
Intelligent Compilers
John Cavazos

Computer and Information Sciences Department, University of Delaware
103 Smith Hall, Newark, DE, USA

cavazos@cis.udel.edu

Abstract—The industry is now in agreement that the future
of architecture design lies in multiple cores. As a consequence,
all computer systems today, from embedded devices to petascale
computing systems, are being developed using multicore proces-
sors. Although researchers in industry and academia are explor-
ing many different multicore hardware design choices, most agree
that developing portable software that achieves high performance
on multicore processors is a major unsolved problem. We now
see a plethora of architectural features, with little consensus on
how the computation, memory, and communication structures
in multicore systems will be organized. The wide disparity in
hardware systems available has made it nearly impossible to write
code that is portable in functionality while still taking advantage
of the performance potential of each system. In this paper, we
propose exploring the viability of developing intelligent compilers,
focusing on key components that will allow application portability
while still achieving high performance.

I. INTRODUCTION

For decades, software developers have enjoyed an increase
in application performance from clock speed scaling due to
Moore’s law. Much of this performance gain resulted from in-
creasing clock speeds. However, due to temperature concerns,
this is no longer possible. The industry is now in agreement
that the future of architecture designs lies in multicores. As
a consequence, all computer systems today, from embedded
devices to high-end servers, are being built with multicore
processors.

Although there is agreement on having multiple cores per
processor, researchers in industry and academia are exploring
many different multicore hardware design choices. Because
of this diversity in architectural ideas, developing a compiler
that fully exploits the available performance of multicore
processors is a major unsolved problem.

This paper proposes to fundamentally change the way in
which compilers are developed, replacing hand-tuning by self-
tuning compilers that adapt automatically to match the charac-
teristics of each target computing system. By automating the
process of performance tuning, programmers will have more
time to focus on higher level issues, e.g., algorithm design,
robustness, and correctness. Moreover, intelligent compilers
will reduce the need for specialized expertise across the range
of targetted computing systems.

A. Challenges Facing Compiler Writers

In addition to solving challenges in constructing intelligent
compilers, compiler writers must address important technical

barriers that prevent traditional compiler infrastructures from
producing code that achieves even a reasonable fraction of a
system’s available performance.

First, traditional compilers do not adequately model the
computing systems they target. Computer architectures are
becoming increasingly complex, and ever more sophisticated
compiler optimizations are required to exploit new features of
the architecture. Previous architectures were simple enough so
that the relevant details that affect performance were easy to
discern and model. But today’s architectures are intractably
complex. And with the advent of multicores, hardware will
continue to be difficult to model. Also, the fast-paced develop-
ment of new processor technology precludes spending a large
amount of time hand-crafting.

Second, compiler writers are expected to find effective and
efficient heuristics to compute approximate solutions to NP-
hard problems, such as instruction scheduling and register
allocation. The fact that compiler phases interact with each
other further complicates the construction of good heuristics,
adversely affecting their effectiveness. This makes it difficult
to construct sets of compiler heuristics that interact well with
other downstream optimizations.

Third, traditional compilation environments are too rigid,
and it is difficult for compiler writers to adapt them quickly
to new processors and system configurations. In particular,
optimizations and the heuristics that control them are often in-
tertwined. Also, optimizations are usually composed in a fixed
order, and other optimization orders are typically not tested,
leading to brittle compilers. Furthermore, computer engineers
desire the ability to experiment with many different designs of
an architecture to measure gains of architectural alternatives
over one another. This requires not only quick prototyping
of the architectures in question, but also quick prototyping
of optimizing compilers for those architectures. Hand-tuning
any part of the compiler is ineffective at supporting quick
prototyping of optimizing compilers.

Fourth, static analysis has to make conservative assump-
tions, and many times the analysis does not have the all
information to effectively optimize a piece of code. Thus,
we believe that intelligent dynamic optimizers will become
prevalent due to their potential to improve the optimization of
a program using information available at runtime. We believe
programs will also incorporate runtime systems to provide
runtime characterizations that can be used by the compiler

to optimize subsequent runs of the program.
Our vision is simple: the above technical problems cannot

be productively resolved unless there is a radical departure
from traditional methods of developing inflexible compilers to
new methods for building intelligent compilers.

II. INTELLIGENT COMPILATION METHODOLOGY

There are many benefits to using an automatic technique
over the traditional approach to constructing compiler heuris-
tics. A machine learning process substantially reduces the
time to construct effective heuristics. Manual construction and
tuning of compiler heuristics can take weeks or longer. In
contrast, once you have cast an optimization problem as a
learning problem and generated a training set, machine learn-
ing can find effective heuristics in minutes. This methodology
produces heuristics that are accurate (i.e., converge to a better
solution more often than manual techniques), robust (solve a
wide range of problem instances), simple (the heuristics are
easy to integrated into optimization code), and are potentially
generalizable and retargetable to other problems.

A. Methodology Description

We now describe the steps involved in applying supervised
learning to a compiler problem. This process involves six
distinct steps: phrasing the learning problem, constructing fea-
tures, generating training instances, training, integrating the
heuristic, and evaluating its effectiveness. Note that, although
the following paragraphs are specific to supervised learning,
much of the discussion pertains to applying online and/or
unsupervised learning techniques to compilation problems as
well.

Phrasing the Learning Problem: Generally this means
that, when the optimizer needs to make a decision, certain
factors (the features) are inputs to a decision function, whose
output selects a choice from two or more possibilities. For
example, one way to phrase the optimization phase-ordering
problem is: “Given certain optimizations already applied and
two possible optimizations to apply next, choose which of the
two to perform.” This decision function can be used to run
a tournament among three or more optimizations, choosing
which optimization to apply to the code being optimized.
Applying one optimization changes the characteristics of the
code being optimized, and therefore the next optimization
predicted to be beneficial. One can iterate this process until
some fixed number of optimizations have been applied or
until the characteristics of the code reaches a state where
the learning algorithm predicts that no further optimizations
should be applied. The key property is framing the heuristic
decision function so that it selects among a small set of classes
(in the example, the first optimization of the two, or the
second), often just two classes.

Feature Construction: Construct a set of properties (fea-
tures) that you deem important to the optimization problem.
Finding the “right” set of features and a good representation
for this information, is the most challenging, and probably

least automatable, part of the process. For example, in instruc-
tion scheduling, it is well known that considering the critical
path of instructions helps, so one might use features related to
the critical path. However, for other compiler problems with
no prior art, one might have to guess which features might
work.

Generating Training Instances: Instrument the compiler to
generate a training instance at every point of the optimization
algorithm where the heuristic would typically be applied, or
at least at a significant, randomly chosen sample of those
points. This generally involves arranging things so that you
can pursue all decision possibilities at that point. You need a
way to evaluate the end result of each choice so that you can
label the instance with the best choice. You must also output
the values of the features at the decision point. A training
instance says: “In this situation (features) you should do X
(label).”

An interesting issue arises when, in order to evaluate a
decision, you have to take more decisions. For example, in
instruction scheduling, to evaluate a given choice, you need to
schedule the rest of the block. There are several alternatives
to solving this problem. Sometimes you can enumerate all
possibilities (exhaustive search) and pick the best. This works
for short blocks in instruction scheduling. An alternative is
to consider a randomly chosen sample (an approach useful
for large blocks, which may have a huge number of possible
schedules). Finally, you can run to the end of the problem
using one or more heuristics already known to be competent
(though perhaps not as good as you are aiming for). For
instruction scheduling, you might use a generic critical-path
based heuristic.

Another significant issue is evaluating each choice. For
instruction scheduling, one can use a cycle-level model of the
CPU to estimate the number of cycles that each schedule for a
block would take when executed. For evaluating a short piece
of optimized code one could also use a cycle-accurrate timer.
Note that these estimators only need to be good in a relative
sense, leading to good decisions about which choice is better.
Their absolute estimates do not matter as much.

Training the Learning Component: Here, the compiler
writer can present the training instances to one of a variety of
supervised learning components in order to construct a tuned
heuristic. This is automatic and easy to do, given training
instances in the appropriate form. In addition to the learned
heuristic, machine learning tools generally provide statistics
concerning their effectiveness (classification accuracy) on the
training set and on one or more test sets. We recommend
using a process called leave-one-out cross-validation to test
the accuracy of your heuristics. That is, given a suite of N
benchmarks, one can generate training instances from N−1 of
the benchmarks and test the accuracy of the generated heuristic
on the benchmark that was left out. This gives the learning
algorithm a broad collection of instances from which to learn,
but insures evaluation on instances not used in the learning
process. This checks the generality of the heuristic, insuring
that it is not overly specialized to particular benchmarks.

Target
Execution
Environment

 Static Compilation Time

Executable

Runtime

Source
Code

Intelligent
Optimization

Controller

Apply
Optimizations

Dynamic
Optimization
and Runtime
Monitoring

Program
Binary

Computing System
Hardware+OS+Communication Libraries

Machine
Learning

Algorithms

Performance
Prediction

Model

Library of
Optimizations

Static
Characterization

Predictions

Static and Dynamic
Process Characterization

Knowledge
Base

Features

Fe
ed

ba
ck

Fig. 1. Overview of an Intelligent Compiler.

Integration of the Induced Heuristic: The output of the
supervised learning component can now be converted into code
and integrate it into the compiler. Many supervised learning
components already have options to produce code as output,
making this particularly easy.

Evaluation of Induced Heuristic: Finally, the performance
of the tuned heuristic can be empirically evaluated. While
classification accuracy is usually available from the learning
tool and gives a good sense of how well the features predict
the labels, there is usually some degree of approximation or
modeling in the generation of training instances, so one must
test the heuristic’s effectiveness in practice. If the effectiveness
is not good enough, one may need to adjust the set of features
or the process for generating instances.

B. Benefits of a Machine Learning Methodology

This methodology offers several benefits over manual meth-
ods:

1) Saves programmer-hours compared to time-consuming
manual techniques; it can induce competent heuristics
in minutes, versus weeks or months; fast turn-around
may support prototyping compilers to assist with new
chip development.

2) Induces heuristics that are based on sound machine
learning principles; manual techniques are often not as
sound or principled.

3) Constructs compiler heuristics systematically, not by
trial and error.

4) Can assist in developing heuristics, where no hand-
crafted ones exist yet.

We now turn to describing the separate components of an
intelligent compiler.

III. OVERVIEW OF AN INTELLIGENT COMPILER

Figure 1 depicts, from left to right, the high-level flow of
compilation from source code to execution on a computing
system (including section numbers where important compo-
nents are discussed). At static compilation time, an intel-
ligent compiler will analyze source code with performance

prediction models that predict the optimizations likely to be
beneficial. These models, developed using machine learning
algorithms, will output a probability distribution of the benefit
of optimizations, given the specific code being compiled. The
intelligent optimization controller will apply optimizations
based on these probability distributions pertaining to the
benefit of improving a particular metric (e.g., performance,
power, or code size). This framework can also integrate a
performance prediction model into the binary that predicts
when to apply certain dynamic optimizations. Information used
by the prediction models comes from three potential sources:
the static and dynamic process characterization, the results
optimizing similar programs, and the analysis of the program
being optimized. All this information is stored in a knowledge
base for future compilations.

A. Intelligent Optimization Controller

The intelligent optimization controller will choose opti-
mization sequences to apply from the areas of the optimization
space delineated by the performance prediction model. These
areas are predicted with high probability to contain beneficial
optimization sequences. The intelligent optimization controller
can either generate a program executable in one trial, or it can
be used in an iterative manner. The framework may determine
that it is possible to fine-tune the selection of optimizations by
getting information from the execution of the application on
the target system. The process can iterate until the selection
of optimizations converges. The generated executable can be
linked with a dynamic optimization module if the models
predict that further optimizations at runtime will be beneficial
(described in Section III-D).

1) An Example: In previous work, we developed an intel-
ligent optimization controller that used static code features
to correlate the programs to be optimized with previous
knowledge in order to predict the probability that certain
optimizations would be beneficial [1]. Consider the diagram in
Figure 2(a), which shows the behavior of the adpcm program
on the Texas Instrument C6713 processor. This diagram is an
attempt at plotting all points within 5% of the optimum in
the space of all optimization sequences of length 5 selected
from a set of 13 optimizations.1 It is difficult to represent a
large 5 dimensional space graphically, so each optimization
sequence (t1t2t3t4t5) is plotted at position (t1t2) on the x-
axis, which denotes prefixes of length 2, and position (t3t4t5)
on the y axis, which denotes suffixes of length 3. The most
striking feature is that minima are scattered throughout the
space, which means that finding the very best optimization
sequence is a difficult task. Prior knowledge about where
good points are likely to be could focus search, allowing
the minimal point to be found faster. Alternatively, given a
fixed number of evaluations, improved performance can be
expected if good areas of the space to search are known. We

1Unrolling factors were counted as individual optimizations, and since
unrolling was only allowed to appear once in any optimization sequence,
the total number of optimization sequences exhaustively evaluated for this
benchmark was 88000.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

 1 10 100 1000

Pe
rc

en
t o

f M
ax

 Im
pr

ov
em

en
t A

va
ila

bl
e

Evaluations

86%

38%
RANDOM

FOCUSSED

(a) (b)
Fig. 2. (a) The points correspond to optimization sequences whose performance is within 5% of the optimum for adpcm on the TI C6713. The contours are
the areas predicted to contain good optimizations.(b) How close to the best performance random and focussed search achieve for each program evaluation.
The random algorithm achieves 38% of the maximum improvement in 10 evaluations; the focussed search 86%.

developed a technique that uses machine learning to construct
a predictive model from a knowledge base of search data from
other programs. The predictive model used code features to
define good regions of the space to search. In Figure 2(a), the
contour lines enclose those areas where the model predicted
good points. Note that the model predicts the area which
contains the optimal optimization sequence.

Using this model we were able to reduce the amount of
search to find the best sequence - rapidly reducing the cost
of iterative search. This can be seen in Figure 2(b), which
compares random search2 (RANDOM) with a predictive
model (FOCUSSED). The x-axis (logarithmic scale) denotes
the number of evaluations performed by the search. The y-
axis denotes the best performance achieved so far by the
search: 0% represents the original code performance, 100% the
maximum performance achievable. It is immediately apparent
that the predictive model rapidly speeds up the search. For
instance, after 10 evaluations, random searching achieves 38%
of the potential improvement available, while the focused
search achieves 86%. As can be seen from Figure 2(b), such
a large improvement would require over 80 evaluations using
random search, justifying further investigation into predictive
modelling.

B. Application and Architecture Characterization
Intelligent compilers will have to collect both static and dy-

namic characteristics of applications being optimized as well
as architectures being targeted. It is important to characterize
all resources that significantly affect application performance
that can be effectively used with predictive modelling tech-
niques to drive compiler optimizations. A proper characteri-
zation of the application and the target computing system is
critical to the prediction of beneficial optimization choices and
to the identification of good areas of an optimization search
space to traverse.

2This search was an average of 20 trials to be statistically meaningful.

It is essential that representations be created which enrich
the knowledge base with information that is relevant to any
decision point and range of choices that affect performance.
The knowledge base in an intelligent compiler will be a
coherent aggregate of static and dynamic characterization
both of the application and target system. For applications,
this characterization can be extracted from compiler analysis
phases or through instrumenting the code to retrieve dynamic
information, such as performance counter information. For
the targeted computing system, this characterization can be
retrieved from a configuration file and/or can be efficiently
characterized with microbenchmarks (as in previous work [2]).

1) An Example: In previous work, we successfully used
performance counters to characterize applications and to pre-
dict optimizations that were beneficial[3]. This section looks
at just one program to illustrate how performance counters
can be used to select beneficial compiler optimizations. As
the performance counter values are related to actual program
performance, they can be used by a modelling technique
to select good optimization settings (described in the next
section). We developed models that take as input performance
counter values of a new program being optimized. By using
prior knowledge from previously examined programs, the
models predict the optimizations most likely to result in a
speedup and improved performance counter values.

Figure 3 shows the performance counter values for the
181.mcf benchmark from the SPEC benchmark suite on
the AMD processor, compiled with the commercially available
PathScale optimizing compiler. What is immediately apparent
is that 181.mcf is an unusual program. It has a much greater
number of memory access per instruction than average - up to
38 times more in the case of L2 store misses (L2 STM). A
learned model should identify this and predict optimizations
that reduce the impact of cache accesses.

Figure 4 shows the performance counter values after ap-
plying two optimization schemes, -Ofast (FAST), the highest

 0

 5

 10

 15

 20

 25

 30

 35

 40

L2
_T

CA
L1

_T
CH

L1
_T

CM
FP

_O
PS

FA
D

_I
N

S
FM

L_
IN

S
L1

_T
CA

L2
_T

CH
L1

_I
CR

L2
_I

CA
L1

_I
CA

L2
_I

CH
L1

_I
CH

L2
_D

CW
L2

_D
CR

L2
_D

CA
L1

_D
CA

L2
_D

CH
L1

_D
CH

TO
T_

CY
C

RE
S_

ST
L

V
EC

_I
N

S
BR

_I
N

S
FP

_I
N

S
BR

_M
SP

BR
_T

K
N

H
W

_I
N

T
ST

L_
IC

Y
L2

_S
TM

L2
_L

D
M

L1
_S

TM
L1

_L
D

M
TL

B_
TL

TL
B_

IM
TL

B_
D

M
FP

U
_I

D
L

L2
_T

CM
L2

_I
CM

L2
_D

CM
L1

_I
CM

L1
_D

CM

Re
la

tiv
e

to
 A

ve
ra

ge
 P

er
f C

nt
rs

181.mcf

Fig. 3. Performance counter values for 181.mcf compiled with -O0 relative to the average values of a large set of benchmark suites (SPECFP, SPECINT,
MiBENCH, Polyhedron).

FAST
PC Model

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

L2
_T

CA
L1

_T
CH

L1
_T

CM
FP

_O
PS

FA
D

_I
N

S
FM

L_
IN

S
L1

_T
CA

L2
_T

CH
L1

_I
CR

L2
_I

CA
L1

_I
CA

L2
_I

CH
L1

_I
CH

L2
_D

CW
L2

_D
CR

L2
_D

CA
L1

_D
CA

L2
_D

CH
L1

_D
CH

TO
T_

CY
C

RE
S_

ST
L

V
EC

_I
N

S
BR

_I
N

S
FP

_I
N

S
TO

T_
IN

S
BR

_M
SP

BR
_T

K
N

H
W

_I
N

T
ST

L_
IC

Y
L2

_S
TM

L2
_L

D
M

L1
_S

TM
L1

_L
D

M
TL

B_
TL

TL
B_

IM
TL

B_
D

M
FP

U
_I

D
L

L2
_T

CM
L2

_I
CM

L2
_D

CM
L1

_I
CM

L1
_D

CM

Re
la

tiv
e

to
 !

o0
 P

er
f C

nt
rs

181.mcf

Fig. 4. Performance counters values for 181.mcf for -Ofast (FAST) and the machine learning model (PCModel) relative to -O0 for each performance counter.

optimization setting available with PathScale, and the opti-
mization setting found by the performance counter model
(PCModel). PCModel applies optimizations that are able to
significantly improve the use of the L1 and L2 cache. This is
shown in the rightmost three bars of Figure 4 in the columns
labelled L1 TCM (L1 total cache miss), L1 TCA (L1 total
cache accesses), and L2 TCA (L2 total cache accesses). For
instance, the model is able to reduce the number of L1 cache
misses by 20%, which has the effect of reducing the number
of L2 accesses by 20%. -Ofast, on the other hand, has no
effect on these values. In fact, -Ofast is able to achieve a 1.24
speedup over -O0, while PCModel gives a speedup of 2.33,
i.e., a speedup of 1.88 over -Ofast.

If the optimizations selected by PCModel are examined, it
becomes evident that the model has learned that data cache

misses and branch instructions (via the performance counter
data) are the critical characteristics of this program. Moreover,
it suggested that the compiler convert pointers from 64-bit
to 32-bit, because 64-bit pointers are reducing the effective
cache capacity and memory bandwidth. This demonstrates
the strength of automatic model construction. It has no prior
human bias about what are important program characteristics
or optimizations – it learns solely based on empirical evidence.

C. Performance Prediction Models

Performance prediction models in an intelligent compiler
can be constructed by searching for the best set of optimiza-
tions for a program and learning from this search. When a
new program is encountered, the compiler can automatically
select a good sequence of optimizations without the need for
many online trials. This is based on machine learning methods

that take as input a characterization of a problem (e.g., an
application being optimized and an architecture being targeted)
and predict the best set of optimizations to use. During a
significant training period, predictive modelling techniques
integrated in the compiler learn how programs, optimizations,
and architectures interact and thus form the core of the
intelligent compiler.

The output of previous runs of pure search can be used to
train the performance prediction models. These models will
allow the compiler to be portable and to tune its optimizations
automatically to any new program or processor configuration.
We are exploring a variety of different machine learning
methods to induce these models automatically (described in
Section III-F).

D. Dynamic Optimization and Runtime Monitoring Tech-
niques

Traditional compilers typically output one optimized version
of the program executable in the hope that this “one-size-fits-
all” version of the code will run efficiently in the face of
changing runtime contexts, application phases, and dynamic
architecture environments. However, we realize that, most
likely, there is not one optimized version of the code that is
best for all environments.

Thus, we propose that intelligent compilers will integrate
into each binary a dynamic compiler along with a runtime
monitoring component that drives dynamic compilation and
generates a characterization of the program at running time.
This dynamic compilation environment will be able to perform
specific optimizations at runtime that are predicted to be
beneficial, but that cannot be performed due to lack of infor-
mation at static compile time (e.g., function parameters or loop
bounds). The runtime monitoring component will also provide
an accurate dynamic characterization of the application and
architecture. This information will be stored in the knowledge
base to be used by the prediction models to drive future
compilation.

E. Knowledge Base

An important issue in an intelligent compiler is the collec-
tion and proper storage of information from different sources
into a knowledge base. Thus, it is important to build a stan-
dardized database to store learning data in order to facilitate
the communication between machine learning components,
optimization algorithms, compiler and instrumentation tools,
compiler writers, as well as application developers.

A knowledge base can consist of data from previous op-
timization experiments, e.g., static and dynamic characteriza-
tions of code previously optimized as well as architectures
previously targeted. The database should be populated with the
results of optimization experiments and with extensive archi-
tecture characterization experiments performed using micro-
benchmarks.

We propose that standard formats be developed for repre-
senting this information, which will enable the communication
between the different tools in an intelligent compiler. A

standard format for this information will serve two additional
purposes. First, compiler writers will be able to collect and use
information from outside sources if data is generated by using
the same standard format, ultimately allowing the database
of training data to quickly grow. Second, by documenting
this standard format, compiler and application developers will
be able to exploit the database for their own purposes, e.g.,
in developing new optimization algorithms or as feedback to
developers.

An important part in developing this schema includes defin-
ing the features to be investigated. After an initial set of
features is defined, compiler writers can create the necessary
mechanisms to extract static program features during com-
pilation and dynamic program features at runtime. Compiler
writers should modify their frameworks to extract all desired
static program features during compiler analysis (e.g., average
size of basic block, whether a function is a leaf/non-leaf) and
must instrument the executable to produce dynamic program
features (e.g., performance counter information). Defining
good features is an iterative process; therefore work should
proceed in parallel with the development of feature extraction
tools and the evaluation of machine learning methodologies.
Standard statistical techniques, such as mutual information,
can be useful to evaluate the usefulness of different features.

F. Machine Learning Methods

There is a large breadth of different learning techniques that
can be applied to compiler problems, ranging from simple
techniques, such as logistic regression and nearest neigh-
bor classification, to advanced probabilistic approaches, such
as Bayesian and reinforcement learning approaches. Simple
learning algorithms are beneficial to compiler writers who
will develop and integrate these algorithms into their compiler
infrastructures. However, simple techniques may not solve all
learning problems encountered, and thus compilers writers
will have to judiciously use more advanced techniques where
needed.

Application and architecture characterization and optimiza-
tion experiments can generate enormous amounts of learning
data; therefore we contend that scalable learning algorithms
are important for solving compilation problems.

G. Multicore Compiler Optimizations

Multicore processors bring new performance optimization
challenges, and machine learning techniques must be adapted
to address these. From a parallelism perspective, the granular-
ity of parallelism, the number of cores to use for a particular
computation, and the computation partitioning across cores all
impact performance significantly. Appropriate predictive mod-
elling techniques to handle these problems will be important.

Multicore-based architectures will also require tuning paral-
lelism, the number of threads per core, locality optimizations,
thread affinity and scheduling, as well as data placement and
movement. All of these will be interesting problems to tackle
with machine learning.

IV. RELATED WORK

A complete review of the literature is impractical for this
paper. Instead, existing work is highlighted that is most closely
related.

Autotuning

An area that is closely related to intelligent compilers is
the study of automatic code generation and optimization for
different computer architectures, which has been explored
in many existing studies touching many different applica-
tions. There is a number of automatic library generators
that automatically generate high-performance kernel routines,
including FFT [4], [5], [6], BLAS [7], [8], [9], [10], [11],
Sparse Numerical Computation [12], [13], [14], [15], [16],
and domain specific routines [17], [18], [19]. Recent research
efforts expand automatic code generation to routines whose
performance depends not only on architectural features, but
also on input characteristics [20], [21], [22]. These systems
are a significant step toward automatically optimizing code
for different computer architectures. However, these works do
not explore the benefit of learning from a knowledge base
of previously explored applications and architectures or of
adapting to a changing runtime context.

Machine learning applied to Compilation

Machine learning and search techniques applied to compi-
lation has been studied in many recent projects [23], [24],
[25], [26], [27], [28], [29], [8], [30], [31]. These previous
studies have developed machine learning based algorithms to
efficiently search for the optimal selection of optimizing trans-
formations, the best values for the transformation parameters,
or the optimal sequences of compiler optimizations. Generally,
these studies customize optimizations for each program or
local code segments, some based on code characteristics.
Intelligent compilers will not only use program characteristics,
but will use architecture features to adapt to new computing
systems, and will be aware of different runtime contexts of a
program.

Several researchers have looked at searching for the best
set or sequence of optimizations for a particular program [32],
[31], [26], [27]. Cooper et al. [33] used genetic algorithms to
solve the compilation phase ordering problem. They were con-
cerned with finding “good” compiler optimization sequences
that reduced code size. Their technique was successful at
reducing code size by as much as 40%. Unfortunately, their
technique was application-specific, i.e., a genetic algorithm
had to be retrained to find the best optimization sequence
for each new program. Kulkarni et al. [34] exhaustively
enumerated all distinct function instances for a set of programs
that would be produced from different phase-orderings of
15 optimizations. This exhaustive enumeration allowed them
to construct probabilities of enabling/disabling interactions
between different optimization passes in general and not
specific to any program. In contrast, intelligent compilers
will characterize programs being optimized; therefore these

compilers will learn which optimizations are beneficial to
apply to “unseen” programs with similar characteristics.

Many researchers have also looked at using machine learn-
ing to construct heuristics that control single compiler opti-
mizations. Stephenson et al. [23] used genetic programming
to tune heuristic priority functions for three compiler opti-
mizations within the Trimaran’s IMPACT compiler. For one
of the optimizations, register allocation, they were only able
to achieve on average a 2% increase over the manually tuned
heuristic. Monsifrot et al. [30] used a classifier based on
decision tree learning to determine which loops to unroll. They
showed an improvement of 3% over the hand-tuned heuristic
and 2.7% over g77’s unrolling strategy on the IA64 and
UltraSPARC, respectively. The results in these papers highlight
the diminishing results obtained when only controlling a single
optimization. In contrast, we believe that intelligent compilers
must control all optimizations available to it.

Recently, researchers in Europe (as part of the MILEPOST
project) have modified GCC to allow phase reordering of
optimizations and have integrated machine learning techniques
to control these optimizations [35]. They show good results on
three different architectures.

Dynamic Compilation Environments

Fursin et al. [36] investigate online iterative search of
optimizations for scientific applications. Prior to the program’s
execution, a set of optimized versions of code segments are
created to be explored during execution. Their system uses a
simple phase detection to identify periods of stable, repeatable
behavior. During these stable phases, each optimized version is
run and timed once, and the best performing version is chosen.
Another solution is to evaluate the different statically compiled
versions at runtime. For example, Lau et al. [37] present an
online framework, called performance auditing, that allows the
evaluation of the effectiveness of optimization decisions. The
framework allows for online empirical optimization, which
improves the ability of a dynamic compiler to increase the
performance of optimizations while preventing performance
degradations. Instead of using models to predict an optimiza-
tion’s performance, both of these approaches compile differ-
ent versions of the same method with different optimization
settings chosen randomly and then they run each of these
different versions evaluating their performance empirically on
the real machine. These approaches worked well for single
optimizations or for a very small set of optimization sequences
to be tested, but will be impractical for finding good sequences
of optimizations from a large set of optimizations. Also,
predictive modelling is not used to decide the optimized
versions of the code to try.

Furthermore, dynamic compilation has been one of the
central research topics in virtual machines. The key question
that is explored is how to find the hot spot, that is, the code
segment most frequently executed, and when to re-compile
hot spots with more aggressive optimizations [38], [39], [40],
[41], [42]. However, the changing runtime environment is
generally not considered in the dynamic compiler’s decision

of which code segment to optimize and which optimizations
to apply. In general, previous work is inadequate in developing
a systematic solution for optimizing programs to different
runtime contexts, but will provide a basis to build on.

Dynamic systems provide a solution to directly modify the
behavior of the program at runtime, and there have been
several projects in the past pertaining to lightweight dynamic
optimization schemes [38], [43], [44], [45], [46]. However,
these systems have traditionally been very architecture and/or
optimization specific. For example, Adore [44] is an Itanium-
based system that only implements a prefetch optimization
scheme. Adore is a very specialized dynamic optimization
scheme that would be difficult to generalize for other architec-
tures. Also, Dynamo [38] and Deli [47] have high overheads
that can outweigh the benefit of their optimizations. For
example, the system proposed by Zhao et al. [46] is built using
DynamoRIO [48] and has a 14% overhead, 13% of which
is due to DynamoRIO. Furthermore, these systems are not
linked closely to the static compiler and thus do not use static
information at runtime nor do they feed information back to
the static compiler.

V. CONCLUSION

A critical component in intelligent compilers is the ma-
chine learning algorithms. Machine learning algorithms induce
heuristic functions automatically from training data. In pre-
vious work, we found that machine learning was excellent
at solving the problems we tackled [49], [50], [51], [52],
[53], [54], [1], [55], [56]. In this work, we induced heuristics
automatically using machine learning whose performance was
comparable to hand-tuned heuristics on well-studied problems.
We also have found that a variety of learning algorithms all had
low classification error rates and thus performed equally well.
We conclude that typical compiler problems do not present
difficult learning problems, if proper features are extracted and
the problem is correctly phrased.

Acknowledgements: We thank Xiaoming Li and Guang
Gao for fruitful discussions of earlier versions of Figure 1.

REFERENCES

[1] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P.
O’Boyle, J. Thomson, M. Toussaint, and C. K. I. Williams, “Using ma-
chine learning to focus iterative optimization,” in CGO ’06: Proceedings
of the International Symposium on Code Generation and Optimization.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 295–305.

[2] K. Yotov, K. Pingali, and P. Stodghill, “Automatic measurement of
memory hierarchy parameters,” in SIGMETRICS ’05: Proceedings of
the 2005 ACM SIGMETRICS international conference on Measurement
and modeling of computer systems. New York, NY, USA: ACM, 2005,
pp. 181–192.

[3] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. P. O’Boyle,
and O. Temam, “Rapidly selecting good compiler optimizations using
performance counters,” in CGO ’07: Proceedings of the International
Symposium on Code Generation and Optimization. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 185–197.

[4] M. Frigo, “A Fast Fourier Transform Compiler,” in PLDI ’99: Proceed-
ings of the ACM SIGPLAN 1999 conference on Programming language
design and implementation. New York, NY, USA: ACM Press, 1999,
pp. 169–180.

[5] M. Püschel, J. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer,
J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson,
and N. Rizzolo, “SPIRAL: Code Generation for DSP Transforms,” In
Proc. of the IEEE, special issue on Program Generation, Optimization,
and Platform Adaptation, vol. 93, no. 2, pp. 232–275, February 2005.

[6] J. Xiong, J. Johnson, R. W. Johnson, and D. A. Padua, “SPL: A Lan-
guage and a Compiler for DSP Algorithms,” in Proc. of the International
Conference on Programming Language Design and Implementation,
2001, pp. 298–308.

[7] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated Empirical
Optimizations of Software and the ATLAS Project,” Parallel Computing,
vol. 27, no. 1-2, pp. 3–35, 2001.

[8] K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzaran,
D. Padua, K. Pingali, P. Stodghill, and P. Wu, “A Comparison of
Empirical and Model-driven Optimization,” in Proc. of Programing
Language Design and Implementation, June 2003, pp. 63–76.

[9] C. Chen, J. Chame, and M. Hall, “Combining Models and Guided
Empirical Search to Optimize for Multiple Levels of the Memory
Hierarchy,” in CGO ’05: Proceedings of the international symposium
on Code generation and optimization. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 111–122.

[10] K. Goto and R. A. van de Geijn, “On Reducing TLB Misses in
Matrix Multiplication,” in Technical Report TR-2002-55, The University
of Texas at Austin, Department of Computer Sciences, 2002. FLAME
Working Note 9., 2002.

[11] J. D. Hall, N. A. Carr, and J. C. Hart, “Cache and Bandwidth
Aware Matrix Multiplication on the GPU,” University of Illinois,
Tech. Rep. UIUCDCS-R-2003-2328, Apr. 2003, at ftp.cs.uiuc.edu in
/pub/dept/tech reports/2003/ as UIUCDCS-R-2003-2328.ps.gz.

[12] E.-J. Im, K. Yelick, and R. Vuduc, “Sparsity: Optimization Framework
for Sparse Matrix Kernels,” Int. J. High Perform. Comput. Appl., vol. 18,
no. 1, pp. 135–158, 2004.

[13] R. Vuduc, J. W. Demmel, and K. A. Yelick, “OSKI: A Library of Auto-
matically Tuned Sparse Matrix Kernels,” Journal of Physics Conference
Series, vol. 16, pp. 521–530, Jan. 2005.

[14] J. Mellor-Crummey and J. Garvin, “Optimizing Sparse Matrix-Vector
Product Computations Using Unroll and Jam,” Int. J. High Perform.
Comput. Appl., vol. 18, no. 2, pp. 225–236, 2004.

[15] J. Bolz, I. Farmer, E. Grinspun, and P. Schröder, “Sparse Matrix Solvers
on the GPU: Conjugate Gradients and Multigrid,” ACM Trans. on
Graphics, vol. 22, no. 3, July 2003, (Proc. SIGGRAPH 2003).

[16] X. S. Li and J. W. Demmel, “SuperLU DIST: A Scalable Distributed-
memory Sparse Direct Solver for Unsymmetric Linear Systems,” ACM
Trans. Math. Softw., vol. 29, no. 2, pp. 110–140, 2003.

[17] G. Baumgartner, A. Auer, D. E. Bernholdt, A. Bibireata, V. Choppella,
D. Cociorva, X. Gao, R. Harrison, S. Hirata, S. Krishanmoorthy,
S. Krishnan, C.-C. Lam, Q. Lu, M. Nooijen, R. Pitzer, J. Ramanujam,
P. Sadayappan, and A. Sibiryakov, “Synthesis of High-performance Par-
allel Programs for a Class of ab initio Quantum Chemistry Models,” In
Proc. of the IEEE, special issue on Program Generation, Optimization,
and Platform Adaptation, vol. 93, no. 2, pp. 276–292, February 2005.

[18] R. Choy and A. Edelman, “Parallel MATLAB: Doing It Right,” In Proc.
of the IEEE, special issue on Program Generation, Optimization, and
Platform Adaptation, vol. 93, no. 2, pp. 331–341, February 2005.

[19] C. Lin and S. Z. Guyer, “Broadway: a Compiler for Exploiting the
Domain-specific Semantics of Software Libraries,” In Proc. of the
IEEE, special issue on Program Generation, Optimization, and Platform
Adaptation, vol. 93, no. 2, pp. 342–357, February 2005.

[20] X. Li, M. J. Garzarán, and D. Padua, “A Dynamically Tuned Sorting
Library,” in In Proc. of the International Symposium on Code Generation
and Optimization (CGO), 2004, pp. 111–124.

[21] ——, “Optimizing Sorting with Genetic Algorithms,” in In Proc. of the
International Symposium on Code Generation and Optimization (CGO),
March 2005, pp. 99–110.

[22] S.-C. Han, F. Franchetti, and M. Püschel, “Program Generation for
the All-pairs Shortest Path Problem,” in PACT ’06: Proceedings of the
15th international conference on Parallel architectures and compilation
techniques. New York, NY, USA: ACM Press, 2006, pp. 222–232.

[23] M. Stephenson, S. Amarasinghe, M. Martin, and U.-M. O’Reilly, “Meta
Optimization: Improving Compiler Heuristics with Machine Learning,”
in Proc. of Programing Language Design and Implementation, June
2003.

[24] P. Kulkarni, S. Hines, J. Hiser, D. Whalley, J. Davidson, and D. Jones,
“Fast Searches for Effective Optimization Phase Sequences,” in PLDI

’04: Proceedings of the ACM SIGPLAN 2004 conference on Program-
ming language design and implementation. New York, NY, USA: ACM
Press, 2004, pp. 171–182.

[25] M. Stephenson and S. Amarasinghe, “Predicting Unroll Factors Using
Supervised Classification,” in CGO ’05: Proceedings of the international
symposium on Code generation and optimization. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 123–134.

[26] K. D. Cooper, A. Grosul, T. Harvey, S. Reeves, D. Subramanian,
L. Torczon, , and T. Waterman, “Searching for compilation sequences,”
Rice University, Tech. Report, 2005.

[27] K. D. Cooper, A. Grosul, T. J. Harvey, S. Reeves, D. Subrama-
nian, L. Torczon, and T. Waterman, “ACME: Adaptive Compilation
Made Efficient,” in LCTES ’05: Proceedings of the 2005 ACM SIG-
PLAN/SIGBED conference on Languages, compilers, and tools for
embedded systems. New York, NY, USA: ACM Press, 2005, pp. 69–77.

[28] ——, “Exploring the Structure of the Space of Compilation Sequences
Using Randomized Search Algorithms,” J. Supercomputing, vol. 36,
no. 2, pp. 135–151, 2006.

[29] K. Yotov, K. Pingali, and P. Stodghill, “Think Globally, Search Locally,”
in ICS ’05: Proceedings of the 19th annual international conference on
Supercomputing. New York, NY, USA: ACM Press, 2005, pp. 141–150.

[30] A. Monsifrot, F. Bodin, and R. Quiniou, “A machine learning approach
to automatic production of compiler heuristics,” in AIMSA ’02: Pro-
ceedings of the 10th International Conference on Artificial Intelligence:
Methodology, Systems, and Applications. London, UK: Springer-Verlag,
2002, pp. 41–50.

[31] B. Franke, M. O’Boyle, J. Thomson, and G. Fursin, “Probabilis-
tic source-level optimisation of embedded programs,” SIGPLAN Not.,
vol. 40, no. 7, pp. 78–86, 2005.

[32] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. I. August,
“Compiler optimization-space exploration,” in CGO ’03: Proceedings
of the international symposium on Code generation and optimization.
Washington, DC, USA: IEEE Computer Society, 2003, pp. 204–215.

[33] K. D. Cooper, P. J. Schielke, and D. Subramanian, “Optimizing
for reduced code space using genetic algorithms,” in Workshop on
Languages, Compilers, and Tools for Embedded Systems. Atlanta,
Georgia: ACM Press, July 1999, pp. 1–9. [Online]. Available:
citeseer.nj.nec.com/cooper99optimizing.html

[34] P. A. Kulkarni, D. B. Whalley, G. S. Tyson, and J. W. Davidson,
“Exhaustive optimization phase order space exploration,” in Fourth
Annual IEEE/ACM Interational Conference on Code Generation and
Optimization, New York City, NY, March 2006, pp. 306–318.

[35] G. Fursin, C. Miranda, O. Temam, M. Namolaru, E. Yom-Tov, A. Zaks,
B. Mendelson, P. Barnard, E. Ashton, E. Courtois, F. Bodin, E. Bonilla,
J. Thomson, H. Leather, C. Williams, and M. O’Boyle, “Milepost gcc:
machine learning based research compiler,” in Proceedings of the GCC
Developers’ Summit, June 2008.

[36] G. Fursin, A. Cohen, M. O’Boyle, and O. Temam, “A practical method
for quickly evaluating program optimizations,” in Proceedings of the 1st
International Conference on High Performance Embedded Architectures
& Compilers (HiPEAC 2005), ser. LNCS, no. 3793. Springer Verlag,
November 2005, pp. 29–46.

[37] J. Lau, M. Arnold, M. Hind, and B. Calder, “Online performance
auditing: using hot optimizations without getting burned,” SIGPLAN
Not., vol. 41, no. 6, pp. 239–251, 2006.

[38] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: a transparent
dynamic optimization system,” in PLDI ’00: Proceedings of the ACM
SIGPLAN 2000 conference on Programming language design and im-
plementation. New York, NY, USA: ACM Press, 2000, pp. 1–12.

[39] M. G. Burke, J.-D. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar, M. J.
Serrano, V. C. Sreedhar, H. Srinivasan, and J. Whaley, “The Jalapeño
Dynamic Optimizing Compiler for Java,” in JAVA ’99: Proceedings of
the ACM 1999 conference on Java Grande. New York, NY, USA:
ACM Press, 1999, pp. 129–141.

[40] E. Duesterwald and V. Bala, “Software Profiling for Hot Path Prediction:
Less is More,” in ASPLOS-IX: Proceedings of the ninth international
conference on Architectural support for programming languages and
operating systems. New York, NY, USA: ACM Press, 2000, pp. 202–
211.

[41] M. Arnold, M. Hind, and B. G. Ryder, “Online feedback-directed
optimization of java,” in OOPSLA ’02: Proceedings of the 17th ACM
SIGPLAN conference on Object-oriented programming, systems, lan-
guages, and applications. New York, NY, USA: ACM Press, 2002, pp.
111–129.

[42] T. Kistler and M. Franz, “Continuous Program Optimization: A Case
Study,” ACM Trans. Program. Lang. Syst., vol. 25, no. 4, pp. 500–548,
2003.

[43] E. Duesterwald, “Design and engineering of a dynamic binary opti-
mizer,” Proceedings of the IEEE, vol. 93, no. 2, 2005, special issue on
”Program Generation, Optimization, and Adaptation”.

[44] J. Lu, H. Chen, R. Fu, W. Hsu, B. Othmer, P. Yew, and D. Chen, “The
performance of runtime data cache prefetching in a dynamic optimiza-
tion system,” in 36th Annual IEEE/ACM International Symposium on
Microarchitecture, December 2003.

[45] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” in Proceedings of
the 2005 ACM SIGPLAN conference on Programming language design
and implementation. Chicago, IL, USA: ACM Press, 2005, pp. 190–
200.

[46] Q. Zhao, R. Rabbah, S. Amarasinghe, L. Rudolph, and W.-F. Wong,
“Ubiquitous memory introspection,” in CGO ’07: Proceedings of the
International Symposium on Code Generation and Optimization. San
Jose, California: IEEE Computer Society, March 2007, pp. 299–311.

[47] G. Desoli, N. Mateev, E. Duesterwald, P. Faraboschi, and J. A. Fisher,
“Deli: a new run-time control point,” in 35th Annual ACM/IEEE Interna-
tional Symposium on Microarchitecture, December 2002, pp. 257–268.

[48] D. L. Bruening, “Efficient, transparent, and comprehensive runtime code
manipulation,” Ph.D. dissertation, Massachusetts Institute of Technology,
Cambridge, MA, USA, 2004, supervisor-Saman Amarasinghe.

[49] J. Cavazos, “Automatically constructing compiler optimization heuris-
tics using supervised learning,” Ph.D. dissertation, University of Mas-
sachusetts Amherst, September 2004.

[50] J. Cavazos and J. E. B. Moss, “Inducing heuristics to decide whether
to schedule,” in PLDI ’04: Proceedings of the 2004 ACM SIGPLAN
conference on Programming language design and implementation. New
York, NY, USA: ACM, 2004, pp. 183–194.

[51] J. Cavazos and M. O’Boyle, “Automatic tuning of inlining heuristics,” in
Supercomputing ’05: Proceedings of the 2005 ACM/IEEE conference on
Supercomputing (CDROM). Washington, DC, USA: IEEE Computer
Society, 2005, p. 13.

[52] J. Cavazos, J. E. B. Moss, and M. F. O’Boyle, “Hybrid optimizations:
Which optimization algorithm to use?” in Proceedings of the Inter-
national Conference on Compiler Construction (ETAPS CC’06), ser.
LNCS. Vienna, Austria: Springer-Verlag, Mar. 2006, pp. 185–201.

[53] J. Cavazos and M. F. P. O’Boyle, “Method-specific Dynamic Compila-
tion Using Logistic Regression,” in OOPSLA ’06: Proceedings of the
21st annual ACM SIGPLAN conference on Object-oriented program-
ming systems, languages, and applications. New York, NY, USA:
ACM Press, 2006, pp. 229–240.

[54] J. Cavazos, C. Dubach, F. Agakov, E. Bonilla, M. F. P. O’Boyle,
G. Fursin, and O. Temam, “Automatic performance model construction
for the fast software exploration of new hardware designs,” in CASES
’06: Proceedings of the 2006 international conference on Compilers,
architecture and synthesis for embedded systems. New York, NY, USA:
ACM, 2006, pp. 24–34.

[55] S. Khan, P. Xekalakis, J. Cavazos, and M. Cintra, “Using predictive
modeling for cross-program design space exploration in multicore sys-
tems,” in PACT ’07: Proceedings of the 16th International Conference
on Parallel Architecture and Compilation Techniques. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 327–338.

[56] L.-N. Pouchet, C. Bastoul, A. Cohen, and J. Cavazos, “Iterative op-
timization in the polyhedral model: part ii, multidimensional time,”
in PLDI ’08: Proceedings of the 2008 ACM SIGPLAN conference on
Programming language design and implementation. New York, NY,
USA: ACM, 2008, pp. 90–100.

