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Abstract
Hardware implementations of a given computer architecture proliferate quickly; every few
months new generations of chips are announced. However compilers do not keep this pace,
because of the time consuming process of tailoring optimization and code generation for spe-
cific architectures. We want to automate parts of the compiler development process using
adaptive techniques, such as machine learning. In particular, we consider local instruction
scheduling — the ordering of instructions of a basic block for efficient execution on a modern
superscalar processor. This is an important problem in compiler optimization, because it is
easy for programs to suffer very bad performance (twice the time or more of good schedulers)
with naive scheduling algorithms. Choosing the optimal schedule sequence requires looking
at all legal (subject to data-dependence constraints) permutations — in practice the number
of legal permutations is very large though lower than the worst case, n!. Heuristics may find
close to optimal solutions, but due to the requirement that scheduling be done in linear time,
the heuristics applied must be kept simple. Hand-crafted heuristics are difficult to devise, and it
is not easy to adapt them to new hardware implementations. In this paper, we describe a novel
approach to instruction scheduling. We incorporate a machine learning component, such as a
neural network or a decision tree into an instruction scheduler, in order to construct a sched-
uler that is flexible. We found that the technique is effective, in that the schedules produced
are exceptionally close to the hand-crafted schedulers of the commercial compilers (and by
extension to the optimum). Given a set of good features, the best of these adaptive instruction
schedulers produces code with execution cost no worse than 1% slower than a manufacturer
supplied scheduler provided by Digital.

1 Introduction

As computer architectures become increasingly more complex, more sophisticated compiler opti-
mizations are required to take advantage of new features of the architecture, especially in instruc-



tion scheduling. However, the fast paced development of new technology precludes spending a
large amount time handcrafting complicated instruction schedulers. Hand-crafting the instruction
scheduler also means the compiler writer has less time to spend on other parts of the compiler,
which can further increase the potential of performance gains. Also, computer engineers desire
the ability to experiment with many different designs of an architecture to measure gains of one
architecture over another. This not only requires being able to quickly prototype the architectures
in question (either by using Field Programmable Gate Arrays or simulators), but also requires the
quick prototyping of optimizing compilers for those architectures. Supporting quick prototyping
of optimizing compilers precludes hand tuning any part of the compiler, including the instruction
scheduler. We propose using a machine learning component, such as a neural network or decision
tree, to automate generation of the heuristics used to schedule instructions.

So we ask the following questions:

1. Is it possible to apply a generic greedy algorithm guided by the evaluation of certain features
of the instructions being scheduled?

2. Can the decision-making of such a greedy scheduling algorithm be constructed by a machine
learning component (MLC), such as a neural network or a decision tree?

We extracted basic blocks from Fortran programs in the SPEC95 benchmark suite, compiled
on the Digital Alpha architecture for the 21064 chip implementation[1]. We computed a set of
features that served as input to a MLC, either a comparator artificial neural network (CANN)
or a decision tree. The MLCs were trained to choose the better of two candidate instructions
(when either could legally follow). We performed cross-validation: we trained the MLC on all
benchmarks save one, then tested it on that one. The testing phase consisted of integrating the
trained network or induced decision tree into an instruction scheduler. Basic blocks were scheduled
using this instruction scheduler and then run on a simulator of the target architecture to evaluate
the costs of the schedules. We found that the technique is effective, in that the schedules produced
were reasonably close to the hand-crafted heuristics of a public domain Digital scheduler (and
by extension to the optimum), within .09%-1.43%, and .54% on the average for one experiment.
This paper presents preliminary results of using neural networks and decision trees to combine and
derive the importance of features in an instruction scheduler.

In Section 2, the problem of local instruction scheduling is described. Our experimental frame-
work is presented in Section 3. This section elaborates on the process of building and evaluating a
MLC scheduler, from training to scheduling. In Section 4, we describe the kinds of features found
in our features sets. In Section 5, we formulate the local scheduling problem as a machine learn-
ing problem and describe the two MLCs that were used to solve this problem. The methods used
to evaluate the MLC schedulers are presented in Section 6. In this section, we also describe the
different feature sets and benchmarks used in our experiments. The results of our experiments are
presented in Section 7. The idea of using machine learning in instruction scheduling is not new, but
previous techniques were inadequate for use with modern hardware and commercial compilers. In
Section 8, we present previous work in this area. In Section 9, we discuss future areas of work for
this research; Section 10 concludes.
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Figure 1: On some architecture implementation.

2 The Local Instruction Scheduling Problem

A basic block consists of a list of instructions with a single entry and single exit point. Local in-
struction scheduling pertains to scheduling the instructions of a single basic block without regard
to the effect that schedule may have on other blocks that follow. Global instruction scheduling
techniques, such as trace scheduling [2] and percolation scheduling [3], pertain to methods of
considering multiple basic blocks when scheduling. Global instruction scheduling may be an in-
teresting machine learning problem and can lead to more benefits than local scheduling alone;
however, these techniques do not preclude the need for good local scheduling and therefore our
research is an essential first step. The rest of the paper pertains to local instruction scheduling,
unless otherwise specified.

At any point during scheduling of a basic block, there is sequence of instructions that have
been scheduled, the partial schedule, and a directed acyclic graph, called a data dependence dag
(DDD), of instructions remaining to be scheduled. The DDD represents the data dependencies of
the instructions in the basic block. Therefore, before scheduling can begin, a DDD of instructions
must be built for the basic block to be scheduled. A final schedule consists of a configuration in
which all instructions have been removed from the DDD and placed in the sequence of scheduled
instructions. The cost of a schedule is the number of cycles the machine takes to execute the
scheduled sequence. Figure 1 shows a sequence of instructions (a) that make up a basic block
and its corresponding DDD (b). The figure also shows all the possible schedules for the DDD (c),
the latencies of the instructions in the sequence (d), and estimated scheduled times (e) for some
architecture implementation. As can be seen in the figure, some schedules are better than others.

Our method of scheduling follows the traditional approach to instruction scheduling : instruc-
tions are scheduled from the roots of the DDD to the leaves, and the DDD is maintained along the
way to determine which instructions are candidates for scheduling. We illustrate this approach in
Figure 2, by showing the steps required to arrive at the schedule ACBD for the DDD in Figure 1.
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Figure 2: The sequence of scheduling steps to schedule DDD in Figure 1 to obtain schedule ACBD.

In Step (a), instruction A is the only instruction that has no dependencies on other instructions in
the basic block (this makes the instruction a root) and therefore must be scheduled first (at any
scheduling point, only the roots in the DDD can be scheduled). As we schedule instruction A in
Step (b), we remove its corresponding node and its outgoing dependence edges from the DDD. Re-
moving dependencies can make other instructions roots, causing these instructions to be available
for scheduling. After we schedule instruction A, we can schedule either instruction B or instruction
C, since neither of them have predecessors in the DDD. In Step (c), the scheduler chooses instruc-
tion C to schedule next. Since instruction D depends on B, D does not become a root of the newly
formed DDD and cannot be scheduled. Step (d) corresponds to the scheduling of instruction B and
its node and outgoing dependence edge being removed. In Step (e), we reach a final legal schedule
by scheduling instruction D. The last node from the DDD is removed and the schedule contains
all the instructions from the original DDD.

Instruction scheduling requires the use of a specific algorithm to construct schedules from
basic blocks. The algorithm must not be exhaustive and if backtracking (i.e., the unscheduling
of instructions to investigate alternatives) is used it should be done in a restricted amount. Our
system supports backtracking, but we have not yet used it in the scheduling algorithm. A DDD
induces a partial order to the basic block, therefore the number of final legal schedules for the
basic block corresponds to the number of total orders for the DDD. Brightwell and Winkler [4]
showed that determining the actual number of total orders in a dag, given a partial ordering, is
#P-complete, thus exhaustive scheduling is infeasible. We concentrate on the greedy scheduling
algorithm, which schedules the best instruction at the decision points, that is at the decision points
we schedule the instruction that adds the least cost when added to the set of instructions already
scheduled. “Best” is derived from the heuristics embedded in the scheduler.

We postulate that any heuristics used by a greedy scheduling algorithm can be calculated from
a set of features that describe the present state of the scheduling process and the characteristics
of the candidate instructions, provided such a set of features is well chosen . The present state
of the scheduling process embodies the processor state and some aspects of the remaining DDD
structure. The characteristics of the candidate instructions embody properties of the DDD structure
as seen from their point of view. The results presented in Section 7 verify that heuristics can be
calculated from a set of features.

Every schedule, whether partial or complete with respect to the basic block, has a well-defined
cost associated with it, the number of cycles that the schedule will take to execute the schedule’s
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Figure 3: Adaptive Instruction Scheduler Framework

instructions. We obtain the cost by simulating each basic block using a simulator provided by Dig-
ital. This simulator models the Alpha 21064 architecture implementation. It simulates memory
and chip resource constraints, including functional units pipelines, register usage, and latency of
instructions. Another technique for simulating the cost of basic blocks called self-simulation is
proposed in [5]. Baker there proposes a method, which, with minor modifications to chip imple-
mentations, would allow a compiler to execute individual basic blocks directly on the hardware.
This is an intriguing concept since it would allow a MLC to learn intricate details of the hardware
automatically, instead of someone having to provide them by hand.

3 Experimental Framework

Figure 3 depicts the different phases that are completed during the construction and evaluation of
our MLC instruction schedulers. Before these phases begin, analyzer routines are used to extract
basic blocks from our corpus of executable benchmarks. Other analyzer routines generate profile
information, which is needed for estimating the performance of our MLC scheduler and for per-
forming weighted training in our neural networks (explained in Section 5.1.1). The first phase of
our experimental framework, uses the basic blocks created by our analyzer routines for generating
training files. During this phase, a scheduler is given a certain amount of time in which to perform
exhaustive scheduling. Enough time is allotted so that, for most blocks, the scheduler is able to
find optimal schedules. For many large blocks, however, exhaustive scheduling is impossible and
scheduling is therefore terminated after the time allotted. After we exhaustively schedule a block,
we output features for that block into a file which will be used for training our MLCs.

Features are generated for the instructions at each decision point. A decision point is a place in
the schedule where there is more than one instruction that can be scheduled. Thus a decision has
to be made. At each of these decision points, we output a line of features (described in Section 4)
for each candidate instruction together with three additional features: the cost of the best possible
schedule that can be achieved by scheduling this instruction, the cost of the best possible schedule
for the best candidate at this decision point, and the best possible schedule cost for that block. If
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we were not able to exhaustively schedule a block, we use the best cost that was found before
scheduling was terminated.

There are currently over three hundred and fifty features that can be generated for each line of
features. This number far exceeds the capability of most learning techniques for size of data sets
we were training over (tens of thousands), thus we assume a subset of features deemed interesting
would be selected for learning. The second phase is training the machine learning component
with filtered data sets. Once the set of features to be experimented with is chosen, the original
feature files are filtered to create the data sets with which to train the MLC. Given we know the
best possible schedule cost of each candidate instruction if it were to be scheduled at a certain
decision point, we know which candidate is best to schedule and we can train a machine learning
component, to pick this best candidate in a supervised setting. We elaborate on how we phrase
the problem as a machine learning problem in Section 5. The third phase is the integration of the
trained MLC into a scheduler. During this phase, learning is turned off, otherwise we would slow
scheduling to an unacceptable level. In this phase, we also schedule blocks with other schedulers
we wish to compare against (e.g., a random scheduler). In order to evaluate the performance of
our MLC schedulers, we schedule basic blocks from our benchmarks and measure their schedule
cost with the simulator. Thus in the fourth and final phase, we measure the cost of the basic blocks
scheduled with each of the different schedulers. In our experiments, we scheduled with our MLC
schedulers and several different schedulers described in Section 6.4. As mentioned, the scheduler
was implemented through simulation — it was not actually implemented in the back end of a
compiler — therefore a simulator was required. We used an instruction scheduler and an Alpha
21064 simulator both provided to the public domain by Digital. A large amount of code was built
around these two components, including an interface to the simulator and scheduler and code for
feature generation. All code relys heavily on ATOM, an instrumentation tool for Digital Alpha
workstations. With this set of tools, we were able to integrate our trained MLCs into a scheduler
quite effectively. The simulator was developed by computer architects at Digital, therefore we feel
it is a good indication of actual costs incurred by basic blocks at run-time on this particular chip
implementation.

4 Features

The features we use can be classified into three categories depending on the amount of knowledge
about the architecture required to compute the features. The categories are black-box (no internal
knowledge of the architecture needed), gray-box (a limited amount of knowledge of the architec-
ture needed), and white-box (deep internal knowledge of architecture required). Black box features
use the original DDD, the partial DDD, and the partial schedule for their calculation, but do not
make any assumptions about computer architecture in doing so. Gray and white box features, also
use these structures, but in addition they take advantage of characteristics of the machine for which
we are building a scheduler. Because of the accurate information these features provide, we postu-
late that white and gray box features are essential in building schedulers that are competitive with
those found in commericial compilers. Results presented in Section 7.1 and in Section 7.3.3 seem
to support this hypothesis.

These categories are also a good indication of which features must be modified when consider-
ing a new architecture. For new architectures the computation of black box features should remain
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the same, some of the gray box feature calculation may need to be modified, and most, if not all,
of the algorithms used to compute white box features will have to be rewritten or at least adapted
a fair amount. The selection of features we implemented was influenced by our understanding
of the kinds of information needed by the various heuristics described in the literature. Some of
the features can take parameters, which allows us to vary the amount of information or the level
of detail returned by the feature. For instance, one feature, Scheduling Pressure of an Instruction
Class, can take a parameter specifying how far back in the schedule we need to look for pressure of
a certain instruction class. We also provide several representations of same feature when appropri-
ate. This allows us to use input representations that better suit the learning technique being used.
For example, the feature Instruction Class is provided as a number between 0 and 18. This should
be fine for decision trees, but given that this feature represents unordered categorical data, we also
provide it as a 1-of-n binary encoding, which may be more appropriate for neural networks. It also
helps to categorize the features based on the information they carry. Features can carry information
about the basic block as a whole, the current partial schedule, a candidate instruction, or a com-
bination of both a candidate instruction and the current partial schedule. That is, we can classify
features based on whether they are independent or dependent of the candidate instruction waiting
to get scheduled. Features that are independent of any candidate instruction describe the current
partial schedule or the DDD, without regard to any candidate instruction waiting to be scheduled.
When a new instruction is scheduled, these features typically need to be recomputed. Features
of the candidate instruction provide information about the candidate instruction or the candidate
instruction and some other aspect of the scheduling state, such as the DDD. The “combined” fea-
tures describes information about the candidate instruction as it pertains to current partial schedule.
For instance, the feature Last Pred Issued Long Ago is calculated by finding the instruction last
scheduled which the candidate instruction is dependent on. Therefore, this features requires (and
is therefore dependent on) a candidate instruction to be calculated.

5 Scheduling as a Machine Learning Problem

One of our main concerns was formulating the problem as a machine learning problem. For ex-
periments presented in this paper we settled on a method of preference learning, where we present
a MLC with two instructions and train it to prefer the instruction resulting in the lowest schedule
cost. Figure 4 depicts what a typical training pattern for a neural network looks like (the training
patterns for DTs differed only in format). Three sets of features are presented to the MLC. The
first set are independent of the two candidate instructions that are being compared. These features
pertain to the state of the schedule at the current decision point. The second and third set of fea-
tures correspond to one of the candidate instructions to be scheduled. Each line, therefore, pertain
to some state information and the features of two instructions we are comparing. The target values
(or class labels) to be learned are zero or one. A target value of zero corresponds to first instruction
being preferred, and a target value of one pertains to the second instruction being preferred.

5.1 Scheduling using Neural Networks

We required a MLC that could learn preferences of instructions by categorizing a “pattern” or fea-
ture vector that carried information about the instructions which were candidates to be scheduled
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Figure 4: A typical training pattern.

and the current state of the scheduling process. One such MLC is a feed-forward neural network
[6]. A feed-forward neural network has a topology consisting of groups of neurons or units form-
ing layers. There are some number of input units forming an input layer, some number of hidden
units arranged in zero to several hidden layers, and some number of outputs units forming an out-
put layer. In our network topology, each layer i is fully to connect to each layer i

� 1, and these
connections become either excitatory (positive weights), inhibitory (negative weights), or irrele-
vant (weights close to zero) during the training of the network. Input values from training data
are fed simultaneously to the input layer, and the outputs of these units are simultaneously fed to
the first hidden layer. This process continues until the outputs of the last hidden unit are fed as
inputs to the output layer, and the network final output (the instruction preference) is produced. A
neural network’s capacity to learn largely depends on the number hidden units and the input repre-
sentation. We train our neural networks in a supervised setting, that is after input values are given
to the network, the correct response for these inputs is given to the network, which is used in the
backpropagation algorithm for adjusting the weights and thresholds of the units. Backpropagation
is an algorithm that iteratively computes slight changes to all of the weights and thresholds in the
network in the direction of the fastest decrease to the sum of squared errors. Generalization is a
highly desirable quality of NNs. Generalization refers to the neural networks ability to perform
well (classify) on new data different from the data seen in training. It is important that the neu-
ral network does not memorize, or overfit, the training data. To alleviate this problem, we retain
some test data different from the data used for training the network. As the network is learning, its
performance on this test set is monitored. The training process is terminated when the network’s
performance does not improve for the test data. Several algorithms can be used to train a network,
many of which are variants of the standard backpropagation.

Two algorithms we experimented with include Backpropagation with Momentum (BPM) and
Scaled Conjugate Gradient (SCG). BPM uses a momentum term in the standard backpropagation
algorithm. The momentum term introduces the old weight change as a parameter in the computa-
tion of the new weight change. The effect of momentum is that flat spots of the error are traversed
rapidly with a few quick steps, thus increasing the learning speed significantly. SCG performs a
special kind of gradient descent, which uses the gradient vector (first order partial derivatives) and
the Hessian matrix (second-order partial derivatives) of the error function. Unlike standard back-
propagation, which always proceeds down the gradient of the error function, conjugate gradient
methods perform a gradient descent in d � dimensional space, by finding d directions along which
the system is successively transformed. The largest possible step to take that decreases the error
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function in each direction is taken, where the (i � 1)th direction is chosen to be conjugate, with re-
spect to the Hessian matrix, to the previous i directions. After several self-validation experiments
(explained in Section 7.2.1), we chose SCG as the algorithm to update our networks. The results of
these experiments are presented in Section 7.2.1. We found no significant difference between the
two algorithms and SCG had one obvious advantage over BPM that made the choice clear: it took
BPM many iterations to converge, typically between 2000-5000, while SCG normally converged
in less than 50 iterations. SCG was thus much less computationally expensive than BPM.

The type of neural network used depends heavily on the way the scheduling problem is phrased.
Given that we phrased our problem as learning of preferences of which instruction to schedule at
a decision point, we chose to experiment with a comparator neural network structure. Figure 5
depicts the schematic of a comparator artificial neural network (CANN). CANNs were invented
by Tesauro [7] for learning to compare alternative moves for the game of backgammon. A good
description of CANNs and a discussion of their application to load balancing can be found in [8].
Since we are learning to choose the best of n alternatives, as in [8], we noticed the applicability
of this network to our problem. We implemented CANNs using feed-forward neural networks
[6]. Our CANN consisted of three sets of inputs. Each of the two sets on inputs receives features
dependent on one of the candidate instructions involved in the comparison. The third set of inputs
receives features independent of the instructions being compared. A discussion of features can be
found in Section 4.

5.1.1 Weighted versus Unweighted Training

We also considered weighted versus unweighted training. Weighted training allows the learning
algorithm to account for the importance of the basic blocks to program performance. During
weighted training, each training pattern has an importance factor associated with it, which pertains
to the offensiveness of the basic block (i.e., the contribution of the basic block to the total runtime
of the benchmark containing it) that generated the pattern. The weight of a training pattern is
multiplied by η, the step size taken by the gradient descent, before it is used in the backpropagation
algorithm. Thus, training patterns generated from important basic blocks have a greater effect on
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the MLC than training patterns from less important blocks.
It is imperative that important basic blocks be scheduled well, therefore treating them differ-

ently may increase our scheduling performance. In one experiment using CANNs, we noticed that
bad scheduling of just one important basic block introduced over a 30% performance degradation
to the overall execution cost of the benchmark. Important basic blocks tend to be larger more fre-
quently executed blocks, such as blocks typically found in inner loops. A block’s importance, and
therefore the weights of the training patterns from that block, are generated from profile informa-
tion. The results from training over the first feature set we used suggested that CANNs trained with
weighted patterns schedule blocks better than those trained with unweighted patterns. This sug-
gested that important basic blocks had properties inherently different from those of smaller blocks,
and that these properties were important to the learner. In training our CANNs, the weights were
used to increase or decrease (depending on the weight of the pattern) the step size of the gradient
descent and thus we were biasing learning to the important basic blocks. Interestingly, weighted
training with a better set of features did not help in the learning. Training using weighted patterns
was not been integrated into a decision tree package, and is left as future research.

5.2 Scheduling using Decision Trees

We formulated the problem of instruction scheduling into one of classifying patterns. Given a set
of input features respresenting present state and two instruction candidates, we train a MLC to
label the pattern, either with a 0, corresponding to the first instruction being preferred over the
second, or a 1 corresponding to the second instruction being preferred over the first. Formulating
the problem in this manner, allowed us to use a technique of building classifiers from training
data known as decision trees (DT). A DT is a structure consisting of either a leaf, indicating a
class, or a decision node that specifies a test, corresponding to the value of a single attribute. Each
outcome of the test has a branch and a subtree associated with it. There are effective and efficient
algorithms for DT induction directly from a corpus of training data consisting of pattern instances
with their assigned classification [9]. As with neural networks, it is possible for a decision tree
to overfit to training data. We address this problem by pruning the resultant trees induced by the
decision algorithm. Pruning consists of discarding one or more subtrees and replacing them with
leaves. The DT induction experiments reported here were performed using the ITI system [10].
For experiments comparing CANN and DT schedulers, we use the same training data for both
MLCs (with the exception of slight formatting changes). One advantage of decision trees over
neural networks is that the generated trees can be directly interpreted by experts in the domain of
interest. Figure 6 depicts a decision tree built with ITI with the Digital Predicate features explained
in Section 7.2 (in the figure the features have been converted from numerical values to categorical
labels for facillitate the interpretation of the tree).

6 Evaluation Methods

Learning algorithms are typically measured by their accuracy over an unseen test set. Some exper-
iments proved this was an inadequate method to evaluate our trained MLCs. A basic block may
have several decision points and at each decision point there may be several candidate instructions
from which to choose. The decisions in our training files correspond to intermediate decisions and
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are not a direct measure of how well we can schedule instructions. In fact, we found that high accu-
racy on test data did not imply one had a good scheduler. We therefore created schedulers that used
trained MLCs. The quality of a MLC was measured by the total estimated cost of the benchmark it
scheduled. The estimated cost was derived by accumulating the simulated cost of each basic block
multiplied by the number of times it was executed, as reported in the profile information.

6.1 Self-Validation and Cross-Validation

We trained our CANNs using self-validation, that is training on data from a particular benchmark
and then scheduling that benchmark using the trained network. This is beneficial for a couple of
reasons. First, it gives us a upper bound on the quality of schedules that we can expect from a
CANN scheduler. We are training the network with the exact patterns it will see at the time of
scheduling. Therefore, we are not relying on the network’s ability to generalize, but are instead
interested only in the amount of information that can be captured by the network and whether the
task is in fact amenable to a neural network configuration. These experiments were also used as an
existence proof; that is, we wanted to prove there was a set of features, a set of training patterns,
and a neural network which, when trained on those training patterns, could schedule instructions
well (reasonably close to the quality of a manufacturer provided heuristic scheduler). Since it isn’t
reasonable to expect to achieve better results than those returned with the self-validation technique,
experimenting with this method allowed us to tune several neural network parameters, such as the
number of hidden units, the best training algorithm to use, etc. There are few parameters to tune
with decision trees. Therefore, we used self-validation with decision trees only to get a upper
bound on their performance and not for tuning parameters.

It is unknown at the time we are training our MLC, which programs a compiler with our in-
struction scheduler might be used to compile. Therefore, a cross-validation study is a true test of
how well our scheduler can be expected do in practice. Our method of cross-validation, “leave-one-
out” cross-validation, consisted of taking the training data from all of the programs, except one, and
feeding the corpus of training data into the CANN or DT. We then used the trained CANN or DT
to schedule the program not included in the corpus. We performed cross-validation on benchmarks
for the same language only; These benchmarks include the ten Fortran benchmarks from Spec95
(described in Section 6.2). Therefore, during our cross-validation study, we were training a MLC
with training data from nine of the Fortran benchmarks. The tenth benchmark that was left out was
then used for scheduling. Each cross-validation experiment resulted in ten trained MLCs which
were used for scheduling the ten Fortran benchmarks. Cross-validation tests the MLC’s ability to
generalize. Preliminary results with CANNs seemed to indicate that a MLC performed better if
it was trained using only training patterns from a corpus of benchmarks of the same language as
the benchmark, as opposed to using a corpus of different languages from which to train and sched-
ule from. This result seemed reasonable, given that different languages and different compilers
could cause basic blocks to have inherently different characteristics, which would require different
heuristics for scheduling them. This assumption was invalidated by results from decision trees (see
Table 8), which showed that indeed, we could train on a corpus of benchmarks from one language
and schedule benchmarks from a completely different language.
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6.2 Benchmarks

We trained our MLC schedulers on the 10 SPEC95 Fortran benchmarks. These benchmarks varied
in size, total number of basic blocks, and average basic block length. Table 1 lists the benchmarks
we used and their attributes. We derive the total cost of the benchmark by summing the costs of
its basic blocks. The cost of each basic block is the number of times the basic block is executed
(as obtained from the profile information) multiplied by the cost of the schedule of the basic block
(obtained from the scheduler).

Benchmark Description Source
lines

Number
of
blocks

Number
of instruc-
tions

Average
size of
block (in-
structions)

FORTRAN programs
110.applu Parabolic and elliptic partial differential

equations
3 817 25 475 129 853 5.097

141.apsi Solves for the mesoscale and synoptic vari-
ations of potential temperature, wind, veloc-
ity, and distribution of pollutants

4 211 29 077 159 482 5.485

145.fpppp Quantum chemistry 2 122 25 693 132 139 5.143
104.hydro2d Astrophysics: hydrodynamical Navier-

Stokes equations are solved to compute
galactical jets

2 522 26 789 129 568 4.837

107.mgrid Multi-grid solver in a 3D potential field 368 25 555 121 750 4.764
103.su2cor Quantum physics: Monte Carlo calculation

of elementary particle masses
1 614 26 972 135 837 5.036

102.swim Shallow water model with 512 � 512 grid 259 25 109 119 333 4.753
101.tomcatv A mesh-generation program 107 23 856 117 515 4.926
125.turb3d Simulates isotropic, homogeneous turbu-

lence in a cube
1 280 26 285 127 884 4.865

146.wave5 Plasma physics: solves Maxwell’s equations
and particle equations of motion on a Carte-
sian mesh with a variety of field and particle
boundary conditions

6 430 28 932 152 655 5.276

Total 22 730 263 743 1 326 016 5.028

Table 1: Properties of SPEC95 Fortran benchmarks.

6.3 Experimentation with Different Feature Sets

For our first experiments, we decided to choose an initial set of thirty-four black, gray, and white
box features, as shown in Table 2. We used this set of features to experiment with different learning
parameters of neural networks, such as the algorithm used to update the network (we experimented
with BackPropagation with momentum and Scaled Conjugate Gradient), the step size, the topology
of the network, and weighted versus unweighted training. After several experiments varying these
parameters we realized we would not get the desired performance from this feature set. Some
results of these experiments are presented in Section 7.1. Instead of continue the experiments of
different sets of features, we opted for another approach.

Iterating over different sets of features, until a good feature set was found, although possible,
would have been extremely time-consuming. We decided, instead, to study the Digital scheduler
to identify the kinds of features that might be required to build a good scheduler. A set of features
(presented in Table 3) and a predicate on those features was developed by a colleague in the Object
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Feature Name Description Hardware Dependence
Features Independent of Candidate Instructions

Cost So Far The number of cycles that would be taken by the current partial
schedule.

white

Available Fu Integer Pipeline Is the Integer functional unit available? white
Available Fu Floating Pipeline Is the floating point functional unit available? white
Available Fu Memory Pipeline Is the memory functional unit available? white
NumberScheduled Number of instructions already scheduled. black
Number Remaining Number of instructions remaining to be scheduled. black

Features Dependent on Candidate Instructions
Can Dual Issue With Last Can the proposed instruction be issued as the second instruc-

tion of a pair, where the first instruction of the pair is the last
scheduled instruction?

white

Needs To Wait If the proposed instruction follows the current schedule, will it
have to wait to issue?

white

Result Avail Delay Min Result availability delay – max and min (the actual delay de-
pends on the instruction which uses the result)

white

Instruction Class The class of proposed instruction grey
Class Of Prior Instruction The class of the previously scheduled instruction. grey
Class Of Most Recent Pred The class of the most recently issued (immediate) predecessor grey
Num Of Imm Succs The number of directly dependent instructions. black
Num Of Trans Succs The number of directly or indirectly dependent instructions. black
Num Of Imm Preds Number of (immediate) instructions this instruction is depen-

dent on.
black

Num Of Trans Preds Number of (not only immediate) instructions this instruction is
dependent on.

black

Critical Path The height of the instruction in the DAG (the length of the
longest chain of instructions dependent on this one) (edges
with unit weights)

black

Dist From Last Pred Issued How far back is the closest instruction on which this instruction
depends?

black

Last Pred Issued Long Ago Was the last scheduled predecessor issued longer ago than it’s
estimated latency?

black

Num Dominated Imm Succs Number of dominated nodes among the immediate successors black

Table 2: Features from the first feature set choosen.

Systems Laboratory, which exactly expressed the Digital scheduling algorithm. As verification
that these features and the predicate were expressing the same information in the Digital sched-
uler, all the benchmarks were scheduled with the new predicate, and an exact agreement to the
Digital scheduler was made for all benchmarks. These features were thus verified to be extremely
predictive features. Any results returned by a scheduler using a MLC trained over these features
would represent a lower bound on the performance we could expect. Both neural networks and
decision trees did extremely well scheduling instructions using these features, with decision trees
achieving the best performance.

6.4 Comparison of Different Schedulers

We measured the cost of the schedules produced by MLC schedulers along with the costs schedules
produced by three additional schedulers: the original scheduler integrated in the compiler which
compiled the benchmark (Original), a pubilc domain scheduler provided by Digital (PDS), which
represents an excellent, but expensive, scheduler, and a random scheduler, that chose among in-
struction candidates at random, representing the extreme of a naive scheduler. The PDS provided
by Digital usually outperforms all the other schedulers (even the scheduler they provide in their
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Heuristic Name Heuristic Description Intuition for Use
Odd Partial Is the current number of instructions sched-

uled odd or even?
If Odd Partial is TRUE, we’re interested in
scheduling instructions which can dual issue
with last instruction.

Any Actual Dual The number of instructions that can dual is-
sue with the previously scheduled instruction

If Any Actual Dual � 0 and Odd Partial is
true, we would like to schedule the next the
instruction that can dual issue.

Max Rank The instructionś rank based on its criti-
cal path and Digitalś heuristic weighting
function.

Instructions with larger critical paths should
be scheduled first. These instructions affect
the lower bound of the schedule cost

Actual Dual Can the instruction dual issue with last
schedule instruction

If Odd Partial is true, it is important that we
find an instruction that can issue in the same
cycle (if there is one) with the last scheduled
instruction.

Max Fu Data Delay The earliest cycle when instruction can be
issued without having to wait on its input
data and its functional unit: relative to cur-
rent cycle

We want to schedule instructions that will
have their data and funtional unit available
earliest.

Max Fu Data Delay Adv The earliest cycle when instruction can be is-
sued without having to wait on its input data
and its functional unit: relative to current cy-
cle advanced by one

We want to schedule instructions that will
have their data available and functional unit
earliest.

Table 3: Digital predicate features used for learning.

commercial compiler1) used in our experiments, therefore all scheduling costs presented in Section
7 are percentages of scheduling cost, worse than this scheduler.

7 Results

We now present results of several experiments of schedulers using the heuristics generated by
CANNs (a CANN scheduler) and DT (a DT scheduler) trained on different features sets. Given that
DT schedulers outperform NN schedulers, we continued our experimentation with DT schedulers
and present results from these experiments. We present the results of an experiment which show
that a DT scheduler is able to achieve good scheduling results with a small training set size (1%
of the original training data). We also present results of a DT scheduler trained with small sets of
features. To conclude this section, we present results of an experiment using only black and gray
features. These results seem to indicate that any “good” feature set will require some white box
features.

7.1 Results with First Set of Features

Table 4 shows the results of scheduling with MLCs trained on our first set of features. This ta-
ble presents costs of scheduling with the scheduler in the compiler that originally compiled the
benchmarks (Original), a CANN scheduler using both a weighted (W) and unweighted (U) train-
ing scheme, a decision tree scheduler using an unwieghted training scheme (DT), and a random
scheduler (Random). The results presented are percentage differences from the scheduling cost of

1The PDS provided by Digital uses expensive simulation during its scheduling of instruction, therefore it is not
surprising that it can outperform a scheduler in a compiler which uses less expensive heuristics (and therefore less
accurate) to be extremely efficient.
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Benchmark Original CANN (W) CANN (U) DT Random
110.applu 2.01% 10.46% 16.84% 26.63% 24.79%
141.apsi 0.55% 8.20% 13.88% 19.43% 12.82%
145.fpppp 7.33% 28.92% 43.14% 54.97% 33.95%
104.hydro2d 0.19% 8.51% 10.74% 21.08% 15.22%
107.mgrid 0.23% 6.62% 88.98% 29.21% 45.06%
103.su2cor 1.23% 22.68% 5.90% 27.70% 24.75%
102.swim 0.72% 36.54% 10.06% 68.07% 41.57%
101.tomcatv -0.07% 55.52% 22.30% 60.96% 30.56%
125.turb3d 0.45% 21.76% 32.65% 47.38% 30.45%
146.wave5 4.04% 14.36% 4.04% 24.95% 27.52%
Overall Avg 1.67% 21.36% 24.85% 38.04% 28.67%

Table 4: Results for benchmarks using Original, DT, CANN, and Random Schedulers on the first
set of features. The results presented correspond to the percentage difference from the PDS.

the PDS. The first attempt to do instruction scheduling using this set of features failed to produce
schedules that would satisfy a compiler-writer. We considered two main reasons for this:

� There are inherent limitations of the MLC used, which make it incapable of learning to make
the right decisions.

� The information presented to the MLC is not sufficient; that is, the features do not contain
enough information and/or the set of training patterns is too small or too sparse to allow
generalization.

We suspected that the main problem was due to an inadequate feature set. We, therefore, set
out to identify a “near-perfect” feature set before experimenting with other feature sets.

7.2 Results with Digital Predicate Features

A perfect set of features is one that allows a deterministic decision to be made, so as to produce an
optimal schedule. Given the nature of the problem (it is #P-complete) this is infeasible. A near-
perfect set, however, would allow producing a near-optimal schedule. Some experimentation [11]
showed that the schedules produces by the PDS were near-optimal, and therefore the heuristics
used by this scheduler are good. We examined the algorithm of the PDS and derived a set of fea-
tures, we called Digital predicate features (listed in Table 3), all of which were white-box features.
These features, when used by a deterministic predicate (see Algorithm 1), produced exactly the
same schedules as the PDS. We then investigated whether the workings of this predicate could be
approximated by a MLC. As was mentioned previously, the Digital predicate features were used
to find an optimal configuration for our CANN with which to experiment. The results of these
experiments are presented in Section 7.2.1. Cross-validation was then performed on this feature
set using both decision trees and our optimal CANN configuration. These results are presented in
Section 7.2.2.

7.2.1 Self-Validation Results with Digital Predicate Features

Considering the number of parameters from which to choose from when using neural networks,
using all possible configurations for experimentation was impossible. We decided to perform ex-
periments with our Digital predicate features using self-validation (as described in Section 6.1)
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to identify a good configuration for our CANN. This configuration would then be used for further
experiments. We experimented with two learning algorithms (SCG and BPM), three different num-
bers of hidden units (10, 20, and 30), and with weighted and unweighted training patterns. Because
of the time required to run BPM and given the fact we did not observe an increase in performance
over SCG, we did not run any experiments with weighted BPM, nor did we experiment with using
BPM on a network of 30 hidden units. Table 5 shows the results for the self-validation experiments
that we ran. The table shows that a CANN network using the SCG algorithm, with a configuration
of 20 hidden units, trained on unweighted inputs outperforms all other configurations. We used
this CANN configuration for further studies.

Benchmark BPM H10 U BPM H20 U SCG H10 U SCG H20 U SCG H10 W SCG H20 W SCG H30 W
110.applu 20.83% 1.89% 4.74% 1.57% 0.46% 0.96% 3.10%
141.apsi 2.94% 0.22% 2.37% 0.21% 17.90% 2.89% 1.35%
145.fpppp 14.67% 6.60% 2.89% 1.68% 43.03% 5.66% 3.93%
104.hydro2d 2.47% 1.64% 0.86% 0.90% 4.87% 3.21% 2.32%
107.mgrid 1.14% 0.69% 2.47% 1.31% 3.82% 12.09% 1.97%
103.su2cor 0.59% 0.58% 0.25% -0.01% 0.83% 22.96% 15.00%
102.swim 5.02% 1.43% 8.60% 6.44% 5.74% 0.72% 2.88%
101.tomcatv 1.04% 2.96% 5.51% 3.13% 50.55% 4.32% 69.76%
125.turb3d 4.66% 8.32% 4.00% 4.13% 17.24% 0.45% 23.31%
146.wave5 3.60% 4.02% 1.67% 1.59% 21.05% 5.52% 12.82%
Overall Avg 5.70% 2.84% 3.34% 2.10% 16.55% 5.88% 13.65%

Table 5: Self Validation Results for different CANN Schedulers. Each percentage is the percentage
worse than the PDS from Digital. (H# = Number of Hidden units; U = Unweighted; W = Weighted)

7.2.2 Cross-Validation Results with Digital Predicate Features

The results in Table 6 were gathered from our cross-validation experiments, in order to obtain a
realistic estimate of how MLC schedulers would perform in practice. Our cross-validation exper-
iments used the ten Fortran programs from SPEC95 benchmarks, training on nine of the bench-
marks and using the trained component to schedule the tenth. We experimented with decision trees
and the best CANN configuration from our self-validation experiments. The results show that DT
schedulers have a significant advantage over CANN schedulers. First, it seems that the CANN
does not do well in the presence of filtering. It remains to be seen whether the CANNs can per-
form better, if more of the original data is used for training. However, there are close to 700 000
training instances in the original data set, therefore some amount of filtering is required. Given that
the interaction of the heuristics in the public domain Digital scheduler can be expressed as a series
of if-then-else tests (see Algorithm 1 in the Appendix), it is not hard reason why decision trees are
able to outperform CANNs in this task. Decision trees are good at classification problems were the
data can be differentiated with boolean tests, which is inherently how the DEC predicate works.
If our problem required modeling a more complex function, a neural network configuration would
be more adequate.

7.3 Further Decision Tree Experiments

We now present experiments on the reduction and combination of features, the effect of training
with benchmarks from one language and scheduling a benchmark from another language, and the
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Benchmark Original DT (1%) DT (15%) CANN (1%) CANN (15%) Random
110.applu 0.05% 1.85% 0.66% 4.76% 2.96% 14.30%
141.apsi 0.55% 0.87% 0.16% 36.99% 3.50% 12.82%
145.fpppp 7.33% 2.65% 1.10% 23.96% 6.97% 33.95%
104.hydro2d 0.19% 1.21% 0.09% 12.37% 2.31% 15.22%
107.mgrid 0.23% 4.75% 0.73% 47.86% 1.56% 45.06%
103.su2cor 1.23% 0.64% 0.22% 15.57% 4.63% 24.75%
102.swim 0.72% 1.43% 1.43% 68.09% 4.31% 41.57%
101.tomcatv -0.07% 2.52% 0.15% 3.49% 2.45% 30.56%
125.turb3d 0.45% 1.46% 0.38% 26.31% 15.06% 30.45%
146.wave5 4.04% 1.90% 0.45% 5.26% 68.56% 27.52%
Overall Avg 1.47% 1.93% 0.54% 35.70% 11.23% 27.62%

Table 6: Results for benchmarks using Original, DTs, CANNs, and Random Schedulers. The
percent in the parenthesis indicates the amount of data from the original data files. The CANN has
20 hidden units, is trained using unweighted instances, and uses the SCG algorithm.

performance of scheduling using only black and gray features.

7.3.1 Results with Scheduling C benchmarks

We decided to verify early results which indicated that good scheduling required training a MLC
with a corpus of benchmarks of the same language as the benchmark we were scheduling. We
scheduled the 8 SPEC95 C benchmarks using a MLC trained with the corpus of Fortran bench-
marks. Table 7 and Table 1show that Fortran and C benchmarks have different characteristics.
Also, the C and Fortran benchmarks were compiled with different compilers which creates further
differences between the languages. Given these differences, we initially believed that scheduling
and training would have to be done on benchmarks of the same language. However, the results
presented in Table 8 indicate that this assumption was incorrect. We hypothesize that given a good
feature set, a corpus made up of benchmarks of language X can be used to train a MLC for schedul-
ing any other language Y , where X and Y can be any compiled language. Further experimentation
remains to prove whether this hypothesis holds.

7.3.2 Results with Reducing and Combining Features

In order to identify a minimal set of features required by a good MLC scheduler for the Alpha
21064, we decided to experiment with small subsets of the Digital-specific feature set. We experi-
mented with the following features (Max Rank, Actual Dual, Max Fu Delay Delay). This resulted
in a feature vector of six features, three features for each instruction. To further reduce this feature
set we combined the like features of the two instructions being compared (i.e., we combine two
features by subtracting one feature from another feature) to obtain a feature vector of three fea-
tures. The results of scheduling with decision trees using both feature sets are presented in Table 9
(columns DT(6) and DT(3)). The results show that decision trees trained on both features sets
performed extremely well. The feature set with the combined features (DT(3)) performed slightly
better than the feature set with uncombined features (DT(6)). When combining features, we are
explicitly making comparisons between features where the comparison is relevant, instead of hav-
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Benchmark Description Source
lines

Number
of
blocks

Number
of instruc-
tions

Average
size of
block (in-
structions)

C programs
129.compress Reduces the size of files using adaptive

Lempel-Ziv coding
1 422 4 596 20 152 4.385

126.gcc based on the GNU C compiler version 2.5.3,
builds SPARC code

133 049 77 269 332 184 4.299

099.go Artificial intelligence: plays the game of go 25 362 16 095 80 900 5.026
132.ijpeg Graphic compression and decompression 17 449 12 033 70 928 5.894
130.li LISP interpreter running the Gabriel

benchmarks
4 323 8 056 36 668 4.552

124.m88ksim Motorola 88100 microprocessor simulator:
runs test program

12 026 10 121 46 438 4.588

134.perl Manipulates strings (anagrams) and prime
numbers in Perl

21 078 22 590 111 849 4.951

147.vortex Subset of a full object oriented database pro-
gram called VORTEx (Virtual Object Run-
time EXpository)

41 034 32 624 180 331 5.528

Total 255 743 183 384 879 450 4.902

Table 7: Properties of SPEC95 C benchmarks.

Benchmark Original DT Random
129.compress 3.93% 0.02% 10.71%
126.gcc 3.94% 0.00% 16.79%
099.go 2.40% 0.01% 10.01%
132.ijpeg 0.71% 0.31% 17.93%
130.li 3.42% 0.00% 12.32%
124.m88ksim 4.99% 0.00% 11.16%
134.perl 2.70% -0.24% 12.59%
147.vortex 1.67% 0.02% 14.06%
Overall Avg 2.97% 0.02% 13.20%

Table 8: Results for scheduling C benchmarks using Original, Decision Tree (DT), and Random
Schedulers. Each percentage is the amount worse than the PDS.

ing the decision tree algorithm try and derive comparisons from the training data. Thus, we have
simplified the problem by manipulating the training data based on a priori knowledge.

7.3.3 Results with Black and Gray Features

We also ran an experiment using only black and gray features. First, we identified a set of black
and gray features, which we believed would be effective in describing and therefore in differentiat-
ing instructions. We also choose black and gray features which we believed would do a reasonably
good job of modeling the current state of the architecture during scheduling. These features seemed
sufficient to allow a MLC to learn biases towards better instructions to schedule at given decision
points. The features are presented in Table 10 and the results of scheduling using decision trees
induced using these features are presented in Table 9 (column BG). These results were disappoint-
ing. Our scheduler did not perform better than random, and in fact for some benchmarks performs
much worse. The results indicate that either we were unable to identify the predictive black and
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Benchmark Original DT (6) DT (3) BG Random
110.applu 0.05% 0.98% 0.34% 12.82% 14.30%
141.apsi 0.55% 0.24% 0.17% 11.43% 12.82%
145.fpppp 7.33% 1.24% 0.31% 38.69% 33.95%
104.hydro2d 0.19% 0.01% 0.01% 13.89% 15.22%
107.mgrid 0.23% 0.75% 0.04% 40.49% 45.06%
103.su2cor 1.23% 0.13% -0.19% 18.05% 24.75%
102.swim 0.72% 1.43% 0.00% 50.17% 41.57%
101.tomcatv -0.07% 1.33% 0.00% 37.35% 30.56%
125.turb3d 0.45% 1.58% 1.28% 49.74% 30.45%
146.wave5 4.04% 0.59% 0.17% 38.20% 27.52%
Overall Avg 1.47% 0.83% 0.21% 31.08% 27.62%

Table 9: Results for benchmarks using the DT schedulers on three different feature sets. The
number in the parenthesis indicates the size of the feature set.

gray features needed for a good MLC scheduler or that MLC schedulers require some white box
features to obtain schedule qualities comparable to hand tuned schedulers. The latter cause seems
more likely, but further experiments are required to reinforce this hypothesis.

Feature Name Feature Description Hardware Dependence
Features Independent of Candidate Instructions

Fraction Scheduled Fraction of instructions scheduled (real in the range of [0,1]) black
Param Class Of Prior Instr Classes of last N instructions scheduled. (N=4) gray

Features Dependent on Candidate Instructions
Instruction Class The class of proposed instruction gray
Param Depends On Prior Instr Does candidate instruction depend on Nth prior instruction?

Check last four scheduled instructions.
gray

Class Of Most Recent Pred The class of the most recently issued (immediate) predecessor gray
Num Of Imm Succs The number of directly dependent instructions. black
Num Of Trans Succs The number of directly or indirectly dependent instructions. black
Num Of Imm Preds Number of (immediate) instructions this instruction is depen-

dent on.
black

Critical Path The height of the instruction in the DAG (the length of the
longest chain of instructions dependent on this one) (edges
with unit weights)

black

Dist From Last Pred Issued How far back is the closest instruction on which this instruction
depends?

black

Fractional Height Fractional height of the instruction in the longest dependence
chain running from top to bottom of the DAG.

black

Num Dominated Imm Succs Number of dominated nodes among the immediate successors black
Reachability Count The number of insructions that can be reached from this in-

struction in the DAG.
black

Table 10: Black and Gray Features used for Decision Tree Experiment.

8 Related Work

Alessandro De Gloria and Paolo Faraboschi suggest a method of code compaction on very long in-
struction word (VLIW) architectures using Boltzmann machines [12]. Code compaction in VLIW
architectures is the problem of assigning instructions into a minimum number of large instruction
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packets (each packet corresponds to a very long instruction word, hence the name VLIW). The
problem of code compaction has many of the same properties as instruction scheduling. Boltz-
mann machines are a class of neural networks that use simulated annealing in their learning pro-
cedure [13]. They look at compacting code for seven basic blocks ranging in size from 13 to 39.
The show by performing several hundred annealing iterations, that they are able to achieve perfor-
mance equivalent to “hand-compiled” code. Unfortunately, like simulated annealing, this methods
is very computation intensive, requiring many iterations over a training set before the learning
procedure converges. Another problem with the scheduling technique introduced in the paper is
that it is allowed to schedule instructions arbitrarily without regard to data dependency constraints.
Therefore, along with valid schedules the technique can also produce many invalid schedules.
Their solution is to check the validity of the schedule with the original DDD, but this adds costly
superfluous computation. Also, a Boltzmann machine must be retrained for each different basic
block that is being scheduled. To alleviate the problem of the expensive learning procedure, the
authors suggest the possibility of having many Boltzmann machines implemented in hardware and
scheduling different basic blocks concurrently.

Beaty applied genetic algorithms to the problem of instruction scheduling [14]. He presented a
method in which a genetic algorithm is allowed to choose the order of instructions to be placed in
the schedule. The genetic algorithm trains and schedules simultaneously, and it must be retrained
for every new block. Beaty shows that genetic algorithms are able to schedule code as well or
better than existing scheduling methods on a few benchmarks. Like Boltzmann machines, genetic
algorithms are prohibitively expensive requiring several hundred iterations before a good schedule
is found. This method also produces invalid schedules which adds to its high cost.. Given the high
computation cost of genetic algorithms and the large number of iterations needed to schedule a
block, this is not a viable solution for commercial compilers. In contrast to these methods, we do
not do online learning; we train our neural network and induce our decision trees before scheduling
and the MLCs produced remain fixed when scheduling, i.e., they are not updated based on any
feedback that might be obtained during scheduling. A consequence of this is that our technique
is extremely efficient and a viable solution for commercial compilers. Also, our method does not
produce invalid schedules. Our MLC schedulers use the DDD at all times during scheduling and
therefore all schedules they produce are valid.

9 Future Work

There are several areas for promising research pertaining to this work. We would eventually like to
experiment with different architectures, both existing and proposed. We would like to experiment
with complicated architectures, for example, architectures with additional functional units or more
complicated pipelines or different architectures such as VLIW architectures or multiprocessors.
Our experiments are currently running on a simulator for a Alpha 21064. This architecture has only
two functional units, a floating point and a integer functional unit, thus a hand-coded instruction
scheduler may be able to schedule well for it. More complicated architectures will be harder to
schedule for and therefore our scheme may prove more beneficial. An experimental tool is being
built to let us experiment quickly with simulators of different architectures. These simulators
will be required to return values of features corresponding to their internal state, thus providing
essential information to build good schedulers. Many of these features being used may be too
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computationally expensive for practical use, therefore future work remains on experimenting with
features that are cheaper to compute, but are reasonable approximations of the expensive features.

We would like to be consider harder problems, such as global scheduling or scheduling with
register allocation. These problems are hard enough that hand-tuned heuristics may not be ade-
quate. Therefore our learning techniques may be able to show significant improvement over them.
Looking at harder problems might preclude working in a supervised learning setting. These prob-
lems might therefore require reinforcement learning techniques. In reinforcement learning, we can
let the learner schedule and give it a quality rating for the final schedule. The learner is rewarded
for good schedules and punished for bad schedules, and thus learns to prefer actions it has tried in
the past and found effective in producing a reward.

It is unclear whether we will see similar levels of performance scheduling different languages.
Therefore, we would like to investigate scheduling over different languages, such as C++, Modula-
3, Java, and Ada. This would allow us to perform cross-validation over a larger training set, that
is training using multiple benchmarks from multiple languages. It may be that our technique
proves more beneficial for some languages than for others. For instance, simple heuristics found in
commercial schedulers may be able to schedule Fortran programs better than C++ code. This may
be due to the types of programs for which a certain language is used, the constructs in a language,
or the coding style a language induces.

Our schedule costs are approximations of what should happen in hardware, and therefore, we
cannot be completely sure what our results would be if we were running on hardware, or at least a
better simulator (e.g., one that modeled the cache hierarchy and therefore modeled “global” effects
on a basic block). To this end, we would like eventually to integrate our scheduler into the back end
of a compiler or at the very least, into a simulator that modeled more precisely what was happening
in hardware.

10 Conclusion

We have shown that integrating a machine learning component into an instruction scheduler is not
only feasible, but extremely profitable. The results show that an decision tree scheduler schedules
programs comparable to an extremely good hand-coded scheduler given the right set of features.
We have also shown that schedulers built with decision trees typically outperform schedulers built
with neural networks. Given the nature of the task, that is, to learn an appropriate predicate for
scheduling, decision trees seem more suited to the task.
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11 Appendix

if (odd_partial) {
if (any_actual_dual = yes) {

if (actual_dual == left) {
if (actual_dual == right) {

if (max_rank == left) {
decision = True;

}
else {

decision = False;
}

else {
decision = True;
}

}
else { /* left can’t dual */

if (actual_dual == right ) {
decision = False;

}
else {

decision = True;
}

}
}

else { /* No instructions can dual issue */
if (max_fu_data_delay_adv == right) {

decision = True;
}
else if (max_fu_data_delay_adv == left) {

decision = False;
}
else {
if (max_rank == left) { /*left on critical path*/

decision = True;
}

else { /*right on critical path*/
decision = False;

}
}

}
}
else {
if (max_fu_data_delay == right) {

decision = True;
}

else if (max_fu_data_delay == left) {
decision = False;

}
else {

if (max_rank == left) { /*left on critical path*/
decision = True;

}
else {

decision = False; /*right on critical path*/
}

}
}

Algorithm 1: The algorithm for the Digital predicate. If decision is set True, we prefer the first
instruction, otherwise we prefer the second instruction.
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Figure 6: A decision tree induced by the ITI using the Digital predicate features. The features have been converted from their numeric
form to labeled values.
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