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Abstract
Determining the best set of optimizations to apply to a program
has been a long standing problem for compiler writers. To reduce
the complexity of this task, existing approaches typically apply the
same set of optimizations to all procedures within a program, with-
out regard to their particular structure. This paper develops a new
method-specific approach that automatically selects the best opti-
mizations on a per method basis within a dynamic compiler. Our
approach uses the machine learning technique of logistic regression
to automatically derive a predictive model that determines which
optimizations to apply based on the features of a method. This tech-
nique is implemented in the Jikes RVM Java JIT compiler. Using
this approach we reduce the average total execution time of the
SPECjvm98 benchmarks by 29%. When the same heuristic is ap-
plied to the DaCapo+ benchmark suite, we obtain an average 33%
reduction over the default level O2 setting.
Categories and Subject Descriptors D.3 [Software]: Program-
ming languages; D.3.4 [Programming languages]: Processors—
Compilers, Optimization; I.2.6 [Artificial intelligence]: Learning—
Induction
General Terms Performance, Experimentation, Languages
Keywords Compiler optimization, Machine learning, Logistic
Regression, Java, Jikes RVM

1. Introduction
Selecting the best set of optimizations for a program has been the
focus of optimizing compilation research for decades. It has been
the long term goal of compiler writers, to develop a sequence of
optimization phases which analyze and, where appropriate, trans-
form the program so that execution time is reduced. Determining
the best set of optimizations and their ordering, however, is noto-
riously difficult. In fact, Cooper et al. [9, 2] have shown that the
best ordering is program dependent and that any sequence that is
best for one program is unlikely to be the best for another. What
we would like is a mechanism that automatically selects the best
optimization sequence for a particular program.

In optimizing compilers, it is standard practice to apply the same
set of optimizations phases in the same order on each procedure
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or method within a program. However, just as the best set of
optimizations varies from program to program [2, 18], we show
that the best set of optimizations varies within a program, i.e., it is
method-specific. We would like a scheme that selects the best set of
optimizations for individual portions of a program, rather than the
same set for a whole program.

This paper develops a new method-specific technique that auto-
matically selects the best set of optimizations for different sections
of a program. We develop this technique within the Jikes RVM en-
vironment and automatically determine the best optimizations on a
per method basis. Rather than developing a hand-crafted technique
to achieve this, we make use of a basic machine learning technique
known as logistic regression [4] to automatically determine what
optimizations are best for each method. This is achieved by training
the technique offline on a set of training data which then automati-
cally learns an optimizing heuristic.

Machine learning based techniques have recently received con-
siderable attention as a means of rapidly developing optimization
heuristics [20, 7]. Unfortunately, they have been largely constrained
to tuning an individual optimization often with disappointing re-
sults. For example, although Stephenson et al. [20] were able to
construct a register allocation heuristic automatically using ma-
chine learning, the heuristic was only able to achieve a modest im-
provement over the existing hand-tuned register allocator heuristic.

To the best of our knowledge this is the first paper to automat-
ically learn an overall compilation strategy for individual portions
of a program. This means that our scheme learns which optimiza-
tions to apply rather than tuning local heuristics and it does this in
a dynamic compilation setting. Furthermore, we show significant
performance improvement over an existing well-engineered compi-
lation system. Using our approach, for the maximum optimization
O2 setting within Jikes RVM, we reduce the total runtime by 29%
on average for the SPECjvm98 benchmarks suite. This increases
to 33% on a set of benchmarks including DaCapo, SPECjbb2000,
and ipsixql. This result is particularly impressive, when consider-
ing that recent work on developing by hand predictive models to
select optimizations [24] achieves performance improvements of
less than 3% on average.

The paper is organized as follows. Section 2 provides motiva-
tion as to why method-specific optimizations outperform current
approaches. This is followed in section 3 by a description of how
standard logistic regression can learn whether or not to apply a
particular optimization for a particular method. Section 4 then de-
scribes the experimental infrastructure and methodology which is
followed in section 5 by a presentation of the results. Section 6 pro-
vides an analysis of why logistic regression works. Section 7 gives
a brief overview of related work and is followed in Section 8 by
some concluding remarks.
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Figure 1. The results of applying the best setting for each method relative to the default setting for each of the different optimization levels.
The best setting for each method was found through exhaustive exploration for optimization levels O0 and O1. For optimization level O2,
we took the best setting for each method from 1000 random settings evaluated. Total execution time = dynamic compilation time + running
time.

2. Motivation
This section shows that selecting the best set of optimizations on a
per method basis has the potential to significantly improve the total
running time of dynamically compiled programs.

Potential We conducted an initial experiment to determine the ex-
tent to which different optimizations affect the total execution time
of an application compiled and executed by the Jikes RVM Java JIT
compiler. For each method within each SPECjvm98 benchmark,
we applied many different optimization settings and recorded the
setting that gave the best total execution time on a per method ba-
sis. As Jikes RVM has multiple optimization levels, we performed
this experiment for the O0, O1, and O2 optimization levels and re-
port the results here.

Due to the way that Jikes RVM is constructed, it is not possible
to arbitrarily change the order in which optimizations are applied.
Instead, we confine our search to just enabling and disabling opti-
mizations. For optimization levels O0 and O1, which apply 4 and
9 optimizations by default, we tried all possible enumerations of
these optimizations, i.e., 24 = 16,29 = 512, respectively. As level
O2 applies 20 optimizations an exhaustive enumeration of the 220

settings was not possible, instead we randomly enumerated 1000
different settings and recorded their performance. Table 1 shows
the optimizations that are applied by default for these three differ-
ent optimization levels.

Once the best settings were found for each method, we then dy-
namically compiled and ran each program using the best optimiza-
tion settings for each method. Figure 1 presents results of selecting
the best set of optimizations at each optimization level on a per
method basis for each of the SPECjvm98 benchmarks. As compi-
lation time is dynamic and part of the overall execution time we
show two performance results: running time and total time. Run-

ning time indicates the benchmark running times without compila-
tion time while total time indicates running times with compilation.

The results are plotted relative to the existing default heuristic
which is to apply all optimizations grouped at that optimization
level (see Table 1).

In the case of optimization level O0, there is on average a 4%
reduction in total time available and this reduces to 2% for O1.
However, in the case of the highest optimization level O2, there is a
significant performance improvement available. Selecting the right
optimization for each method gives an average 19% reduction in
total execution time.

One size does not fit all Looking at the results, one may conclude
that the default settings are poor and that there potentially exists
another setting that is not method-specific and would perform well
across all other benchmarks.

To test this we enumerated all the different possible combina-
tions of the 4 optimizations which are used by default for optimiza-
tion level O0 to try to find one fixed setting which if applied to all
methods would provide a performance improvement over the cur-
rent default.1 Of the 16 different optimization settings we enumer-
ated, we did not find any single configuration that out-performed
the current default. The current default is in fact the optimal fixed
setting for the SPECjvm98 benchmarks.

Now, in the previous section we were able to outperform op-
timization O0 for several of the SPECjvm98 benchmarks giving
an average reduction in total execution time of 4%. Thus, an op-
timization setting tuned for each method is better than the opti-
mal fixed setting across the whole program. In other words, for the

1 Optimization level O0 is an important optimization since it is the first and
most often used optimization setting during adaptive compilation.



SPECjvm98 benchmarks a method-specific strategy should outper-
form any program-specific strategy.

Conclusion In our experiments we did not find a single overall
optimization setting that significantly improves the performance
of the Jikes RVM JIT optimizing compiler. However, selecting a
different optimization setting for each method shows the potential
to deliver significant gains.

The challenge therefore is to develop a predictive model that
can analyze each method and select the optimization set that will
reduce total running time. As we are considering dynamic JIT
compilation, the overhead of this heuristic must be small otherwise
it will outweigh any benefits.

One approach is to handcraft a heuristic based on experimenta-
tion and analysis. This is undesirable for two reasons. Firstly, it will
be an arduous task and Jikes RVM specific. Secondly, if the plat-
form were to change, the entire tuning of the heuristic would have
to be repeated. Instead we use an machine-learning based approach
which automatically learns a good heuristic. This has the advantage
of being a generic technique that easily ports across platforms.

3. Approach
This section gives a detailed overview of how logistic regression
based machine learning is used to determine a good optimization
heuristic for each of the optimization levels O0, O1, O2, and adap-
tive within Jikes RVM. The first section outlines the different sub-
activities that take place when learning and deploying a heuristic
This is followed by sections describing how we generate training
data, how we extract features from methods, and how these fea-
tures and training data allow us to learn a heuristic that determines
whether or not to apply a set of optimizations. This is followed by
an example showing how our learned heuristic is used in practice.
Figure 2 outlines our scheme.

3.1 Overview

There are two distinct phases, training and deployment. Training
occurs once, off-line, “at the factory” and is equivalent to the time
spent by compiler writers designing and implementing their opti-
mization heuristics. Deployment is the act of applying the heuristic
at dynamic compilation time. As any learned heuristic incurs dy-
namic compilation overhead, it is imperative that it be as cheap
as possible to evaluate otherwise its runtime benefit will be out-
weighed by its cost.

Within the training phase, we first generate appropriate training
data based on whether we are trying to improve the O0, O1, or
O2 optimization levels within Jikes RVM. The training data is
randomly generated by applying different optimization settings to
each method within each training program and recording their
performance on a per method basis using fine-grain timers. We also
derive a short description (called a feature vector) of each method
so that we can later build a function that takes the feature vector as
input and provides the set of optimizations that should be applied
as output.

This predictive model once learned is installed into the Jikes
RVM compiler and used at runtime as an optimization heuristic.
The next sections describe these stages in more detail

3.2 Generating training data

Our aim is to develop a function, f, which, given a new method
described as feature vector x, outputs a vector c of 1s and 0s whose
elements determine whether or not to apply the corresponding
optimization:

f (x) = c

1. Training “at the factory”
(a) Generate training data results for O0,O1, or O2

i. Instrument each method with timing calls
ii. For each method randomly select a set of optimizations

and apply
iii. Record dynamic compilation, running, and total execu-

tion time per method
(b) Generate method features

i. For each method calculate each element of the feature
vector

ii. Record feature vector for each method
(c) Learn a model that classifies features

i. For each method select those optimization settings
within 1% of best

ii. Generate a table where each recorded feature vector is
associated with its best optimization settings.

iii. For each optimization setting c determine a probabilistic
function f that states whether a feature vector x should
have this optimization set or not.

iv. Output this set of functions as the learned heuristic
2. Deployment

(a) Install learned heuristic into Jikes RVM
(b) For each method dynamically compiled

i. From bytecodes generate a feature vector
ii. Use heuristic to determine which optimizations to apply

and apply them

Figure 2. Overall technique

Before we can do this, we need to know how different opti-
mization settings affect performance. We therefore try many differ-
ent optimization settings to see how each setting affects the perfor-
mance of each method.

For the problem of optimizing Java methods, we can search the
entire space of optimizations if the number of optimizations is not
prohibitively large. In the case of optimization levels O0 and O1,
there are only 4 and 9 optimizations turned on by default allowing
exhaustive enumeration. We measure the time to compile a method
and instrumented each method with a fine-grain timer to record the
amount of time spent executing that method. For optimization level
O2, we could not exhaustive enumerate all possible optimization
combinations (O2 has 20 optimizations), so for this level we choose
to evaluate a set of 1000 randomly generated settings. The opti-
mizations we control at each optimization level with our logistic
regressors are described in Table 1.

The best settings were recorded in a vector c for each method.
The size of c corresponds to the number of optimizations available
at each level, i.e., size 4 for O0, 9 for O1, and 20 for O2.

3.3 Feature Extraction

Once we have examples of good optimization settings for different
methods we would like correlate the settings with the characteris-
tics of a method. To do this we need to describe each method in
a sufficiently succinct form, to enable standard machine learning
techniques to be employed.

Determining the properties of a method that predict an optimiza-
tion improvement is a difficult task. As we are operating in a dy-



Optimizations Meaning
Optimization Level O0

BRANCH OPTS LOW Turns on some simple branch opti-
mizations

CONSTANT PROP Local constant propagation
CSE Local common subexpression elimina-

tion
REORDER CODE Reorders basic blocks

Optimization Level O1
COPY PROP Local copy propagation
TAIL RECURSION Tail recursion
STATIC SPLITTING Basic block static splitting
BRANCH OPTS MED More aggressive branch optimizations
SIMPLE OPTS LOW Type prop, Bounds check elim, dead-

code elim, etc.
Optimization Level O2

WHILES INTO UNTILS Tries to turn whiles into untils
LOOP UNROLL Loop unrolling
BRANCH OPTS HIGH Even more aggressive branch opti-

mizations
SIMPLE OPTS HIGH Additional pass of simple optimiza-

tions
LOAD ELIM Load elimination
REDUNDANT BRANCH Redundant branch elimination
SSA Enter SSA form and perform SSA op-

timizations
EXPRESSION FOLD Expression folding
GLOBAL COPY PROP Global copy propagation
GLOBAL CSE Global Common Subexpression elimi-

nation
COALESCE Coalescing stage, requires SSA form

Table 1. This table describes all the optimizations investigated.
These optimizations are all on by default for each of the differ-
ent optimization levels. The optimizations at level O1 include all
optimizations on at level O0 and optimizations at level O2 include
all optimizations on at levels O1 and O0.

namic compilation environment we chose features that are simple
to calculate and which we thought were relevant. Computing these
features requires a single pass over the bytecode of the method. We
calculate features after inlining has been performed.

Table 2 shows the 26 features used to describe each method. The
values of each feature will be an entry in the 26-element feature
vector x associated with each method. The first 2 entries are integer
values defining the size of the code and data of the method. The
next 6 are simple boolean properties (represented using 0 or 1) of
the method. The remaining features are simply the percentage of
bytecodes belonging to a particular category. (e.g., 30% loads, 22%
floating point, 5% yield points, etc.).

As an example, the feature vector for the method
compress.Compressor.cl block() is the following vec-
tor.

[108,25,0,0,0,0,1,0,0.2,0.0,0.0,0.0,0.0,0.0
0.12,0.0,0.08,0.0,0.0,0.0,0.2,0.32,0.08,0.0]

In other words, there are 108 bytes in this method, 25 bytes
allocated for locals, etc. We make no claim that this is the best
set of features to describe a method. It is possible that an entirely
different set of features would give better performance.

However, our logisitic regressors are able to learn automatically
which features are most important to each of the different optimiza-
tions. And, since calculating all the features is very cheap (typically
less than 1% of a method’s compile time) there is no need to filter
out unimportant features. The logistic regressor does this automat-
ically.

Researchers have devised different features [1, 7, 6, 15, 20] that
worked well on other optimization problems. For instance, Mon-

Feature Meaning
bytecodes Number of bytecodes in the

method
locals space Number of words allocated for lo-

cals
synch Method is synchronized
exceptions Method has exception handling

code
leaf Method is a leaf (contains no

calls)
final Method is declared final
private Method is declared private
static Method is declared static
Category Fraction of bytecodes that ...
aload, astore are Array Loads and Stores
primitive, long are Primitive or Long computa-

tions (e.g., iadd, fadd)
compare are Compares (e.g., lcmp, dcmpl)
branch are Branches (for-

ward/backward/cond/uncond)
jsr are a JSR
switch are a SWITCH
put/get are a PUT or GET
invoke are an INVOKE
new are a NEW
arraylength are an ArrayLength
athrow,checkcast,monitor are an Athrow, checkcast, or mon-

itor
multi newarray are a Multi Newarray
simple, long, real are a Simple,Long, or Real Con-

versions

Table 2. Features of a Method. To reduce the length of the table
several (different) features have been placed in logical groups.

sifort et al. [15] focus on loop structure as features in predicting
whether to unroll or not. In future work, we will explore using other
features such as those presented by Georges et al. [11] in combina-
tion with the features we used in this study.

3.4 Learning a classifier using logistic regression

We are now at the stage where we have, for each method, a feature
vector x and a vector c which corresponds to the best settings for
that particular method. Given a feature vector of a new method
x we wish to develop a function, f, that returns a good set of
optimizations c to apply to it.

Classification

Our task can now be phrased as a classification problem: given a
method’s feature vector x should we apply a particular optimization
or not? Given an n = 26 dimensional space of features, we wish to
find a curve or hyperplane that separates those points where each
optimization is turned on from those where it is off. To illustrate
this, see the simple 2D example shown in Figure 3 where each
point corresponds to a feature vector and we wish to find a line
that separates them into classes.

Here the line b + xT w = 0 forms the decision boundary, on
the one side examples are classified as 1s, and on the other, 0s.
The parameter b simply shifts the decision boundary by a constant
amount. The orientation of the decision boundary is determined by
w which represents the normal to the hyperplane.

However, in practice there does not exist a clean separation be-
tween points. Instead, we wish to associate with each point a prob-
ability of whether to apply an optimization. The simplest technique
that achieves this is logistic regression [4] and is a probabilistic
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Figure 3. The linear separator decision boundary (solid line). For
two dimensional data, the decision boundary is a line.

extension to linear regression. This provides us with a confidence
measure as to how good our classification is.

Logistic Regression

We wish to determine a function f that gives the probability that
a particular method should have a set of optimizations enabled.
We have a set of up to to 20 optimizations to consider, c, but
to ease presentation we initially consider the case of determining
the probability that just one optimization c is enabled, i.e., c = 1.
Formally this is stated as:

p(c = 1|x) = f (x;w) (1)
where p(c = 1|x) is the probability that, given a feature vector
x, optimization c is enabled or turned on and f is some function
parameterised by the weights w. Since the function f represents a
probability, it must be bounded between 0 and 1.

One of the standard choices of function is the sigmoid function,
σ(y) = 1/(1 + exp(−y)). When the argument of the sigmoid func-
tion is positive, the probability that the input point y belongs to class
1 is above 0.5. The greater the argument value, y, is, the higher is
the probability that it is classified as having the optimization setting
c enabled. Similarly, large negative values of x will imply that c is
disabled. Logistic regression based classification is described as:

p(c = 1|x) = σ(b+xT w) (2)
where b is a constant scalar, and w is a vector of weights. Selecting
the weights w allows the selection of the separating boundary
orientation and a mechanism to state how confident we are in this
boundary classification. The larger the weights, the more confident
we are in the classification.

Training

Given that the sigmoid function is a good one to classify the data,
we now have to derive or learn it. So, given the training data set D,
gathered during the earlier exhaustive or random search, how can
we adjust or learn the weights to obtain a good classification? As-
suming that each of the P data points has been drawn independently
the probability that the data belongs to a particular class c is given
by a standard formula [4]:

p(D) =
P

∏
j=1

p(c j|x j) =
P

∏
j=1

(p(c = 1|x j))c j
(

1− p(c = 1|x j)
)1−c j

(3)
where x j is the jth ( j ∈ 1, . . . ,P) feature vector selected from

the training data and c j is its corresponding best optimization
setting for that feature vector. If p(D) = 1 then we have a perfect
classification and the data is clearly separated. In practice due to the

noisy data we will not achieve a perfect classification, but instead
wish to get the best possible classification. If we adjust the weights
to maximise p(D) this will give the best decision hyperplane.

Each of these probabilities p is a function of the weight vector
w, so we wish to choose w in order to maximise p(D). As the values
of p are small, it is common [4] to work with the L = logp(D) to
avoid rounding errors:

L =
P

∑
j=1

c j log p(c = 1|x j)+(1− c j) log
(

1− p(c = 1|x j)
)

(4)

and try to maximize it instead. (Maximizing L = log(p(D)) is
equivalent to maximizing p(D)).

In the logistic regression model, we wish to therefore find the
weights w to maximise:

L(w,b) =
P

∑
j=1

c j logσ(b+wT x j)+(1−c j) log
(

1−σ(b+wT x j)
)

(5)
Unfortunately, this can not be achieved analytically and is nor-

mally achieved by using an iterative solver based on gradient as-
cent, based on the partial derivatives of L.2 The gradient is given
by the following equation:

∇wL =
P

∑
j=1

(c j −σ(x j;w))x j (6)

The derivative with respect to the biases is as follows:

dL
db

=
P

∑
j=1

(c j −σ(x j;w)) (7)

In other words, select a value of w and update it in the direction of
ascent. If ∇w is the partial derivative with respect to the vector w
then we update our values of w and b as follows:

wnew = w+η∇wL (8)

bnew = b+η
dL
db

(9)
where η, the learning rate is a small scalar chosen small enough to
ensure convergence of the method.

This is repeated until there is no further change and we have
reached the maximum. At the end of this iterative process we have
a set of weights and offset that gives the best classification on a
given set of training inputs. It can then be used as a function which
determines for a set of input features the probability of whether an
optimization should be turned on or off.

3.5 Deployment

The final step involves installing the heuristic function in the
compiler and using it during dynamic compilation. Each method
that is compiled by the optimizing compiler is considered a pos-
sible candidate for all optimizations. We compute features for the
method. If the heuristic function says we should optimize a method
with a particular optimization, we do so. As an illustration, when
applying the logistic regressor to the feature vector of
compress.Compressor.cl block(), it returns a value of

[1,0,1,1,0,0,0,1,1,1,1,1,1,1,1,0,1,1,1,0]

denoting which of the 20 optimizations to apply with the asso-
ciated probabilities

2 as σ′(x) = σ(x)(1−σ(x))), partial derivatives are easy to calculate



Program Description
compress Java version of 129.compress from SPEC 95
jess Java expert system shell
db Builds and operates on an in-memory database
javac Java source to bytecode compiler in JDK 1.0.2
mpegaudio Decodes an MPEG-3 audio file
raytrace A raytracer working on a scene with a dinosaur
jack A Java parser generator with lexical analysis

Table 3. Characteristics of the SPECjvm98 benchmarks.

[0.7,0.3,0.8,0.7,0.4,0.3,0.1,0.9,0.7,0.6,
0.6,0.7,0.9,0.6,0.6,0.2,0.6,0.7,0.7,0.3].

This means that with a 70% probability BRANCH OPTS LOW
should be applied and that with a 30% probability of
CONSTANT PROP should be applied. In other words apply branch
optimizations, but do not apply local constant propagation for this
method.

4. Infrastructure + Methodology
Here we describe the platform and benchmarks used as well as the
methodology employed in our experiments.

4.1 Platform

We implement our learned heuristic in the Jikes Research Virtual
Machine [3] version 2.3.3 for an Intel x86 architecture. The Intel
processor is a 2.6GHz Pentium-4 based Red Hat Linux workstation
with 500M RAM and a 512KB L1 cache. We used the FastAdap-
tiveGenMS configuration of Jikes RVM, indicating that the core
virtual machine was compiled by the optimizing compiler, that an
adaptive optimization system is included in the virtual machine,
and the generational mark-sweep garbage collector was used.

4.2 Benchmarks

We examine two suites of benchmarks. The first is the SPECjvm98
benchmarks [19] which were run with the largest data set size
(called 100). These benchmarks are described in Table 3.

The second set of programs consists of 5 programs from the
DaCapo benchmark suite [5], ipsixql, and SPECjbb2000 and are
described in Table 4. The DaCapo benchmark suite is a collection
of programs that have been used for various different Java perfor-
mance studies aggregated into one benchmark suite. We ran the
DaCapo benchmarks under its default setting. We also included a
program called ipsixql that performs XML queries and a modified
version of SPECjbb2000 (hence, it is referred to as pseudojbb) that
performs a fixed number of transactions. We refer to these 7 bench-
marks collectively as DaCapo+.

4.3 Optimization Levels

We ran experiments under each of the three different optimization
levels, that is, O0, O1, and O2 as well as the adaptive compila-
tion scenario. When running under a particular optimization level
we compile all methods using only the optimizations available at
that level. The logistic regressor chooses which subset of these op-
timizations to apply to each method being compiled.

Although we specifically train only for the O0, O1, and O2
levels, we also evaluated the adaptive scenario which uses each
of these three levels. Under the adaptive scenario, all dynamically
loaded methods are first compiled by the non-optimizing baseline
compiler that converts bytecodes straight to machine code without
performing any optimizations. The resultant code is slow, but the
compilation times are fast. The adaptive optimization system then

Program Description
antlr Parses one or more grammar files and generates a

parser and lexical analyzer for each
fop Takes an XSL-FO file, parses it and formats it,

generating a PDF file
jython Interprets a series of Python programs
pmd Analyzes a set of Java classes for a range of source

code problems
ps Reads and interprets a PostScript file
ipsixql Performs queries against a persistent XML docu-

ment
pseudojbb SPECjbb2000 modified to perform a fixed amount

of work

Table 4. Characteristics of the DaCapo+ benchmarks.

uses online profiling to discover the subset of methods where a sig-
nificant amount of the program’s running time is being spent. These
”hot” methods are then recompiled using the optimizing compiler.
These methods are first compiled at optimization level O0, but if
they continue to be important they are recompiled at level O1 and
finally at level O2 if warranted. The individual optimization levels
makeup the adaptive compiler and it is therefore important to tune
these individual levels properly. When using logistic regression un-
der the adaptive scenario, we used a logistic regressor trained for
each of the three different optimization levels.

4.4 Measurement

As well as the different compiler scenarios we also considered
two different optimization goals namely: total time and running
time. Total time is a combination of running and compilation time.
As compilation is part of the total execution time for dynamic
compilers then optimizing for total time will try to minimize their
combined cost.

However, when the program is likely to run for a considerable
length of time, it may be preferable for the user to reduce the
running time at the expense of potentially greater compilation time.
We therefore include running time for our benchmarks which is
the execution time of the program without compilation time. Each
benchmark was run multiple times and the minimum execution
time is reported. 3

4.5 Evaluation Methodology

As is standard practice, we learn over one suite of benchmarks,
commonly referred to in the machine learning literature as the
training suite. We then test the performance of our tuned heuristic
over another ”unseen” suite of benchmarks, that we have not tuned
for, referred to as the test suite. These is achieved in two separate
experiments.

Leave one out cross-validation We first use a standard approach
to evaluate a machine learning technique called leave-one-out
cross-validation on the SPECjvm98. Given the set of n = 7 bench-
mark programs, in training for benchmark i we train (develop a
heuristic) using the training set from the n− 1 = 6 other bench-
marks, and we apply the heuristic to the test set, the ith benchmark.
So if we wish to test our technique on the compress bench-
mark, we first train using the results from all programs except
compress. This way we never “cheat” in evaluating our heuristic
on a program by having prior knowledge of that program.

3 For total time, we ran each benchmark once and repeated this at least 5
times. For running time, we ran SPECjvm98 benchmarks 26 times remov-
ing the first run which includes the compilation costs of the program. For
DaCapo+, which are longer running programs, we ran each program at least
5 times.



Testing on DaCapo+ To provide a different evaluation, we
trained our heuristic on all the SPECjvm98 benchmarks and ap-
plied it to an entirely new benchmark suite, DaCapo+, of which
the heuristic has no prior knowledge. The training set and the test
suite DaCapo+ are entirely distinct.

4.6 Training

For training, we exhaustively generated all optimization configura-
tions for optimization levels O0 and O1. Given optimization level
O0 consists to 4 optimizations and optimization level O1 consists
of another 5 additional optimizations, this gives us 16 and 512 pos-
sible settings, respectively. Optimization levels O0 and O1 are sub-
sets of O2, so we were able to use the exhaustively enumerated data
for training a logistic regressor for O2. We randomly enumerated an
additional 1000 optimization configurations to train the O2 logis-
tic regressor. For each optimization configuration we recorded total
execution times on a per method basis. These timings were used
for training the logistic regressors where we select the optimization
setting which gave the smallest total execution time.

Selection threshold Each logistic regression model returns the
probability whether an optimization should be applied. We there-
fore have to make a decision as to the probability threshold be-
yond which we will apply the optimization. If p = 0.5 then the
optimization can equally be applied or not - there is no conclusive
decision. In our experiments, we make the conservative assumption
that p > 0.6 before we apply an optimization. Some investigation
showed the value 0.6 to be a reasonable value to use. Of course it
is also possible to learn the ideal threshold, but this is beyond the
scope of the paper.

5. Results
In this section, we apply our trained logistic regressors to our
benchmark suites and compare their performance against using the
default heuristic. The default heuristic is to apply all 4 optimiza-
tions at level O0, all 9 optimizations at level O1, and all 20 opti-
mizations at level O2. For each of the three different optimization
levels available in the Jikes RVM compiler(O0, O1, and O2), we
have a specifically trained regressor that replaces the default heuris-
tic.

We first discuss our results applying our logistic regressors
to optimize SPECjvm98, then discuss our results optimizing Da-
Capo+. We note here that all timings include computation of fea-
tures for each method which is a simple linear pass as well as the
computation involved in applying our learned heuristic. The cost of
computing features and applying our heuristic function is typically
less than 1% of total compilation costs.

5.1 SPECjvm98

We now discuss the performance of our logistic regressors on the
SPECjvm98 benchmarks relative to the default settings. The results
are presented in Figures 4(a) through 4(d).

Opt Level O0: We first applied logistic regression to optimiza-
tion level O0. Under this scenario, we reduce average total time
down by 4%. Most notably we reduce the total time of mpegaudio
by 23%.

It is worth noting that these results are similar to the results in
Figure 1 where we show the results of applying the best setting
found for each method. This provides evidence that our logistic re-
gressor has learned the correct flag settings from this data set and is
also an indication that the features used make our data linearly sep-
arable. Thus, because we are able to selectively apply optimizations
to each method, we are inhibiting optimizations when they degrade
performance and only applying them when they are beneficial.

We also get a significant reduction in running time of 5% on
average. Again, we significantly reduce running time of mpegaudio

by 26%. Along with mpegaudio, we are able to reduce running time
of 3 other programs.

Opt Level O1: For optimization level O1, our learned models
give us better total time and running time on average, 3% and 2%
respectively.

Again, if we look at the results when applying the best flag
found for each method, we see there is only a modest improvement
we can achieve on total time or running time over the default.

Opt Level O2: For optimization level O2, we achieve signifi-
cant improvements over the default. Our logistic regressor learned
that a substantial number of optimizations at this level do not im-
pact performance and therefore should not be applied.4 Thus, it
is possible to significantly reduce compilation time and total time
over the default. This comes at no change in running time on av-
erage. Thus, we are able to reduce total time of this scenario sub-
stantially (by 29% on average) with no change in running time on
average.

Adaptive: The standard model of execution used by today’s
modern Java JIT compiler is an adaptive scenario. Under the adap-
tive scenario, Jikes RVM uses multi-level selective optimization,
that is, multiple optimization levels are used and the most impor-
tant methods are optimized multiple times, each time with at suc-
cessively higher optimization level. When a method is optimized at
a particular level, the logistic regression trained for that level can
be used in place of the default heuristic.

Under the adaptive scenario, our learned models reduces total
time on average by 1%. This comes from improvements in total
time for compress (3%), jess (3%), and javac (2%). We were also
able to reduce the running time of most SPECjvm98 benchmarks,
up to 5% for compress and javac. This leads to an average de-
crease of 2% over the default. There are several reasons why we
are unable to improve performance under the adaptive scenario for
these benchmarks. First, under the adaptive scenario, the optimiz-
ing compilers is only used for a small proportion of all methods
compiled. Because most methods in this scenario are compiled with
the baseline compiler we do not benefit from reductions in compile
time. Second, the adaptive setting in Jikes RVM has been highly
tuned for the performance of SPECjvm98 benchmarks. Therefore,
there is little room for improvement with regards to running time
on top of the extensive hand-tuning that has already been done.

5.2 DaCapo+

Next, we applied the logistic regressors that were trained using
SPECjvm98 training data to the DaCapo benchmark suite and
two additional benchmarks, ipsixql and pseudojbb. The results are
presented in Figures 5(a) through 5(d).

For optimization level O0, we obtain average decreases of 3%
for running time and 2% for total time. We get substantial decreases
in running time for fop (9%), jython (5%), and antlr (8%) and for
these benchmarks we also achieve some benefit in total time.

For optimization level O1, we get an even larger decrease in
running time of 13% on average with a smaller decrease in total
time of 2% on average. At this level, we can decrease the running
time of jython significantly (11%) and we get a large decrease in
running time for antlr at 63%. We do get a slow down for two
programs, fop and pmd, however because of a large decrease from
antlr our average is still significantly better than the default. Again,
we see substantially improved performace with optimization level
O2 using our regressors. We achieve a large decrease in average
total time of 33% and an even more dramatic decrease in average
running time of 56%.

Clearly many optimizations performed by default degrade per-
formance. By selectively applying optimizations at level O2 (and

4 We show this in more detail in Section 6
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(a) Logistic Regressor for Opt Level O0 on SPECjvm98
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(b) Logistic Regressor for Opt Level O1 on SPECjvm98
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(c) Logistic Regressor for Opt Level O2 on SPECjvm98

� �

��
�
��
��
�

��
��

�	

�
�	
�� �

�	
�	
�

�
��
�	
��
��

�	
��

��
��
�
�	
�

�

���

���

���

���

���

���

���

���

���

�

���

 �	�����

!������ "��	#

(d) Logistic Regressor for adaptive on SPECjvm98

Figure 4. Performance of logistic regressors for the SPECjvm98 benchmarks. Table 1 lists the optimizations controlled by the regressor at
each optimization level. The results are relative to the default setting, that is, a 1.0 indicates performance equal to the default setting and
below 1.0 is performance better than the default.

to a lesser extent at level O1), we can improve running and total
time significantly. Note for optimization levels O1 and O2, we can
decrease running time of DaCapo+ benchmarks much more than
SPECjvm98 benchmarks. We believe this is due to the Jikes RVM
compiler being highly tuned toward the SPECjvm98 benchmarks.
In effect, the optimization heuristics in the Jikes RVM compiler
have been specialized to the SPECjvm98 benchmarks. In contrast,
using logistic regression allows us to construct heuristics that are
more general and that can significantly improve performance on
”unseen” benchmarks.

Finally, we apply our learned models under the adaptive sce-
nario to our DaCapo+ suite. For most benchmarks we get a decrease
in total time. For fop and ps, we improve total time by at least 10%
and for ps we get a 5% improvement. On average, we decrease total

time by 4%. We get smaller decreases in running time leading to a
1% decrease on average.

6. Discussion
This section discusses the optimizations that are applied by the
logistic regressors for the different optimization levels. Tables 5,
6, and 7 show the percentages that each optimization was ap-
plied at the different optimization levels for the hot methods of
the SPECjvm98 benchmarks.5 To calculate these percentages we
counted the number of times each optimization was applied at a
specific level when compiling the hot methods of a benchmark

5 Here, we define the hot methods of a benchmark to be those methods that
run long enough to trigger recompilation in adaptive mode.



� �

��
�

��
��
��

�	



��
�

�
���

��
��

�
��
�

��
��
��
�

��
��
	
�
�

�

���

���

���

���

���

���

�� 

��!

��"

�

���

#���$�%���#�

&������ '���

(a) Logistic Regressor for Opt Level O0 on DaCapo+
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(b) Logistic Regressor for Opt Level O1 on DaCapo+
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(c) Logistic Regressor for Opt Level O2 on DaCapo+
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(d) Logistic Regressor for adaptive on DaCapo+

Figure 5. Performance of logistic regressors for the DaCapo+ benchmarks. Table 1 lists the optimizations controlled by the regressor at each
optimization level. The results are relative to the default setting, that is, a 1.0 indicates performance equal to the default setting and below 1.0
is performance better than the default.

and divided by the total number of hot methods compiled for that
benchmark.

The tables show that the importance of each optimization differs
for the different benchmarks. For instance, Table 5 shows that
CONSTANT PROP is applied to 81% of raytrace’s hot methods
and is therefore important to that benchmark while it is only applied
to 57% of jack’s hot methods and is therefore not as important
for that benchmark. On the other hand, CSE is more important
to jack (applied 84%) than raytrace (applied 66%). This indicates
that certain optimizations are more important for some benchmarks
and not for others further motivating the need for method-specific
optimization configurations.

Tables 5 and 6 show that the importance of an optimization
depends on the other optimizations it might enable or disable at
that optimization level. For example, BRANCH OPTS LOW is

not very important at optimization level O0 (with the exception
of javac). However, at optimization level O1 this optimization be-
comes very important to most of the benchmarks. This is due to the
enabling effect BRANCH OPTS LOW has on other optimizations
at this level.

Tables 6 and 7 show that many optimizations are not important
for all benchmarks. These optimizations can perhaps be removed or
turned off by default with little or no effect on overall performance.
The tables also show which optimizations are consistently impor-
tant for all benchmarks. This can give an indication to JVM de-
signers which optimizations should be given highest priority when
developing new JIT compilers.



Optimizations compress jess raytrace db javac mpegaudio jack
BRANCH OPTS LOW 20 0 11 12 60 22 24
CONSTANT PROP 40 25 81 75 95 70 57
CSE 20 75 66 88 81 78 84
REORDER CODE 0 16 59 75 81 44 65

Table 5. The percent of level O0 optimizations applied to the hot
methods of each benchmark.

Optimizations compress jess raytrace db javac mpegaudio jack
BRANCH OPTS LOW 75 4 77 100 95 73 54
CONSTANT PROP 50 80 85 0 69 29 63
CSE 100 91 97 100 98 100 100
REORDER CODE 50 4 82 50 50 67 97
COPY PROP 100 100 100 100 100 100 100
TAIL RECURSION 0 24 87 100 89 89 34
STATIC SPLITTING 0 27 31 0 19 6 20
BRANCH OPTS MED 100 11 90 100 98 97 69
SIMPLE OPTS LOW 100 18 36 100 89 95 100

Table 6. The percent of level O1 optimizations applied to the hot
methods of each benchmark.

Optimizations compress jess raytrace db javac mpegaudio jack
BRANCH OPTS LOW 100 78 88 100 96 98 91
CONSTANT PROP 0 11 25 50 24 49 60
CSE 50 2 35 17 26 70 9
REORDER CODE 100 27 70 83 7 92 97
COPY PROP 100 100 100 100 100 100 100
TAIL RECURSION 25 96 80 83 96 54 69
STATIC SPLITTING 0 7 35 0 98 38 3
BRANCH OPTS MED 50 27 32 33 0 49 26
SIMPLE OPTS LOW 0 22 57 50 95 10 17
WHILES INTO UNTILS 100 93 40 33 4 86 69
LOOP UNROLL 50 0 5 0 0 0 14
BRANCH OPTS HIGH 50 98 92 100 91 57 100
SIMPLE OPTS HIGH 0 0 2 0 1 0 23
LOAD ELIM 100 100 100 100 16 71 100
REDUNDANT BRANCH 100 89 100 100 97 100 100
SSA 100 100 100 100 100 100 100
EXPRESSION FOLD 0 0 0 0 25 25 0
GLOBAL COPY PROP 25 2 20 0 3 6 11
GLOBAL CSE 0 4 12 17 33 41 23
COALESCE 50 0 8 0 2 30 6

Table 7. The percent of level O2 optimizations applied to the hot
methods of each benchmark.

7. Related Work
There have been a number of paper aimed at using machine learn-
ing to tune individual optimization heuristics.

Moss et al. [16] published one of the first papers showing that
machine learning could successfully construct effective and effi-
cient compiler heuristics. They used supervised learning techniques
to construct a heuristic function for instruction scheduling. The au-
tomatically constructed heuristic was able find schedules that per-
formed as well as a highly-tuned hand-crafted instruction sched-
uler.

Calder et al. [6] used supervised learning techniques, namely
decision trees and neural networks, to induce static branch predic-
tion heuristics. Our learning methodologies are similar, but there
are important differences. First, they began with a rich set of hand-
crafted heuristics from which to derive their features. In contrast,
we had no pre-existing heuristics from which to draw features. Sec-
ond, their technique made it inherently easy to determine a label for
their training instances. The optimal choice for predicting a branch
was easily obtained by instrumenting their benchmarks to observe
each branch’s most likely direction. We obtained our labels using
method timings as we discuss in Section 4.6. Also, because our
timing measurements are imprecise and we do not take interaction
effects of different methods into account, it is impossible to deter-
mine the optimal choice of whether or not to apply an optimization.

Stephenson et al. [20] used genetic programming (GP) to tune
heuristic priority functions for three compiler optimizations: hyper-

block selection, register allocation, and data prefetching within the
Trimaran’s IMPACT compiler. For two optimizations, hyperblock
selection and data prefetching, they achieved significant improve-
ments. However, these two pre-existing heuristics were not well
implemented and most of the improvements came from producing
400 random heuristics and choosing the best heuristic from this
group. The authors even note that turning off data prefetching com-
pletely is preferable and reduces many of their significant gains.
For the third optimization, register allocation, iterating the GP im-
proved over the initial population. However, for this optimization
they were only able to achieve on average a 2% increase over
the manually tuned heuristic. Stephenson et al. [21] use machine-
learning to characterize the best unroll loop factor for a given loop
nest, and improve overall by 1% over the ORC compiler heuris-
tic with SWP enabled. Both of these approaches are successful in
automatically generating compiler heuristics for a single optimiza-
tion.

Cavazos et al. [7] describe an idea of using supervised learning
to control whether or not to apply instruction scheduling. They
induced heuristics that used features of a basic block to predict
whether scheduling would benefit that block or not. Using the
induced heuristic, they were able to reduce scheduling effort by
as much as 75% while still retaining about 92% effectiveness of
scheduling all blocks. However, they were unable to reduce the total
execution time for the SPECjvm98 benchmark suite.

Monsifrot et al. [15] use a classifier based on decision tree
learning to determine which loops to unroll. They looked at the
performance of compiling Fortran programs from the SPEC 95
benchmark suite and some computational kernels using g77 for two
different architectures, an UltraSPARC and an IA64. They showed
an average improvement over g77’s hand-tuned unroll heuristic of
3.1% and 2.7% on the IA64 and UltraSPARC, respectively.

Lagoudakis et al. [13] describe an idea of using features to
choose between algorithms for two different problems, order statis-
tics selection and sorting. The order statistics selection problem
consists of an array of n (unordered) numbers and some integer in-
dex i, 1 <= i <= n. The problem involves selecting the number that
would rank i-th in the array if the numbers were sorted in ascending
order. The authors used reinforcement learning to choose between
two well-known algorithms: Deterministic Select and Heap Select.
The learned algorithm outperformed both these algorithms at the
task of order statistics selection. The second problem they look at is
the sorting problem, that is, the problem of rearranging an array of
n (unordered) numbers in ascending order. Again, the authors used
reinforcement learning to choose between two algorithms: Quick-
sort and Insertion Sort. The learned algorithm again was able to
outperform both of these well-known algorithms.

Rather than optimizing a single heuristic, others have looked at
searching [22, 10, 9, 8, 12, 17, 14] for the best set or sequence of
optimizations for a particular program. Cooper et al. [9] propose a
number of algorithms to solve the compilation phase ordering prob-
lem. Their technique searches for the best phase order of a partic-
ular program. Such an approach gives impressive performance im-
provements but has to be performed each time a new application is
compiled. While this is acceptable in embedded environments, it is
not suitable for dynamic compilation.

Kulkarni et al. [12] introduce techniques to allow exhaustive
enumeration of all distinct function instances that would be pro-
duced from the different phase-orderings of 15 optimizations. This
exhaustive enumeration allowed them to construct probabilities of
enabling/disabling interactions between the different optimization
passes. Using these probabilities, they constructed a probabilistic
batch compiler that dynamically determined which optimization
should be applied next depending on which one had the highest
probability of being enabled. This method however does not con-



sider the benefits each optimization can potentially provide when
applied. In contrast, we train our logistic regression on the best
optimizations found for each method, and therefore our technique
learns which optimizations are beneficial to apply to ”unseen”
methods with similar characteristics. However, the techniques pre-
sented in this work would allow a larger exploration of the opti-
mization space than we attempted. By exploring a larger part of the
search space, we would likely improve the data used for training
our logistic regressors.

Pan et al. [17] partitioned a program into tuning sections and
then developed fast techniques to find the best combination of
optimizations for each of these tuning section. They are able to
reduce the time to find good optimization settings from hours
to minutes. This technique, although useful in static compilers
(especially those targetting embedded processors), is not applicable
to dynamic compilers where large optimization times can easily
outweight any benefits gained from the optimizations. However,
these techniques could also be beneficial during the training data
generation stage of our logistic regressor technique. Specifically,
the technique to test different optimization settings on a tuning
section during a single run of the program would allow us to
increase the number of optimization settings we evaluate. This
would also improve the quality of the training data we used for
our logistic regressors.

Agakov et al. [1] show that the iterative compilation search
space can be reduced by learning from other programs. They con-
struct a set of probabilities, called search distributions, for a set of
training programs and use features to choose with nearest neigh-
bor which search distribution to use for a new program. However,
this approach is to select optimization configurations for a whole
program and still requires multiple runs of the program to achieve
significant improvement.

In the area of predictive modelling, Zhao et al. use manually
constructed cost/benefit models to predict whether to apply PRE
or LICM[24]. They achieve 1% to 2% improvement over always
applying an optimization, but at a cost of greatly increasing compi-
lation time (by up to 68%). Because it is expensive to apply, their
predictive models would not be beneficial in a dynamic compila-
tion setting. Also, their models appear to be quite complicated and
have to be manually constructed. Our models, on the other hand,
are simple and automatically constructed using machine learning.

Yotov et al. [23] describe a model-based approach for optimiz-
ing BLAS libraries. They show that using a model-based approach
to evaluate the performance of an optimization can be as effective
as empirical evaluation. Again, their models are complicated and
require manual tuning. In contrast, our regressor models are auto-
matically constructed and have the potential to outperform hand-
tuned models.

Lau et al. [14] present an online framework, called performance
auditing, that allows the evaluation of the effectiveness of opti-
mization decisions. The framework allows for online empirical op-
timization, which improves the ability of a dynamic compiler to
increase the performance of optimizations while preventing per-
formance degradations. Instead of using models to predict an opti-
mization’s performance they compile different versions of the same
method with different optimization settings and then run each of
these different versions evaluating their performance empirically
on the real machine. Combining these techniques with the tech-
niques presented in this paper would be interesting future work.
For example, one could use machine learning to create a small set
of optimization settings, which could be explored online using per-
formance auditing.

Georges et al. [11] present a technique for measuring processor-
level information gathered through performance counters and link-
ing that information to specific methods in a Java program. They

study method-level phase behavior of Java applications to iden-
tify methods that exhibit similar or dissimilar behavior within the
phases. They characterize methods using a number of performance
counter events such as cache miss rates, TLB miss rates, branch
misprediction rates, etc. This information can allow developers to
identify performance bottlenecks and to gather insights on how a
Java application interacts with the VM. For our logistic regres-
sion techniques, we trained using only static features of a method
which are cheaper to collect than dynamic performance counter in-
formation. However, in future work, we would like to investigate
whether dynamic features (perhaps in combination with static fea-
tures) could improve the predictions of our machine learning tech-
niques.

8. Conclusions
This paper has shown that method-specific optimization settings
can give significant performance improvements within the Jikes
RVM JIT compiler. It has also demonstrated that a simple machine
learning technique can automatically derive a predictive model that
gives significant performance improvements over existing schemes.
We show total execution time reductions of 25% and 51% on the
SPECjvm98 and DaCapo+ benchmark suites respectively. To our
knowledge this is the first paper to demonstrate that a predictive
model trained with machine learning can be successfully used as a
method-specific optimization strategy within a dynamic compiler.
Future work will investigate learning the best ordering of trans-
formations on a per method basis and applying this approach to
the adaptive compilation setting. We would also like to experi-
ment with different kinds of features, such as dynamic performance
counter features, and perhaps investigate the use of online empir-
ical evaluation in order to evaluate a few optimization settings for
each method that a learned model predicts as being promising.
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