively maximize computation-communication overlap
To this end, we have developed a tool that automatically
transforms an MPI parallel program to a semantically equiv-
alent program with selected message passing calls in MPI re-
placed to utilize an RDMA-targeted communication library.
In contrast to most existing work on enhancing the perfor-
mance of MPI applications, which generally concentrates on
enhancing the MPI library itself, our effort focuses on epti
mizing the parallel application that uses the communicatio
primitives to exchange messages between tasks. Spegificall
we perform program analysis and transformation on the MPI
parallel program in order to use the communication library
more effectively.

In this paper, we describe the implementation of this MPI
program transformer using the Open64 compiler. Our trans-
former takes an MPI parallel program as input and compiles
it to a binary that exploits the underlying cluster's smart i

tween the sender processes and the receiver processes. PeLrconnect technology [12, 4, 20]. These interconnecttech

formance can often be improved through direct transfers
from memory coupled with asynchronous communication
primitives. A promising approach to improve performance is
the use of computation-communication overlapping, which
is enabled by communication libraries that utilize Remote
Direct Memory Access (RDMA), either directly in the form
of one-sided communication, or via two-sided communica-
tion over a low-overhead rendezvous protocol.

Many researchers have proposed optimizations for par-
allel software in both the compilers and the interconnect-
ing networks [11, 13, 14, 21, 17, 3, 9, 6]. However, most
of these optimizations target specialized hardware or pro-

nologies allow communication to take place concurrently
and independently from computation by using RDMA. Our
transformation selectively replaces key data exchange MPI
calls to utilize our Gravel library, which provides direat-a
cess to the one-sided transfer capabilities of the network
interconnect. Use of this library has been demonstrated to
reduce communication overhead by enabling it to be over-
lapped with computation more effectively [8]. We leverage
the Open64 compiler infrastructure to build a transformer
that evenutally will also perform advanced program analysi

to further optimize the computation-communication overla
through code motion.

The main contribution of this paper is a description of the
implementation of the basic program transformer for MPI
parallel programs into a form that uses a library that ersable
computation-communication overlap, where most appropri-
ate, while leaving other MPI calls in place. The importance
of this paper’s contribution is that it demonstrates a mecha
nism via which the compiler can improve the performance
of existing parallel codes, and enable codes to be written
in a simple and maintainable style while being transformed
to perform well on modern cluster hardware. Therefore, the
impact of this work is twofold. First, it enables newly de-
veloped parallel applications to utilize the advancedufiesst
of modern cluster interconnects without increasing time-t
solution by requiring the developers to learn how to pro-
gram using complicated libraries or new language exten-
sions. Second, it enables legacy codes written in MPI that
do not communication-computation overlapping to be trans-
formed into more efficient codes without requiring a human
to understand these codes at the level necessary to transfor
them manually.

¢ Different functions are called to perform consumer-
initiated versus producer-initiated data exchanges in
Gravel.

Figures 1 and 2 illustrate these differences through two
example code snippets. In each figure, we contrast the asyn-
chronous MPI implementation with the Gravel implementa-
tion of the same simple communication operation.

- . Memory registration
mp}_}rec;irl};ugH, size, ; } Meta-data exchange
mpi_isend(sbuf[], size, ... Data exchange
mpi_wait()
mpi_wait()

(a) MPI-based code
gravel_register_buffer(rbuf[], size) . .
gravel_register_buffer(sbuf[], size) } Memory registration

gravel_post_recv_buffer_rdma(rbuf[], size, ...)
gravel_wait_recv_buffer_rdma(...) Meta-data exchange

gravel_post_os_put(sbuf[], size, ...) ««——— Data exchange

gravel_wait()
gravel_wait()

(b) Equivalent Gravelized code

2. Transformation Challenges and
Opportunities

The implementation of the MPI program transformation tool
described in this paper is primarily orthogonal to the ligra
choice. Thatis, several communication libraries [8, 198,

1, 15, 10] including MPI itself, could be used in principle by

a compiler transformation phase that aims to achieve better
communication-computation overlapping. We chose to tar-
get the Gravel library [8] for selected data exchange MPI
calls due to several advantages of Gravel's design. Gravel
(1) enables direct RDMA operations, (2) provides separate
functions for meta-data exchange and application data ex-
change, (3) ports beyond a single type of interconnect, (4)

does not perform any internal operations (such as queueing
and copying unexpected messages) that would lead to per-

Figure 1. Contrasting MPI and Gravel consumer-initiated
data exchange

Memory registration
Meta-data exchange
Data exchange

mpi_isend(sbuf[], size, ...
mpi_irecv(rbuf[], size, ...

)
)

}

(a) MPI-based code

mpi_wait()
mpi_wait()

gravel_register_buffer(rbuf[], size) . .
gravel_register_buffer(sbuf[], size) Memory registration
gravel_post_send_buffer_rdma(sbuf[], size, ...) g
gravel_wait_send_buffer_rdma(...) Meta-data exchange

gravel_post_os_get(rbuf[], size, ...) <««—————— Data exchange

gravel_wait()
gravel_wait()

(b) Equivalent Gravelized code

formance penalties, (5) provides finer control of the commu-
nication process by the application layer than most other op
tions, and (6) is directly usable in Fortran applicationshie
remainder of this paper, we focus our discussion speciicall
on the implementation of our MPI program transformation
tool which emits "gravel-ized” code.

The major challenges faced by an implementer of an MPI
program transformation tool for increasing computation-
communication overlap lie in the differences between MPI
and the targeted communication library. Gravel differsrfro
MPI in a number of ways:

e The application code must explicitly perform memory
registration when Gravel is used for communication.

¢ In Gravel, data transfer functions are separate from meta-
data exchange functions.

Figure 2. Contrasting MPI and Gravel producer-initiated

data exchange

The most important challenges posed by these library

differences are:

e Memory registration is a process dictated by the hard-
ware and operating system mechanisms that enable the
remote direct memory access (RDMA) transfer mode. In
particular, for every RDMA data transfer, the memory
where that data resides needs to be registered. Memory
registering is a relatively time consuming process and itis
limited by the physical memory resources of the system.
Gravel requires that memory registration be performed
explicitly by the application (unlike MPI where registra-
tion is implicitly handled by the data transfer routines).

Thus, the MPI program transformation tool must decide placed. The output is the same MPI parallel program with
which memory regions to register, how much memory to the indicated MPI communication primitives replaced by the
register, and where in the code to insert the memory reg- corresponding Gravel primitives as well as additionalgsec

istration function calls. sary Gravel code. We first describe the overall integratfon o
our tool with existing Open64 technology, and then the de-

Communication protocol mapping. Gravel separates ; X
the protocol header exchange from the data exchange.ta'ls of how each challenge of automatic MPI program trans-

The header exchange must complete before data transformation for improving computation-communication over-
fer begins, thus Gravel provides a blocking operation '2PPing is addressed in this environment.

to assure that it has. For this reason, a symmetric

SPMD application (where all tasks perform the same . i o
operations) will deadlock if all tasks start by execut- Open64 is a large and complex compiler system. To utilize it,

ing the blocking operation followed by a non-blocking @ compiler developer can either alter the code of an existing
operation. Therefore, care needs to be taken to ensurg®hase of the system or create a distinct phase that exists
that the right exchange protocol (consumer-initiated vs. @S & stand-alone executable, operating on intermediase file

producer-initiated) will be used to avoid deadlocks. generated by the system. The latter scenario is a viable

N . option because of the way Open64 is designed to operate.
In addition to the challenges, the differences between

MPI and Gravel enable several MPI program optimization

3.1 Leveraging the Open64 Compiler

S Open64 Fortran 95 be -S
opportunities: Compilation Stages (backend)
1. Since memory registration is a time consuming process, 1\

the program transformation tool can hoist the memory |[mfefos L

registration code outside communication loops or across| |(front-end) infine w

caller-callee edges, to limit its runtime overhead. A VI
2. Often, meta-data messages do not have data dependen- (S(')ffr(c)e) TR

cies with the actual data buffers or the data dependencies

are limited dependencies. This enables the MPI program
transformation tool to perform code motion on the meta- Figure3. Open64 compilation processand our MPI pro-
data exchange function calls and thus overlap the control gram transfor mation tool

communication with useful computation.

3. Different parallel applications exhibit varying comaut The normal compilation process of Open64 involves sev-
tion and communication patterns even within different eral standalone execut_ables. Flg_ure3shows how compiling a
parts of a single application. Therefore, the MPI program Fortran coqle begins with executing the frqnt-end e>.<e_catabl
transformation tool can choose for each data exchangeMfef95, which generates a B” file containing the original

a communication mode that best suits the context where €ode represented as a WHIRL tree, along with the necessary
the exchange takes place. symbol table information. Next, the stand-alone inliriat,

line, performs potential inlining of function bodies at func-
This paper focuses on the implementation of the basic tion call sites. The output dhline is again a WHIRL tree
MPI program transformation tool which addresses the posedrepresentation of the program in addition to symbol table
challenges, as well as optimization (1). Optimizations (2) information that is stored in a.1 ” file. Finally, the exe-

and (3), are left for future work. cutablebe reads this file, performs program analysis, opti-
mization and code generation, and produces a file contain-
3. MPI Program Transformation Tool ing assembly code. As we are focusing on existing Fortran
I mplementation applications, we do not perform pointer analysis. The gener

ated code can be assembled and linked using external tools,

To address the challenges and exploit the optimization oP- ¢ \ch agcs, as, andld

portunities described in Section 2 without requiring thelMP Our MPI program transformation phase exists as a stan-
programmer to perform these tedious and error prone taSkS’dalone executable that operates on thé *file between
we implemented a tool based on the Open64 compiler that i e

. L the execution of the inliner and the Open64 backeyel,
automatically replaces selected MPI communication calls

: We considered integrating our tool intme; however, im-
with equivalent functionality from the Gravel library. Our .
. plementing a pass that operated befoechas some bene-
tool takes as input an MPI parallel program and a program-

o o fits over abe-based tool. Some of the benefits of this design
mer’s indication of the targeted communication to be re- CL ; : o
decision include rapid prototyping and better portahility
1MPI, in contrast, performs this header exchange implictilyt still must contrast to ebe-based approach, |mplementlng our tool as
pay the same penalty. a separate code pass did not require thorough knowledge of

Open64 internals. This makes prototyping fast, as the MPl e A send or receive operation candidate for optimiza-
program transformer developer only has to learn the details tion should be annotated with the directive:Cl R$
of the WHIRL tree representation and corresponding sym- UNROLL 2 xn”suchthatl < n < 512.

bol tables, rather than the details of different Open64-anal o 11 matching send or receive operation should be anno-

ysis and optimization phases and how they interact. In ad- {5:a4 with the directive: DI RS UNROLL 2 % n + 1
dition, a standalone MPI optimizer can work on any system using the same value faras above.

that has a working binary version of Open64 that uses the
same intermediate files and the same WHIRL. In contrast,
an optimization phase integrated into the backend would be
more difficult to use with different or future versions of the
Open64 compiler.

Developing the MPI program transformer as a stand-
alone phase has some negative consequences related to re-
implementing existing functionality. Since our MPI progra 5/ rs UnroLl 12
transformer is not inside the backend, none of the analysi$ call mpi_irecv (..., rreq, ...)
and existing code transformations that exist in the backend ; ;i o« nrol 13
can be exploited in the development of our transformer. To| call mpi_isend (..., sreq, ...)
achieve the best of both worlds, we are planning to combine | ' o oo 13
the two approaches. We will complement our existing stand- call mpi_wait(sreq)
alone tool with further analysis and optimization phases of !C'g'lfwmulg\‘iﬁ%“}z”eq)
our tool, which will execute as part of the backend in order
to take advantage of the existing analysis and transfoomati
in the Open64 backend.

The next subsection describes how we currently enable
programmer annotations to indicate the MPI communication))
call sites to be replaced by Gravel calls. We then describe ~ Cléarly, the value ok must be unique for every matching
our approaches and implementations for inserting memory Pair that is targeted for communication replacement. In the

registration operations and for mapping MPI send/recv op- ¢&se offpi wai tal | () where multiple send and receive
erations to Gravel operations. operations are matched by a single wait, the call site of

npi wai t al | () should be preceded by all the applicable
o o directives, one after the other, in any order. The numbet use

3.2 Identifying Selected MPI Communication in the annotation of an MPI function call site is saved by our

Operationsfor Replacement program transformation tool as the id of the given call site.
Our MPI program transformation tool replaces selected The MPI program transformer keeps track of the directives
pairs of MPI synchronous and asynchronous send and re-used to annotate the code and removes them before saving
ceive operations and their corresponding wait operationsthe output file so that the subsequent phases of Open64 do
such as:npi _send(), npi _i send(), npi _recv(), not try to interpret them as loop unrolling directives. Wei wi
mpi _i recv(),npi wait () andnpi _wai tal | ().lden- soon replace this overloaded UNROLL directive by a new
tifying matching send and receive operations in a parallel directive (e.g., MPI2GRAVEL).
application with no annotations is a difficult data flow anal- i
ysis problem and in general is statically undecidable [T, 16 33 Analyzingthe MPI Programto Insert Memory
Thus, we currently assume that either the MPI programmer Registration Function Calls
or a user-guided tool has identified the potential matching Appropriate memory registration is required before a data
MPI operations of each desired communication replacement.transfer that uses RDMA. In particular, the memory region
Our MPI program transformer expects that this information where the data will be read from (on the producer side)
is encoded in the form of PRAGMA directives annotating as well as the memory region where the data will be writ-
the targeted matching MPI send, receive and wait opera-ten into (on the consumer side) must be registered before

¢ The corresponding wait operations should be annotated
with the directive: 1 DI R UNROLL m” where m is
the value (n = 2 xn orm = 2 xn + 1) used to identify
the send or receive operation the given wait corresponds
to.

Figure 4. Example annotation to indicate targeted com-
munication replacement

tions. the transfer takes place. As mentioned in section 2, unlike
To create a quick prototype, our current implementation MPI where memory registration takes place implicitly iresid
achieves the annotation by overloading théNROLL” di- the library data communication calls, Gravel requires that

rective. In particular, when the MPI program is examined by memory registration is performed explicitly at the applica

our transformation tool, only the call sites preceded by an tion layer. Thus, the MPI program transformation tool needs
UNROLL directive are considered to be candidates for grav- to decide where to insert the memory registration function
elizing. We use the following syntax convention. An exam- calls in the MPI program, and the location and amount of
ple use of the annotation is shown in Figure 4. memory that needs to be registered. However, MPI program

analysis can utilize information about the program strieetu — arrays? it might not be so for arrays that are passed as
to change this requirement into a feature, by carefully se- arguments to a procedure, as shown in Figure 9.
lecting where and how to register the required memory re-

gions to avoid unnecessary operations and reduce the perfofdo i=1,nproc

mance penalties inherent in memory registration opersation 'cear}f“:‘e;v{('r%uf[index(i] 1. length)
This section describes the analysis we have implementedtp call send(sbuf[index[i]], length, ...)
achieve this goal. end do

A conservative choice for the location of the memory reg-
istration call for a given targeted communication replace- Figure 7. Undecidable memory region
ment is the point immediately before the corresponding call
that initiates asend or r ecei ve operation as shown in _ _

Figure 5. Although such a choice would produce correct| £2| :23:2:2:2322:5% g%‘:jff[[roufTotaisize]]))
code, it would often lead to redundant memory registrations do i=1,nproc

. length = f(i)
and therefore suboptimal code. call recv(rbuf[index[i]], length, ...)
call send(sbuf[index[i]], length, ...)
end do
call registermemory(rbuf[exprl], length)
call recv(rbuf[exprl], length, ... R . . R
([exprt] ¢) Figure 8. Registeringtheentirearray
call registermemory (sbuf[expr2], length)
call send(sbuff expr2], length, ...) In such a case, the compiler needs to perform interpro-
cedural analysis to trace the array definition. In particula
Figure5. Naive placement of memory registration the analysis must traverse the call graph backwards, across

callee-to-caller edges, starting from every call site af th
function that performs theend/r ecei ve operations and
proceeding to its caller until the “memaory source” is found.
Memory source, in this context, is the function that has a
local declaration of the array that will be used by the com-
munication operations. For example, in the code shown in
Figure 9 functionexchange() invokes communication
rprimitives that use arraf (Aexcnange) » bUt that array is lo-
cal in functionmai n() . Therefore, the memory source of
exchange iS rTaI n() .

To improve performance in the case of applications that
invoke communication calls inside a loop, memory regis-
tration calls could be hoisted outside the loop as shown in
Figure 6. Such a transformation would generate more effi-
cient code, but the required program analysis to determine
whether this will maintain semantically equivalent code is
not always possible. For example, consider the case show
in Figure 7 where the starting location, and/or size of the
message buffer are statically undecidable since the former™
depends on the potentially unknown values stored in array .

i ndex and the latter depends on the return value of a potent ' $7\%0 "5,y 5(32)

tially unknown function. call foo(A, B)
end

subroutine foo(A, B)

call registermemory (rbuf[exprl], length) integer A(x), B(x), C(32)
call registermemory(sbuf[expr2], length) C(1:32) = B(1:32)
do i=1,nproc call exchange(A, C)
call recv(rbuf[exprl], length, ...) end subroutine
call send(sbuf[expr2], length, ...)
end do subroutine exchange(A, B)

integer A(x), B(x)

: : ; ; do i= ...
Figure 6. Hoisted memory registration calls call recv(A(...). length)
call send(B(...), length)

end do

In such a case, the compiler would not be able to statically; end subroutine
generate a single memory registration call able to register
the entire memory region enclosing all the message buffers, Figure9. Array of unknown size as argument
since that memory region cannot be statically determined.

A conservative solution that would produce correct code is 10 identify which arrays of each caller are passed to
to generate a call that registers the entire memory regioneach callee, the call graph traversal needs to keep track of
occupied by the array where the messages reside (or will bethe formals and local arrays of the caller that are passed as
ertte_n to) as Showr_] in Figure 8'.TO achleve_thls Conse_matlv 2Even if the array has a dynamic size evaluated at run-timecbas the
solution, the compiler would still need to infer the size of 4 of an expression, the call to the register function use the same

the array. While this is always possible in Fortran for local expression to register the correct amount of memory atime:t

actuals to each call site. For example, in the case of Figure 9 When this memory source tracing information collection
the compiler must record thati n() passes arraysandB is collected for every file of the MPI parallel program, the
tof oo() andf oo() passes arraysandCtoexchange. collected information is used to construct a data structure
Note that full control and data flow analysis is not necessary we call the Memory Tracing Call Graph (MTCG). Figure 12
for finding the memory source. This is true because the datadepicts the MTCG for the example code of Figure 9. The
that will be in the message buffers is not what this analysis memory source for every array passed to each communica-
is trying to trace, but rather the memory region that will be tion function can be located with a simple traversal of the
involved in the data exchange. As an example, in Figure 9, MTCG. Figure 11 outlines the algorithm that takes as input
the source of arraB in exchange() is arrayCin f 0o() a call site name and id, along with the actual parameter for
and notBin mai n() . which we are trying to identify its memory source. It pro-
To perform this memory source tracing analysis, we im- duces as output a list of (memory source) callers and the
plemented a phase that traverses the WHIRL tree of everynames of the corresponding arrays.
program unit (PU) and saves in an output file the following When the memory source for each message buffer has
information: been identified, the MPI program transformer inserts mem-
« the formal parameters of each function ory registration cglls at the beginning Qf each correqund—
ing procedure. This leads to code that is safe and efficient,
since the memory registration cost is paid once per distinct
= each actual parameter memory region, regardless of the number of data exchanges

= the number of the actual in the actual parameter list performed from or o this region.

= whether the actual parameter is local to the c&ller

e the call sites of each function, and for each call site:

Caller —

passed as a formal parameter rher—
. . list CallS,1tesl
» the PRAGMA id of the call site | .
) .) — Callsite — — CallSite —
The information collected by this phase for the example CLEN it ds
program of Figure 9 is shown in Figure 10. e =
id
subroutine MAIN(){ local
call id=0 foo:: A:0:T, B:1:T MAIN__»
subroutine foo(A, B){ A E o —
call id=0 exchange:: A:0:F, C:1:T \ 0
} \ foo
subroutine exchange(A, B { ——Vv—v)
call id=0 recv:: A:0:F, LENGTH:1:T oA [e]
call id=0 send:: B:0:F, LENGTH:1:T E
True| (True
} foo
— 2A,B
Figure 10. Collected information from memory source \ R S—
. . ! o
tracing analysis R e
— Vv
‘
[o |
traceActualsSrc(string name, id, actNum, callSiteLi$t) oxchange
list memSources; q__,}\'B
foreach(callSite=findCallSite (name,id, callSiteList)y AA t Y o—
clr = callSite.caller; A 0 0
actual = callSite.actuals[actNum]; send recv
if(isLocal(actual)) RN BN e : LENGTH
memSources .add(clr, actual); [o J[= (o][1
}else{ True | L7 True
callerFormal = findCorrespondingFormal (actual);{ _~~~ ""7===-=""" .
s=traceActualsSrc(clr,0,callerFormal, callSiteList}); ; ;
memSources . add(s): Figure12. Memory Tracing Call Graph example
return memSources;
}

3.4 Mapping MPI send/ r ecv Pairsto Gravel
Protocols

Figure1l. Memory sourcetracing algorithm

Gravel uses two distinct pairs of send/receive operations t
3 Global variables iCOMMON are considered local to the caller. implement consumer-initiated versus producer-initiatat

exchanges. For consumer-initiated data exchanges, the co
sumer, i.e., the task that calleghi _i r ecv() in the origi- =

nal MPI parallel program, should now call the non-blocking
call gravel _post _recv_buffer_rdma() . This func- s |}else{
tion asynchronously sends a control message to the prodicer
declaring that the consumer is ready to receive the data and
specifying the memory location where the data should Be
put. In contrast, the producer starts by calling bhecking = _ .
functiongr avel wait recv_ buffer rdma() which 2 | [Fiist = frsnrexuaiorder(encsend, enchecy):
returns only after the control message from the consumer
has arrived. Afterwards, the producer proceeds with cafl-
ing gravel post _os_put () which is a non-blocking 1 return txtFirst;
call that issues a one-sided RDMA write operation to asyp-
chronously put the data into the consumer’s memory as sped
ified by the control message. 2

if (inSameBasicBlock(send, recv){)

return firstinTextualOrder(send, recv);

topBlock = findClosestEnclosingBlock(send, recv);

encSend = findTopNonSharedBlock(send, topBlock);
encRecv = findTopNonSharedBlock(recv, topBlock);

if (isNotDominatedByBranch (txtFirst, topBlock){)

}else{

if (isDominatedByLoop(encSend, encRecv))

The rationale behind this design is that the function cgll if (isDominatedByUndecidableBranch (send))
that posts the receive request usually can be hoistedrgarlié’ return ORDERUNKNOWN:
the execution path and therefore the blocking operatioh wl if(isDominatedByUndecidableBranch (recv))
not really have to wait. Despite the potential performange return ORDERUNKNOWN:
gains or losses of this design, there is a correctness issue if (isDominatedByOneTimeGuard (txtFirst) &&
that the MPI program transformer needs to take into accoght IsGTLoopLowerBoundComparison(guard,, loop..1b{))
Namely, if the application is a symmetric SPMD code where if (isDominatedByOneTimeGuard (txtLast) &
every task executes the same operations (or at least follgws IsGTLoopLowerBoundComparison(guard, loop..1b {))
the same branches), then calling the blocking call befare th return txtFirst;
non-blocking call would cause a deadlock. > Velsef
To ensure deadlock avoidance, our MPI program trags- return txtLast
former has to statically assess the relative order of ei@tuf; 4
of the original MPI send/receive operations and choose the Yelse{ _
correct corresponding set of Gravel functions (i.e., poetu *) return txtFirst;

initiated or consumer-initiated operations). Since thelMRs
to-Gravel transformation happens in a phase implemerifed
as a stand-alone tool that executes before the Open64 bac
end, we implemented some steps of control and data flj‘gv\ 4
analysis inside our tool. Namely, we try to assess the exet return ORDERUNKNOWN;
cution order of the original MPI send/receive calls using th
algorithm shown in Figure 13.

As can be seen in the algorithm, there are some cased-igure 13. Send-Recv execution order discovery algo-
(lines 23,26 and 49) where the order of execution is unde- rithm
cidable. If this is the case, our MPI transformer tool doés no

proceed with the transformation of the given code segment. |, summary, the mapping of MPI send/recv calls to

In many cases, the execution order is either the same as the e protocols includes memory source tracing and sead/r
textual order, or reversed. The latter occurs in cases Wheregyacution order determination. There are cases where it is

both call sites are inside the body of a loop and the first call ot hossible to determine this information statically.Hose

site (textually), is inside a one timé guard that checks if 4505 we conservatively do not perform gravelization ef th
the loop induction variable is greater than the lower bound 5geted MPI communication sites. However, in our prelimi-
of the loop. This case is captured by ifistatementon line 4y work with benchmarks from well known suites, includ-
37 of the execution order discovery algorithm (shown in Fig- ing the NAS benchmarks, we have typically found that this

ure 13). o information can be determined statically.
If this analysis is successfully performed, the tool can

proceed with the transformation an(_Jl use the C(_)rrect Gravel4. Current Status
calls to ensure that the non-blocking calls will send the

control messages before the blocking calls block waitirg fo As mentioned in Section 3.1 our current implementation of
them. the transformation tool works as a stand-alone executable

that modifies the intermediate WHIRL files before the back-
end pe) of Open64 is invoked. While it is currently under

}else{
}

~

—~

active development, our transformer is already able to han- Distributed Processing Symposium 2000 (IPDPS2000), pages

dle complex application codes including several of the NAS 297-306, May 2000.

benchmarks. [14] C. Kessler and W. Paul. Automatic parallelization bytean
Our current plans are focused on extending our existing matching. InProceeding of Second Int. Conference of the

infrastructure as well as developing code that can execute Austrian Center for Parallel Computation, pages 166-181,

inside the backend of Open64. Our goal regarding the stan- ~ 1993.

dalone executable is to make it able to transform complex [15] Mellanox Technologies Inc. Mellanox I1B-Verbs API (VAR

applications so that they use Gravel instead of MPI for key 2001.

selected data transfers. Regarding the code integrated int [16] Michelle Mills Strout and Barbara Kreaseck and Paul BvH

Open64, our goal is to utilize the existing program analysis land. Data-Flow Analysis for MPI Programs. linternational

and transformation capabilities of the Open64 system to im- Conference on Parallel Processing (ICPP 2006), pages 175—

prove the performance of the transformed applications even 184, Aug 2006.

further. [17] Matthias M. Muller. Compiler-generated vector-based
prefetching on architectures with distributed memoHigh

References Performance Computing in Science and Engineering '01,

Transactions of the High Performance Computing Center
Suttgart (HLRS), pages 527-539, 2001.

[18] Myricom Inc. Myrinet EXpress (MX): A High Perfor-
mance, Low-level, Message-Passing Interface for Myrinet.
http://www.myri.com/scs/, 2003.

[19] J. Nieplocha and B. Carpenter. ARMCI: A portable remote
memory copy library for distributed array libraries and com
piler run-time systems. IRTSPP IPPS/'SDP’99, 1999.

[20] F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachterth
Alan E. Kulawik, Charles L. Seitz, Jakov N. Seizovic, and The Quadrics Network: High-Performance Clustering Tech-

Wen-King Su. Myrinet: A gigabit-per-second local area net- nology. IEEE Micro, 22(1):46-57, 2002.
work. |EEE Micro, 15(1):29-36, 1995. [21] A. K. Somani and A. M. Sansano. Minimizing overhead in

[5] D. Bonachea. GASNet specification. Technical Report €SD paral!el algorithms through overlapping communicationie
02-1207, University of California, Berkeley, October 2002 putation. Tech. Rep. 97-8, ICASE, Feb. 1997.

[6] Thomas Brandes and Frederic Despez. Implementing
pipelined computation and communication in an HPF com-
piler. In Euro-Par, Vol. |, pages 459-462, 1996.

[7] Dale Shires and Lori Pollock and Sara Sprenkle. Program
Flow Graph Construction for Static Analysis of MPI Pro-
grams. InParallel and Distributed Processing Techniques and
Applications (PDPTA’99), pages 1847-1853, June 1999.

[8] Anthony Danalis, Lori Pollock, and Martin Swany. Intnack
ing Gravel: An MPI Companion Library. INSF Next Gener-
ation Systems Workshop (NFSNGS2008) in conjunction with
IPDPS 2008, Miami, FL, Apr 2008.

[9] Frederic Desprez, Pierre Ramet, and Jean Roman. Optimal
grain size computation for pipelined algorithms.Huaro-Par,
\ol. |, pages 165-172, 1996.

[10] Ouissem Ben Fredj andric Renault. Performance analysis
of rwapi on top of the myrinet-2000 interconnect.Gommu-
nications and Computer Networks, pages 40—45, Lima, Peru,
2006.

[11] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng.
Compiler optimizations for Fortran D on MIMD distributed-
memory machines. I8upercomputing, pages 86—100, 1991.

[12] InfiniBand Trade Association. InfiniBand Architectus@ec-
ification, Release 1.0, October 24 2000.
[13] Ken Kennedy. Telescoping Languages: A Compiler Sgate

for Implementation of High-level Domain-specific Program-
ming Systems. lrroceedings of International Parallel and

[1] Gm reference manual.htt p://ww. nyri . coni scs/
GM doc/ r ef man. pdf .

[2] The Message Passing Interface (MPI) standard. httpw
unix.mcs.anl.gov/mpi/.

[3] Francoise Baude, Denis Caromel, Nathalie Furmento, and
David Sagnol. Overlapping communication with computation
in distributed object systems. HPCN Europe, pages 744—
754, 1999.

[4] Nanette J. Boden, Danny Cohen, Robert E. Felderman,

