
Implementing an Open64-based Tool for Improving the
Performance of MPI Programs

Anthony Danalis Lori Pollock Martin Swany John Cavazos

Department of Computer and Information Sciences
University of Delaware, Newark, DE, 19716

{danalis,pollock,swany,cavazos}@cis.udel.edu

Abstract
While MPI parallel programming has become the primary
approach to achieving performance gains in cluster comput-
ing, the communication overhead inherent in a cluster envi-
ronment continues to be a major obstacle. A promising ap-
proach to improve performance is the use of computation-
communication overlapping, which is enabled by communi-
cation libraries that utilize Remote Direct Memory Access
(RDMA), either directly in the form of one-sided commu-
nication, or via two-sided communication over a low over-
head rendezvous protocol. To spare the scientific program-
mer from learning how to utilize these libraries to effectively
maximize computation-communicationoverlap, we have de-
veloped a tool that automatically transforms an MPI parallel
program to a semantically equivalent program with selected
data exchange calls in MPI replaced to leverage an RDMA-
targeted communication library. In this paper, we describe
the implementation of this MPI program transformer using
the Open64 compiler.

1. Introduction
Domain scientists typically parallelize their programs toex-
ploit cost-effective parallel clusters using a high-levelmes-
sage passing interface such as MPI [2], and rely on the
MPI implementation to achieve high performance. Often,
communication-intensive parallel programs suffer in suchan
environment from the layers of communication software be-
tween the sender processes and the receiver processes. Per-
formance can often be improved through direct transfers
from memory coupled with asynchronous communication
primitives. A promising approach to improve performance is
the use of computation-communication overlapping, which
is enabled by communication libraries that utilize Remote
Direct Memory Access (RDMA), either directly in the form
of one-sided communication, or via two-sided communica-
tion over a low-overhead rendezvous protocol.

Many researchers have proposed optimizations for par-
allel software in both the compilers and the interconnect-
ing networks [11, 13, 14, 21, 17, 3, 9, 6]. However, most
of these optimizations target specialized hardware or pro-

gramming languages, require specialized knowledge from
the application programmer (engineer or domain scientist),
or are not enough to provide a comprehensive solution on
their own. Thus, many parallel applications exist and are
still being written utilizing only simplistic message pass-
ing mechanisms (usually small subsets ofMPI) although
they could achieve significantly better performance with
network-specific optimizations.

Our goal is to allow the scientific programmer to take ad-
vantage of the RDMA-based communication libraries while
sparing them from learning how to utilize these libraries to
effectively maximize computation-communication overlap.
To this end, we have developed a tool that automatically
transforms an MPI parallel program to a semantically equiv-
alent program with selected message passing calls in MPI re-
placed to utilize an RDMA-targeted communication library.
In contrast to most existing work on enhancing the perfor-
mance of MPI applications, which generally concentrates on
enhancing the MPI library itself, our effort focuses on opti-
mizing the parallel application that uses the communication
primitives to exchange messages between tasks. Specifically,
we perform program analysis and transformation on the MPI
parallel program in order to use the communication library
more effectively.

In this paper, we describe the implementation of this MPI
program transformer using the Open64 compiler. Our trans-
former takes an MPI parallel program as input and compiles
it to a binary that exploits the underlying cluster’s smart in-
terconnect technology [12, 4, 20]. These interconnect tech-
nologies allow communication to take place concurrently
and independently from computation by using RDMA. Our
transformation selectively replaces key data exchange MPI
calls to utilize our Gravel library, which provides direct ac-
cess to the one-sided transfer capabilities of the network
interconnect. Use of this library has been demonstrated to
reduce communication overhead by enabling it to be over-
lapped with computation more effectively [8]. We leverage
the Open64 compiler infrastructure to build a transformer
that evenutally will also perform advanced program analysis

to further optimize the computation-communication overlap
through code motion.

The main contribution of this paper is a description of the
implementation of the basic program transformer for MPI
parallel programs into a form that uses a library that enables
computation-communication overlap, where most appropri-
ate, while leaving other MPI calls in place. The importance
of this paper’s contribution is that it demonstrates a mecha-
nism via which the compiler can improve the performance
of existing parallel codes, and enable codes to be written
in a simple and maintainable style while being transformed
to perform well on modern cluster hardware. Therefore, the
impact of this work is twofold. First, it enables newly de-
veloped parallel applications to utilize the advanced features
of modern cluster interconnects without increasing time-to-
solution by requiring the developers to learn how to pro-
gram using complicated libraries or new language exten-
sions. Second, it enables legacy codes written in MPI that
do not communication-computation overlapping to be trans-
formed into more efficient codes without requiring a human
to understand these codes at the level necessary to transform
them manually.

2. Transformation Challenges and
Opportunities

The implementation of the MPI program transformation tool
described in this paper is primarily orthogonal to the library
choice. That is, several communication libraries [8, 19, 5,18,
1, 15, 10] including MPI itself, could be used in principle by
a compiler transformation phase that aims to achieve better
communication-computation overlapping. We chose to tar-
get the Gravel library [8] for selected data exchange MPI
calls due to several advantages of Gravel’s design. Gravel
(1) enables direct RDMA operations, (2) provides separate
functions for meta-data exchange and application data ex-
change, (3) ports beyond a single type of interconnect, (4)
does not perform any internal operations (such as queueing
and copying unexpected messages) that would lead to per-
formance penalties, (5) provides finer control of the commu-
nication process by the application layer than most other op-
tions, and (6) is directly usable in Fortran applications. In the
remainder of this paper, we focus our discussion specifically
on the implementation of our MPI program transformation
tool which emits ”gravel-ized” code.

The major challenges faced by an implementer of an MPI
program transformation tool for increasing computation-
communication overlap lie in the differences between MPI
and the targeted communication library. Gravel differs from
MPI in a number of ways:

• The application code must explicitly perform memory
registration when Gravel is used for communication.

• In Gravel, data transfer functions are separate from meta-
data exchange functions.

• Different functions are called to perform consumer-
initiated versus producer-initiated data exchanges in
Gravel.

Figures 1 and 2 illustrate these differences through two
example code snippets. In each figure, we contrast the asyn-
chronous MPI implementation with the Gravel implementa-
tion of the same simple communication operation.

(a) MPI-based code

(b) Equivalent Gravelized code

Figure 1. Contrasting MPI and Gravel consumer-initiated
data exchange

(a) MPI-based code

(b) Equivalent Gravelized code

Figure 2. Contrasting MPI and Gravel producer-initiated
data exchange

The most important challenges posed by these library
differences are:

• Memory registration is a process dictated by the hard-
ware and operating system mechanisms that enable the
remote direct memory access (RDMA) transfer mode. In
particular, for every RDMA data transfer, the memory
where that data resides needs to be registered. Memory
registering is a relatively time consuming process and it is
limited by the physical memory resources of the system.
Gravel requires that memory registration be performed
explicitly by the application (unlike MPI where registra-
tion is implicitly handled by the data transfer routines).

Thus, the MPI program transformation tool must decide
which memory regions to register, how much memory to
register, and where in the code to insert the memory reg-
istration function calls.

• Communication protocol mapping. Gravel separates
the protocol header exchange from the data exchange.
The header exchange must complete before data trans-
fer begins, thus Gravel provides a blocking operation
to assure that it has1. For this reason, a symmetric
SPMD application (where all tasks perform the same
operations) will deadlock if all tasks start by execut-
ing the blocking operation followed by a non-blocking
operation. Therefore, care needs to be taken to ensure
that the right exchange protocol (consumer-initiated vs.
producer-initiated) will be used to avoid deadlocks.

In addition to the challenges, the differences between
MPI and Gravel enable several MPI program optimization
opportunities:

1. Since memory registration is a time consuming process,
the program transformation tool can hoist the memory
registration code outside communication loops or across
caller-callee edges, to limit its runtime overhead.

2. Often, meta-data messages do not have data dependen-
cies with the actual data buffers or the data dependencies
are limited dependencies. This enables the MPI program
transformation tool to perform code motion on the meta-
data exchange function calls and thus overlap the control
communication with useful computation.

3. Different parallel applications exhibit varying computa-
tion and communication patterns even within different
parts of a single application. Therefore, the MPI program
transformation tool can choose for each data exchange
a communication mode that best suits the context where
the exchange takes place.

This paper focuses on the implementation of the basic
MPI program transformation tool which addresses the posed
challenges, as well as optimization (1). Optimizations (2)
and (3), are left for future work.

3. MPI Program Transformation Tool
Implementation

To address the challenges and exploit the optimization op-
portunities described in Section 2 without requiring the MPI
programmer to perform these tedious and error prone tasks,
we implemented a tool based on the Open64 compiler that
automatically replaces selected MPI communication calls
with equivalent functionality from the Gravel library. Our
tool takes as input an MPI parallel program and a program-
mer’s indication of the targeted communication to be re-

1 MPI, in contrast, performs this header exchange implicitly, but still must
pay the same penalty.

placed. The output is the same MPI parallel program with
the indicated MPI communication primitives replaced by the
corresponding Gravel primitives as well as additional, neces-
sary Gravel code. We first describe the overall integration of
our tool with existing Open64 technology, and then the de-
tails of how each challenge of automatic MPI program trans-
formation for improving computation-communication over-
lapping is addressed in this environment.

3.1 Leveraging the Open64 Compiler

Open64 is a large and complex compiler system. To utilize it,
a compiler developer can either alter the code of an existing
phase of the system or create a distinct phase that exists
as a stand-alone executable, operating on intermediate files
generated by the system. The latter scenario is a viable
option because of the way Open64 is designed to operate.

Figure 3. Open64 compilation process and our MPI pro-
gram transformation tool

The normal compilation process of Open64 involves sev-
eral standalone executables. Figure 3 shows how compiling a
Fortran code begins with executing the front-end executable
mfef95, which generates a “.B” file containing the original
code represented as a WHIRL tree, along with the necessary
symbol table information. Next, the stand-alone inliner,in-
line, performs potential inlining of function bodies at func-
tion call sites. The output ofinline is again a WHIRL tree
representation of the program in addition to symbol table
information that is stored in a “.I” file. Finally, the exe-
cutablebe reads this file, performs program analysis, opti-
mization and code generation, and produces a file contain-
ing assembly code. As we are focusing on existing Fortran
applications, we do not perform pointer analysis. The gener-
ated code can be assembled and linked using external tools,
such asgcc, as, andld.

Our MPI program transformation phase exists as a stan-
dalone executable that operates on the “.I” file between
the execution of the inliner and the Open64 backend,be.
We considered integrating our tool intobe; however, im-
plementing a pass that operated beforebe has some bene-
fits over abe-based tool. Some of the benefits of this design
decision include rapid prototyping and better portability. In
contrast to abe-based approach, implementing our tool as
a separate code pass did not require thorough knowledge of

Open64 internals. This makes prototyping fast, as the MPI
program transformer developer only has to learn the details
of the WHIRL tree representation and corresponding sym-
bol tables, rather than the details of different Open64 anal-
ysis and optimization phases and how they interact. In ad-
dition, a standalone MPI optimizer can work on any system
that has a working binary version of Open64 that uses the
same intermediate files and the same WHIRL. In contrast,
an optimization phase integrated into the backend would be
more difficult to use with different or future versions of the
Open64 compiler.

Developing the MPI program transformer as a stand-
alone phase has some negative consequences related to re-
implementing existing functionality. Since our MPI program
transformer is not inside the backend, none of the analysis
and existing code transformations that exist in the backend
can be exploited in the development of our transformer. To
achieve the best of both worlds, we are planning to combine
the two approaches. We will complement our existing stand-
alone tool with further analysis and optimization phases of
our tool, which will execute as part of the backend in order
to take advantage of the existing analysis and transformation
in the Open64 backend.

The next subsection describes how we currently enable
programmer annotations to indicate the MPI communication
call sites to be replaced by Gravel calls. We then describe
our approaches and implementations for inserting memory
registration operations and for mapping MPI send/recv op-
erations to Gravel operations.

3.2 Identifying Selected MPI Communication
Operations for Replacement

Our MPI program transformation tool replaces selected
pairs of MPI synchronous and asynchronous send and re-
ceive operations and their corresponding wait operations
such as:mpi send(), mpi isend(), mpi recv(),
mpi irecv(),mpi wait() andmpi waitall(). Iden-
tifying matching send and receive operations in a parallel
application with no annotations is a difficult data flow anal-
ysis problem and in general is statically undecidable [7, 16].
Thus, we currently assume that either the MPI programmer
or a user-guided tool has identified the potential matching
MPI operations of each desired communication replacement.
Our MPI program transformer expects that this information
is encoded in the form of PRAGMA directives annotating
the targeted matching MPI send, receive and wait opera-
tions.

To create a quick prototype, our current implementation
achieves the annotation by overloading the “UNROLL” di-
rective. In particular, when the MPI program is examined by
our transformation tool, only the call sites preceded by an
UNROLL directive are considered to be candidates for grav-
elizing. We use the following syntax convention. An exam-
ple use of the annotation is shown in Figure 4.

• A send or receive operation candidate for optimiza-
tion should be annotated with the directive: “!DIR$
UNROLL 2 ∗ n” such that1 < n < 512.

• The matching send or receive operation should be anno-
tated with the directive: “!DIR$ UNROLL 2 ∗ n + 1”
using the same value forn as above.

• The corresponding wait operations should be annotated
with the directive: “!DIR$ UNROLL m” where m is
the value (m = 2 ∗ n or m = 2 ∗ n + 1) used to identify
the send or receive operation the given wait corresponds
to.

! DIR$ UNROLL 12
c a l l m p i i r e c v (. . . , r re q , . . .)
. . .
! DIR$ UNROLL 13
c a l l mpi i s e nd (. . . , s req , . . .)
. . .
! DIR$ UNROLL 13
c a l l mpi wa i t (s r e q)
! DIR$ UNROLL 12
c a l l mpi wa i t (r r e q)

Figure 4. Example annotation to indicate targeted com-
munication replacement

Clearly, the value ofn must be unique for every matching
pair that is targeted for communication replacement. In the
case ofmpi waitall() where multiple send and receive
operations are matched by a single wait, the call site of
mpi waitall() should be preceded by all the applicable
directives, one after the other, in any order. The number used
in the annotation of an MPI function call site is saved by our
program transformation tool as the id of the given call site.
The MPI program transformer keeps track of the directives
used to annotate the code and removes them before saving
the output file so that the subsequent phases of Open64 do
not try to interpret them as loop unrolling directives. We will
soon replace this overloaded UNROLL directive by a new
directive (e.g., MPI2GRAVEL).

3.3 Analyzing the MPI Program to Insert Memory
Registration Function Calls

Appropriate memory registration is required before a data
transfer that uses RDMA. In particular, the memory region
where the data will be read from (on the producer side)
as well as the memory region where the data will be writ-
ten into (on the consumer side) must be registered before
the transfer takes place. As mentioned in section 2, unlike
MPI where memory registration takes place implicitly inside
the library data communication calls, Gravel requires that
memory registration is performed explicitly at the applica-
tion layer. Thus, the MPI program transformation tool needs
to decide where to insert the memory registration function
calls in the MPI program, and the location and amount of
memory that needs to be registered. However, MPI program

analysis can utilize information about the program structure
to change this requirement into a feature, by carefully se-
lecting where and how to register the required memory re-
gions to avoid unnecessary operations and reduce the perfor-
mance penalties inherent in memory registration operations.
This section describes the analysis we have implemented to
achieve this goal.

A conservative choice for the location of the memory reg-
istration call for a given targeted communication replace-
ment is the point immediately before the corresponding call
that initiates asend or receive operation as shown in
Figure 5. Although such a choice would produce correct
code, it would often lead to redundant memory registrations
and therefore suboptimal code.

c a l l re g i s te r me mory (r b u f [expr1] , l e n g t h)
c a l l re c v (r b u f [expr1] , l e ng th , . . .)

c a l l re g i s te r me mory (s bu f [expr2] , l e n g t h)
c a l l send (s bu f [expr2] , l e ng th , . . .)

Figure 5. Naive placement of memory registration

To improve performance in the case of applications that
invoke communication calls inside a loop, memory regis-
tration calls could be hoisted outside the loop as shown in
Figure 6. Such a transformation would generate more effi-
cient code, but the required program analysis to determine
whether this will maintain semantically equivalent code is
not always possible. For example, consider the case shown
in Figure 7 where the starting location, and/or size of the
message buffer are statically undecidable since the former
depends on the potentially unknown values stored in array
index and the latter depends on the return value of a poten-
tially unknown function.

c a l l re g i s te r me mory (r b u f [expr1] , l e n g t h)
c a l l re g i s te r me mory (s bu f [expr2] , l e n g t h)
do i =1 , nproc

c a l l re c v (r b u f [expr1] , l e ng th , . . .)
c a l l send (s bu f [expr2] , l e ng th , . . .)

end do

Figure 6. Hoisted memory registration calls

In such a case, the compiler would not be able to statically
generate a single memory registration call able to register
the entire memory region enclosing all the message buffers,
since that memory region cannot be statically determined.
A conservative solution that would produce correct code is
to generate a call that registers the entire memory region
occupied by the array where the messages reside (or will be
written to) as shown in Figure 8. To achieve this conservative
solution, the compiler would still need to infer the size of
the array. While this is always possible in Fortran for local

arrays2 it might not be so for arrays that are passed as
arguments to a procedure, as shown in Figure 9.

do i =1 , nproc
l e n g t h = f (i)
c a l l re c v (r b u f [i nde x [i]] , l e ng th , . . .)
c a l l send (s bu f [i nde x [i]] , l e ng th , . . .)

end do

Figure 7. Undecidable memory region

c a l l re g i s te r me mory (r b u f [r b u f T o t a l S i z e])
c a l l re g i s te r me mory (s bu f [s b u f T o t a l S i z e])
do i =1 , nproc

l e n g t h = f (i)
c a l l re c v (r b u f [i nde x [i]] , l e ng th , . . .)
c a l l send (s bu f [i nde x [i]] , l e ng th , . . .)

end do

Figure 8. Registering the entire array

In such a case, the compiler needs to perform interpro-
cedural analysis to trace the array definition. In particular,
the analysis must traverse the call graph backwards, across
callee-to-caller edges, starting from every call site of the
function that performs thesend/receive operations and
proceeding to its caller until the “memory source” is found.
Memory source, in this context, is the function that has a
local declaration of the array that will be used by the com-
munication operations. For example, in the code shown in
Figure 9 functionexchange() invokes communication
primitives that use arrayA (Aexchange) , but that array is lo-
cal in functionmain(). Therefore, the memory source of
Aexchange is main().

program main
i n t e g e r A(3 2) , B(3 2)
c a l l foo (A, B)

end

s ubrout ine foo (A, B)
i n t e g e r A(∗) , B(∗) , C(3 2)
C(1 : 3 2) = B (1 : 3 2)
c a l l exchange (A, C)

end s ubrout ine

s ubrout ine exchange (A, B)
i n t e g e r A(∗) , B(∗)

do i = . . .
c a l l re c v (A (. . .) , l e n g t h)
c a l l send (B (. . .) , l e n g t h)

end do
end s ubrout ine

Figure 9. Array of unknown size as argument

To identify which arrays of each caller are passed to
each callee, the call graph traversal needs to keep track of
the formals and local arrays of the caller that are passed as

2 Even if the array has a dynamic size evaluated at run-time based on the
value of an expression, the call to the register function canuse the same
expression to register the correct amount of memory at run-time.

actuals to each call site. For example, in the case of Figure 9,
the compiler must record thatmain() passes arraysA andB
tofoo() andfoo() passes arraysA andC toexchange.
Note that full control and data flow analysis is not necessary
for finding the memory source. This is true because the data
that will be in the message buffers is not what this analysis
is trying to trace, but rather the memory region that will be
involved in the data exchange. As an example, in Figure 9,
the source of arrayB in exchange() is arrayC in foo()
and notB in main().

To perform this memory source tracing analysis, we im-
plemented a phase that traverses the WHIRL tree of every
program unit (PU) and saves in an output file the following
information:

• the formal parameters of each function

• the call sites of each function, and for each call site:

each actual parameter

the number of the actual in the actual parameter list

whether the actual parameter is local to the caller3, or
passed as a formal parameter

the PRAGMA id of the call site

The information collected by this phase for the example
program of Figure 9 is shown in Figure 10.

s ubrout ine MAIN() {
c a l l i d =0 foo : : A : 0 : T , B : 1 : T

}
s ubrout ine foo (A, B){

c a l l i d =0 exchange : : A : 0 : F , C : 1 : T
}
s ubrout ine exchange (A, B){

c a l l i d =0 re c v : : A : 0 : F , LENGTH: 1 : T
c a l l i d =0 send : : B : 0 : F , LENGTH: 1 : T

}

Figure 10. Collected information from memory source
tracing analysis

t r a c e A c t u a l s S r c (s t r i n g name , id , actNum , c a l l S i t e L i s t){
l i s t memSources ;

f o r e a c h (c a l l S i t e = f i n d C a l l S i t e (name , id , c a l l S i t e L i s t)){
c l r = c a l l S i t e . c a l l e r ;
a c t u a l = c a l l S i t e . a c t u a l s [actNum] ;

i f (i s L o c a l (a c t u a l)){
memSources . add (c l r , a c t u a l) ;

} e l s e{
c a l l e r F o r m a l = f i ndC or re s pond ingFo rma l (a c t u a l) ;
s= t r a c e A c t u a l s S r c (c l r , 0 , c a l l e r F o r m a l , c a l l S i t e L i s t) ;
memSources . add (s) ;

}
}
re turn memSources ;

}

Figure 11. Memory source tracing algorithm

3 Global variables inCOMMON are considered local to the caller.

When this memory source tracing information collection
is collected for every file of the MPI parallel program, the
collected information is used to construct a data structure
we call the Memory Tracing Call Graph (MTCG). Figure 12
depicts the MTCG for the example code of Figure 9. The
memory source for every array passed to each communica-
tion function can be located with a simple traversal of the
MTCG. Figure 11 outlines the algorithm that takes as input
a call site name and id, along with the actual parameter for
which we are trying to identify its memory source. It pro-
duces as output a list of (memory source) callers and the
names of the corresponding arrays.

When the memory source for each message buffer has
been identified, the MPI program transformer inserts mem-
ory registration calls at the beginning of each correspond-
ing procedure. This leads to code that is safe and efficient,
since the memory registration cost is paid once per distinct
memory region, regardless of the number of data exchanges
performed from or to this region.

Figure 12. Memory Tracing Call Graph example

3.4 Mapping MPI send/recv Pairs to Gravel
Protocols

Gravel uses two distinct pairs of send/receive operations to
implement consumer-initiated versus producer-initiateddata

exchanges. For consumer-initiated data exchanges, the con-
sumer, i.e., the task that calledmpi irecv() in the origi-
nal MPI parallel program, should now call the non-blocking
call gravel post recv buffer rdma() . This func-
tion asynchronously sends a control message to the producer
declaring that the consumer is ready to receive the data and
specifying the memory location where the data should be
put. In contrast, the producer starts by calling theblocking
functiongravel wait recv buffer rdma() which
returns only after the control message from the consumer
has arrived. Afterwards, the producer proceeds with call-
ing gravel post os put() which is a non-blocking
call that issues a one-sided RDMA write operation to asyn-
chronously put the data into the consumer’s memory as spec-
ified by the control message.

The rationale behind this design is that the function call
that posts the receive request usually can be hoisted earlier in
the execution path and therefore the blocking operation will
not really have to wait. Despite the potential performance
gains or losses of this design, there is a correctness issue
that the MPI program transformer needs to take into account.
Namely, if the application is a symmetric SPMD code where
every task executes the same operations (or at least follows
the same branches), then calling the blocking call before the
non-blocking call would cause a deadlock.

To ensure deadlock avoidance, our MPI program trans-
former has to statically assess the relative order of execution
of the original MPI send/receive operations and choose the
correct corresponding set of Gravel functions (i.e., producer-
initiated or consumer-initiated operations). Since the MPI-
to-Gravel transformation happens in a phase implemented
as a stand-alone tool that executes before the Open64 back-
end, we implemented some steps of control and data flow
analysis inside our tool. Namely, we try to assess the exe-
cution order of the original MPI send/receive calls using the
algorithm shown in Figure 13.

As can be seen in the algorithm, there are some cases
(lines 23,26 and 49) where the order of execution is unde-
cidable. If this is the case, our MPI transformer tool does not
proceed with the transformation of the given code segment.
In many cases, the execution order is either the same as the
textual order, or reversed. The latter occurs in cases where
both call sites are inside the body of a loop and the first call
site (textually), is inside a one timeif guard that checks if
the loop induction variable is greater than the lower bound
of the loop. This case is captured by theif statement on line
37 of the execution order discovery algorithm (shown in Fig-
ure 13).

If this analysis is successfully performed, the tool can
proceed with the transformation and use the correct Gravel
calls to ensure that the non-blocking calls will send the
control messages before the blocking calls block waiting for
them.

1 i f (inSameBas icB lock (send , re c v)){
2

3 re turn f i r s t I n T e x t u a l O r d e r (send , re c v) ;
4

5 } e l s e{
6

7 topB lock = f i n d C l o s e s t E n c l o s i n g B l o c k (send , re c v) ;
8

9 encSend = f indTopNonSharedBlock (send , topB lock) ;
10 encRecv = f indTopNonSharedBlock (recv , topB lock) ;
11

12 t x t F i r s t = f i r s t I n T e x t u a l O r d e r (encSend , encRecv) ;
13 t x t L a s t = l a s t I n T e x t u a l O r d e r (encSend , encRecv) ;
14

15 i f (isNotDominatedByBranch (t x t F i r s t , topB lock)){
16

17 re turn t x t F i r s t ;
18

19 } e l s e{
20

21 i f (isDominatedByLoop (encSend , encRecv)){
22

23 i f (i sDomina tedByUndec idab leBranch (send))
24 re turn ORDERUNKNOWN;
25

26 i f (i sDomina tedByUndec idab leBranch (re c v))
27 re turn ORDERUNKNOWN;
28

29 i f (isDominatedByOneTimeGuard (t x t F i r s t) &&
30 isGTLoopLowerBoundComparison (guard , loop . l b)){
31

32 i f (isDominatedByOneTimeGuard (t x t L a s t) &&
33 isGTLoopLowerBoundComparison (guard , loop . l b)){
34

35 re turn t x t F i r s t ;
36

37 } e l s e {
38 re turn t x t L a s t
39 }
40

41 } e l s e{
42 re turn t x t F i r s t ;
43 }
44

45 } e l s e{
46 }
47

48 }
49

50 re turn ORDERUNKNOWN;
51 }

Figure 13. Send-Recv execution order discovery algo-
rithm

In summary, the mapping of MPI send/recv calls to
Gravel protocols includes memory source tracing and send/recv
execution order determination. There are cases where it is
not possible to determine this information statically. In those
cases, we conservatively do not perform gravelization of the
targeted MPI communication sites. However, in our prelimi-
nary work with benchmarks from well known suites, includ-
ing the NAS benchmarks, we have typically found that this
information can be determined statically.

4. Current Status
As mentioned in Section 3.1 our current implementation of
the transformation tool works as a stand-alone executable
that modifies the intermediate WHIRL files before the back-
end (be) of Open64 is invoked. While it is currently under

active development, our transformer is already able to han-
dle complex application codes including several of the NAS
benchmarks.

Our current plans are focused on extending our existing
infrastructure as well as developing code that can execute
inside the backend of Open64. Our goal regarding the stan-
dalone executable is to make it able to transform complex
applications so that they use Gravel instead of MPI for key
selected data transfers. Regarding the code integrated into
Open64, our goal is to utilize the existing program analysis
and transformation capabilities of the Open64 system to im-
prove the performance of the transformed applications even
further.

References
[1] Gm reference manual.http://www.myri.com/scs/

GM/doc/refman.pdf.

[2] The Message Passing Interface (MPI) standard. http://www-
unix.mcs.anl.gov/mpi/.

[3] Francoise Baude, Denis Caromel, Nathalie Furmento, and
David Sagnol. Overlapping communication with computation
in distributed object systems. InHPCN Europe, pages 744–
754, 1999.

[4] Nanette J. Boden, Danny Cohen, Robert E. Felderman,
Alan E. Kulawik, Charles L. Seitz, Jakov N. Seizovic, and
Wen-King Su. Myrinet: A gigabit-per-second local area net-
work. IEEE Micro, 15(1):29–36, 1995.

[5] D. Bonachea. GASNet specification. Technical Report CSD-
02-1207, University of California, Berkeley, October 2002.

[6] Thomas Brandes and Frederic Despez. Implementing
pipelined computation and communication in an HPF com-
piler. In Euro-Par, Vol. I, pages 459–462, 1996.

[7] Dale Shires and Lori Pollock and Sara Sprenkle. Program
Flow Graph Construction for Static Analysis of MPI Pro-
grams. InParallel and Distributed Processing Techniques and
Applications (PDPTA ’99), pages 1847–1853, June 1999.

[8] Anthony Danalis, Lori Pollock, and Martin Swany. Introduc-
ing Gravel: An MPI Companion Library. InNSF Next Gener-
ation Systems Workshop (NFS/NGS 2008) in conjunction with
IPDPS 2008, Miami, FL, Apr 2008.

[9] Frederic Desprez, Pierre Ramet, and Jean Roman. Optimal
grain size computation for pipelined algorithms. InEuro-Par,
Vol. I, pages 165–172, 1996.

[10] Ouissem Ben Fredj and́Eric Renault. Performance analysis
of rwapi on top of the myrinet-2000 interconnect. InCommu-
nications and Computer Networks, pages 40–45, Lima, Peru,
2006.

[11] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng.
Compiler optimizations for Fortran D on MIMD distributed-
memory machines. InSupercomputing, pages 86–100, 1991.

[12] InfiniBand Trade Association. InfiniBand ArchitectureSpec-
ification, Release 1.0, October 24 2000.

[13] Ken Kennedy. Telescoping Languages: A Compiler Strategy
for Implementation of High-level Domain-specific Program-
ming Systems. Inroceedings of International Parallel and

Distributed Processing Symposium 2000 (IPDPS 2000), pages
297–306, May 2000.

[14] C. Kessler and W. Paul. Automatic parallelization by pattern
matching. InProceeding of Second Int. Conference of the
Austrian Center for Parallel Computation, pages 166–181,
1993.

[15] Mellanox Technologies Inc. Mellanox IB-Verbs API (VAPI),
2001.

[16] Michelle Mills Strout and Barbara Kreaseck and Paul D. Hov-
land. Data-Flow Analysis for MPI Programs. InInternational
Conference on Parallel Processing (ICPP 2006), pages 175–
184, Aug 2006.

[17] Matthias M. Muller. Compiler-generated vector-based
prefetching on architectures with distributed memory.High
Performance Computing in Science and Engineering ’01,
Transactions of the High Performance Computing Center
Stuttgart (HLRS), pages 527–539, 2001.

[18] Myricom Inc. Myrinet EXpress (MX): A High Perfor-
mance, Low-level, Message-Passing Interface for Myrinet.
http://www.myri.com/scs/, 2003.

[19] J. Nieplocha and B. Carpenter. ARMCI: A portable remote
memory copy library for distributed array libraries and com-
piler run-time systems. InRTSPP IPPS/SDP’99, 1999.

[20] F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachtenberg.
The Quadrics Network: High-Performance Clustering Tech-
nology. IEEE Micro, 22(1):46–57, 2002.

[21] A. K. Somani and A. M. Sansano. Minimizing overhead in
parallel algorithms through overlapping communication/com-
putation. Tech. Rep. 97-8, ICASE, Feb. 1997.

