
RUGRAT: Runtime Test Case Generation using Dynamic Compilers

Ben Breech, Lori Pollock and John Cavazos

Department of Computer and Information Sciences

University of Delaware

Newark, DE 19711

{breech,pollock,cavazos}@cis.udel.edu

Abstract

The testing of error handling and dynamic security

mechanisms often depends on reproducing specific condi-

tions outside the realm of an application’s normal program

state. We present RUGRAT, a novel technique to automat-

ically generate tests for these challenging test situations.

RUGRAT uses a dynamic compiler to add instructions to

the program during execution, and thus dynamically gen-

erates tests to exercise code designed to handle uncommon

situations during program execution. The RUGRAT testing

approach is independent of the source language, requires

no modification to the source or binary program under test

and generates runtime tests automatically based on a sim-

ple test specification. We demonstrate RUGRAT’s capabili-

ties by targeting two particular uncommon situations: han-

dling errors from system and application calls, and testing

security mechanisms that protect a program against attacks

on function pointers. Both code coverage and failure de-

tection results indicate that RUGRAT is a cost effective ap-

proach that reduces the number of required test inputs and

need for vulnerable programs.

1 Introduction

Due to limited time and resources, testers often target

“common” situations, i.e., those situations likely to be en-

countered by users of the application. Unfortunately, the

infrequently executed code that remains untested often in-

volves important security mechanisms or error handling

code [8, 25]. Without testing, inadequate handling of errors

such as memory allocation or disk access errors can lead to

severe program failures in the field.

Generally, programs contain error handling code de-

signed to accommodate abnormal inputs or environmental

conditions. Sometimes, testing error handling code can

be incorporated as part of the testing process, particularly

when the code can be exercised by easily generated test

cases such as code to handle bad user input [20], or through

the use of fuzz testers [17], which generate random data

for the program to handle. However, testing code that

handles conditions beyond invalid user input, such as re-

source depletion or other environmental conditions, can be-

come practically impossible because these conditions are

extremely difficult to reproduce at the application level. For

example, executing code that handles memory allocation er-

rors, file I/O errors, or other resource errors requires notifi-

cation from the operating system.

To cover error handling code beyond handling bad user

input, researchers have developed fault injection techniques

[12, 26] that attempt to force the program to execute er-

ror handling code. Probabilistic approaches, such as those

that randomly change values in memory, are limited be-

cause they may not trigger particular error handling code

[26], while compiler-guided exception raising [12] requires

compiler-inserted extra code changing the code under test.

Other approaches require the tester to provide additional

code to exercise error handling code. The tester may re-

place particular library functions with stub functions [6, 23]

that return values indicating failure. Another approach is

to use Aspect Oriented Programming [21] to provide wrap-

per code that causes the program to exercise error handling

code. Both approaches require the tester to provide addi-

tional source code that can become complicated when more

fine grained control (e.g., exercising the error handling code

only at a particular callsite) is needed.

Dynamic security mechanisms [9, 28] are also difficult

to test because they require carefully crafted inputs [10] that

require particular domain knowledge [1] to exploit vulner-

abilities. Dynamic security mechanisms, which execute in

conjunction with the program, react to suspicious behavior

detected at runtime to prevent exploitations of program vul-

nerabilities. Current testing approaches require vulnerable

programs on which to test, but there is a lack of suitable

inputs [10].

In this paper, we present and evaluate an automated ap-

proach to generating tests for the uncommon cases of er-

ror handling and dynamic security mechanisms which de-

pend upon difficult-to-simulate environmental conditions.

We have implemented our technique as a testing framework

called RUGRAT (RUntime GeneRAtion of Tests), capable

of simulating uncommon situations to exercise rarely exe-

cuted code. RUGRAT takes as input a test specification and

a compiled binary program. During execution, RUGRAT

generates tests by adding instructions into the executing in-

struction stream to simulate the desired test conditions. The

key insight behind RUGRAT is that automatic runtime test

generation for uncommon situations can be performed by

running the program through an automatic test generator

working with a dynamic compiler.

The RUGRAT approach to testing has several benefits.

Runtime tests are generated automatically based on a simple

test specification. The runtime tests simulate dynamic con-

ditions that are difficult for a tester to reproduce. The testing

system is independent of the source programming language

of the program under test because RUGRAT takes binary

code as input. Unlike binary rewriters, RUGRAT requires

no modification of the source or binary of the program un-

der test. That is, while RUGRAT adds instructions into the

executing instruction stream, the original binary code re-

mains unchanged when testing is complete. The dynamic

compiler is only used during testing, and thus the program

under test need not execute with a dynamic compiler outside

the testing environment. The RUGRAT testing framework is

layered on top of the dynamic compiler and could be im-

plementable with any dynamic compiler. RUGRAT requires

little knowledge of the inner workings of the dynamic com-

piler and does not need to generate stubs for system calls.

RUGRAT could be used during maintenance or during initial

development.

We demonstrate RUGRAT’s capabilities by targeting two

important uncommon situations: handling errors from sys-

tem and application calls, and testing security mechanisms

that protect a program against attacks on function pointers.

Our previous system [5] was limited to testing mechanisms

protecting against stack smashing. This paper demonstrates

that the RUGRAT framework can now be applied to other

testing tasks, and thus is more generally applicable than the

initial system that targeted stack smashing. Our specific

contributions are

• an overview of the RUGRAT testing architecture and

process for testing uncommon situations;

• instantiation of the runtime test generator for (1) test-

ing a program’s handling of errors triggered by the fail-

ure of certain system and application calls, including

revealing omission errors, and (2) testing certain se-

curity mechanisms, such as those designed to protect

function pointers;

• a quantitative evaluation of the effectiveness of RU-

GRAT with respect to code coverage and a case study

if ((sptr = malloc(size+1)) == NULL) {
findmem();

if ((sptr = malloc(size+1)) == NULL)

xlfail("insufficient string space");

}

Figure 1: Error handling code in the 130.li lisp interpreter

of failure detection capability.

Our experimental results indicate that runtime test gener-

ation can significantly increase the coverage and fault expo-

sure within error handling code and function pointer protec-

tion mechanisms with much fewer test inputs and without

the limitations of other approaches.

After describing the testing challenges and state of the

art in Section 2, we present the RUGRAT testing framework

and testing process in Section 3. Section 4 describes the

specific runtime test generation strategies for error handling

and function pointer protection mechanisms. We present

our experimental evaluation study in Sections 5 and 6 fol-

lowed by conclusions and future directions.

2 Testing Challenges and State of the Art

This section illustrates the challenges of testing er-

ror handling code and dynamic security mechanisms that

protect function pointers, and overviews the current ap-

proaches.

2.1 Error Handling

Consider the code snippet shown in Figure 1, which

comes from the 130.li application in the SPEC appli-

cation suite [22]. The code attempts to allocate mem-

ory through malloc. If the allocation fails, the function

findmem tries to find some buffers that could be freed and

then the allocation is retried. findmem is only executed at

this callsite when the program is out of memory. Covering

the findmem callsite shown in Figure 1 requires the test

case to somehow allocate all available memory. The diffi-

culty in causing malloc to fail means that the findmem

callsite will likely go uncovered during testing. More gen-

erally, error handling code may be omitted entirely, which

may not be detected during testing.

Besides the work described in the introduction, other ap-

proaches include modifying the memory image of library

code to return different values for system calls [24], provid-

ing stubs for common system library functions to return dif-

ferent values [6, 23], and generating data to trigger certain

exceptions [25]. Techniques closely related to RUGRAT in-

clude Holodeck [24], FIG [6] and related approaches [23].

These approaches replace dynamic library functions with

stub functions. The stub functions, which are called by the

2

work = unzip;

// stmts that may change work

for (;;) {
if ((*work)(ifd, ofd) != OK){

// other non-pointer code removed

(a) C code with indirect function call

movl $unzip, work

// ...

movl work, %ecx

// setup arguments

call *%ecx

(b) Unprotected assembly code

movl $unzip, %edx

xorl mech key, %edx

movl %edx, work

// ...

movl work, %ecx

xorl mech key, %ecx

// setup arguments

call *%ecx

(c) Assembly code with security mechanism

Figure 2: Example of a security mechanism for function pointer usage

application, decide whether to fail the call by returning an

error value or allow the call to proceed normally by calling

the actual library call. The tester is responsible for provid-

ing, and modifying, the stub functions. These approaches

tend to require extensive effort from the tester and/or re-

quire modification of the program source or binary, which

changes the code being tested. Neither the FIG nor the

Holodeck approach target application function calls. RU-

GRAT removes this limitation and extensive testing effort

by using a dynamic compiler.

2.2 Pointer Protection Mechanisms

Function pointers are useful components of (usually C-

like) programming languages that provide the capability to

indirectly call functions, enable callbacks, simplify some

portions of code, and allow for basic reuse of code. Unfor-

tunately, function pointers can be subverted for arbitrary ex-

ecution of malicious code [9]. An attack can be performed

by overflowing a buffer [1], allowing the attacker to put an

arbitrary value in the function pointer. When invoked as a

call, the function pointer jumps to arbitrary code specified

by the attacker.

Determining that a program is vulnerable to such attacks

can be difficult. Static analysis tools can examine a program

for potential vulnerabilities, but can miss some vulnerabil-

ities and report false positives [15]. Array bounds check-

ing is a more complete solution, but can be expensive [3].

Various dynamic security mechanisms that execute in con-

junction with the program have been developed to combat

attacks against function pointers [9, 28]. The key insight of

these approaches is that an attack can be thwarted by en-

crypting the function pointer while in memory and decrypt-

ing the function pointer just before it is dereferenced.

Figure 2a shows an example in the application

164.gzip [22], where a different function, such as dif-

ferent compression/decompression, executes depending on

the value of the work function pointer. Figure 2b shows

the equivalent assembly code generated by a compiler with-

out any security mechanism. The function pointer, work, is

first initialized to the address of the function unzip. Next,

the function referenced by work is invoked by copying the

value of work into the ecx register and issuing the call

*%ecx instruction. Figure 2c shows the same assembly

code with the security mechanism added to protect the func-

tion pointer usage. After initialization, work is encrypted

by xoring the address with the key. Invoking the function

referenced by work now requires an extra instruction to

decrypt the value. When an attack occurs, the attacker over-

writes the value of the encrypted pointer with the address

of malicious code. This value is decrypted, resulting in a

bad address being passed to the function call. The program

jumps to the bad address and will likely incur a segmenta-

tion fault instead of executing the attacker’s code.

To test such a security mechanism, the mechanism is ap-

plied to a program known to be vulnerable to attacks against

function pointers. The program is then run twice with the

mechanism; once with normal inputs to ensure the mecha-

nism has not broken the program and once using the exploit

as input to ensure the mechanism protects the program’s

function pointers.

This testing process is usually inadequate since few ex-

ploitable programs are available for testing [10]. Without

systematic testing of each of the program points where the

mechanism is applied, some errors may not be exposed un-

til the mechanism is widely deployed. In previous work [5],

we described methods to dynamically generate test cases to

test security mechanisms that protect against stack smash-

ing attacks [1]. In this paper, we demonstrate how the ap-

proach can be generalized to other security mechanisms, by

generating runtime tests for security mechanisms to protect

function pointer usage.

3 The RUGRAT Testing Process

RUGRAT creates runtime tests, or dynatests, during pro-

gram execution. The dynatests are executable instructions

added to the program to modify the execution state of the

program to simulate an uncommon situation. Thus, a RU-

GRAT test case consists of both a normal input to the pro-

gram and a dynatest created at run time.

Figure 3 shows a high level view of the RUGRAT frame-

work. RUGRAT requires two inputs from the tester. The

first input is the test specification, which details the type of

3

RUGRAT Testing Framework

Test

Spec

Executable Code

& Inputs

Program

Source Compiler

Test

Report

Dynamic Compiler

Dynatest

Generator

Figure 3: RUGRAT Testing Framework

dynatests that are to be created and the points to be targeted

for testing. The second input to RUGRAT is the compiled

program and normal program inputs to be executed. The

output of RUGRAT is a test report describing the pass/fail

result of the tests.

The testing specification provides the information that

RUGRAT needs to create and insert dynatests. The most im-

portant information in the specification is the set of points

in the program that should be tested. The tester can spec-

ify these points generally (e.g., all call sites) or specifically

(e.g., call to X in function Y). In the current implementa-

tion, the testing points are specified through a set of environ-

ment variables that detail the particular location (e.g., call

site address) where the Dynatest generator should insert dy-

natests. Program addresses do not need to be computed by

the tester; RUGRAT determines the addresses by executing

the program once and provides the list to the tester to select

from. No undue burden is imposed on the tester for spec-

ifying testing locations. Other information in the testing

specification is specific to the particular testing task, such

as the kind of error conditions to be tested (see section 4),

and an oracle for the task (e.g., how should the program

behave when performing this particular testing task).

RUGRAT interacts with a dynamic compiler to perform

testing tasks. Dynamic compilers are commonly used to

speed up interpreted code (e.g., all JVMs are dynamic com-

pilers) and used for on-the-fly program optimizations [2].

Dynamic compilers also have been used to ensure a pro-

gram does not allow unauthorized control transfers [14], to

locate faults by dynamically switching predicates [27], and

to perform coverage analysis [18] and impact analysis [4].

The dynamic compiler enables RUGRAT to analyze and

modify the state of the executing program. RUGRAT’s dy-

natest generator module is responsible for communicating

with the dynamic compiler. During program execution, the

dynamic compiler provides information about the program

state to the generator, which then creates dynatests based

on the test specification. The generator gives the dynatests

to the dynamic compiler for insertion into the executing in-

struction stream.

Figure 4 shows a more detailed view of how RUGRAT

interacts with the dynamic compiler. For our prototype, we

have used the DynamoRIO [7] dynamic compiler, which is

capable of running a wide variety of statically compiled pro-

grams. During execution, DynamoRIO partitions the pro-

gram’s instructions into sequences called basic blocks1. Af-

ter a basic block is created by the dynamic compiler, the

block is input to the dynatest generator, which analyzes the

instructions in the block. If the generator determines that

a dynatest should be added to the block, the generator cre-

ates instructions to simulate uncommon situations, such as

an out of memory error. The generator then gives the basic

block, which now includes any dynatests, back to the dy-

namic compiler. The basic block is passed by the dynamic

compiler to the CPU for native execution. A new program

state is created after the execution of the basic block. The

dynamic compiler creates the next basic block and the pro-

cess continues until the program terminates. The test oracle

examines each new program state to determine if a dynatest

passed or failed. The definition of success for each dynatest

depends on the test specification.

4 Dynamic Test Generation Strategies

The specifics of dynatest generation vary depending on

the testing task, which is described by the test specification.

This section describes the strategies for generating dynat-

ests for error handling code and function pointer protection

mechanisms.

4.1 Testing for Error Handling

RUGRAT’s dynamic test generation is especially useful

for testing error handling that requires hard to simulate ex-

ternal environmental conditions (e.g., out of memory, disk

write failure, process creation failure). The key insight be-

hind RUGRAT is that the program’s error code can be tested

by selectively failing the related functions. RUGRAT’s test

generation strategy for error handling can be applied to both

application and system library calls. Testing code that han-

dles application call errors, however, may introduce com-

plexities due to side effects, such as modifications to global

data structures, or changes to static variables. RUGRAT can

handle some of these side effects when the testing speci-

fication details the side effect (e.g., which global variable

should be modified).

The tester selects a program and test input to run. The

tester specifies, through the test specification, the type of

error conditions that should be simulated (e.g., memory al-

location should fail) and target test points. In this instan-

1A basic block in DynamoRIO is a sequence of instructions that execute

contiguously on the CPU.

4

Executable Code

& Inputs

Dynamic

Compiler

Test Oracle
Test

Report

Test

Spec

Create Next

Basic Block

Basic Block

Basic Block

 Dynatest

Execute on CPU

New Prog. State

Dynatest

Generator

Figure 4: System Architecture. The dashed boxes are com-

ponents of RUGRAT.

tiation, a testing point is the location of a function call

whose return value should be modified. A tester can spec-

ify through the testing specification that all, or a subset of,

calls to a particular function should be tested. The program

is then executed under RUGRAT.

When a basic block is sent to the dynatest generator at

execution time, the dynatest generator examines the basic

block’s instructions looking for particular function calls, as

described in the test specification. When the specified call

occurs in a basic block, the call is allowed to proceed nor-

mally. After the call returns, the dynatest generator adds a

dynatest to the basic block. The dynatest is a set of instruc-

tions that change the result of the call. For a system call, the

result is determined by the return value of the call and the

value of the errno global variable. The basic block, along

with the dynatest, are given back to the dynamic compiler

and executed by the CPU. Because the return value of the

call and the errno variable are modified, the program now

executes as though an error has occurred and will execute

any associated error handling code. The oracle checks that

the error handling code has been executed. The test passes if

the error handling code correctly handles the condition. The

correctness of the error handling code can be determined by

using the same methods a tester would use to verify the cor-

rectness of other program code.

Consider testing for an out of memory situation. The test

specification indicates particular malloc callsites in the

application code to target for testing. On success, malloc

will return a pointer to the newly allocated memory. On

failure, a NULL pointer will be returned and errno set to

ENOMEM. During program execution under RUGRAT, a tar-

geted malloc call is allowed to proceed normally. After

malloc returns, the dynatest generator adds instructions

to the basic block to change the return value of the malloc

call to NULL and set errno to ENOMEM.

Table 1 lists some of the system calls that RUGRAT

can target. The table shows the system call, the value re-

turned on success, value returned on error, different values

of errno that can be set and the error that is simulated by a

dynatest. The table is not exhaustive; other calls can also be

targeted. To apply RUGRAT to test application calls that

could trigger error handling, the test specification would

also include side effect information to be modified.

Call Success Error errno vals Environmental

condition

malloc non-NULL NULL ENOMEM out of

pointer memory

socket int > 0 -1 EACCESS, no socket

and others available

fork int ≥ 0 -1 EAGAIN process copy

ENOMEM failed

read int ≥ 0 -1 EIO IO error

write and others

open int > 0 -1 EACCESS file opening

and others failed

fopen file pointer NULL EACCESS file opening

and others failed

Table 1: Example targeted system calls

Note that the RUGRAT approach sacrifices some simula-

tion accuracy to reduce testing complexity. A more accurate

simulation of the error condition could be obtained by mod-

ifying the particular system library call, such as malloc,

to behave precisely as if an error had occurred. Modifying

the library calls, however, would make the testing strategy

much more complex to automate.

Note that RUGRAT offers more accuracy and benefits

than simply changing branch predicates [27] to execute the

error handling code. RUGRAT selectively fails a particu-

lar call by changing the return value and, possibly, modify-

ing other variables as side effects of the function. State-

ments that are either control or data dependent on these

values can thus execute correctly. Changing only branch

predicates without modifying the associated return value or

side-effect values may result in strange execution behavior,

which would not aid testers. Additionally, the RUGRAT ap-

proach allows a tester to automatically locate callsites where

error handling has been omitted.

4.2 Testing Function Pointer Protection
Mechanisms

RUGRAT tests function pointer security mechanisms by

generating a dynatest that simulates an attack. The tester be-

gins by first selecting a program to be tested. Next, the tester

creates the test specification that indicates the protected

function pointers on which to test the protection mecha-

nism. For this instantiation, testing points are callsites that

use function pointers. Again, the tester can easily specify

5

that all such callsites should be tested or only a subset. The

tester executes the program under RUGRAT. RUGRAT’s run-

time test generation strategy enables many test cases to be

automatically and systematically generated for the protec-

tion mechanism without the need for a vulnerable program.

The testing can occur either during initial development, or

during maintenance phases to ensure any changes do not

compromise the security mechanism.

When given a basic block from the dynamic compiler,

the dynatest generator scans the instructions of the basic

block looking for indirect function calls, which occur as in-

structions to copy the function address (value of the func-

tion pointer) into a register, call reg, and then a call instruc-

tion with call reg as the argument.2 To create a dynatest that

simulates an attack, the dynatest generator adds instructions

to the basic block to place a new value into call reg prior

to any decryption. Thus, the dynatest simulates an attack

that overwrote the function pointer while the pointer was

still in memory. The program continues its execution under

RUGRAT. If the security mechanism is functioning prop-

erly, the decryption should modify call reg to have a bad

address, causing the program to terminate when the func-

tion pointer is invoked. The oracle checks that the program

terminates after a dynatest has been inserted. If the program

terminates, the security mechanism passes the test since the

mechanism prevented the attack from succeeding. If the

security mechanism behaves incorrectly, then the program

will jump to the address assigned by the dynatest genera-

tor. The attack has succeeded so RUGRAT reports that the

protection mechanism has failed the test.

4.3 General Instantiations of RUGRAT

Other instantiations of RUGRAT are possible beyond

testing function pointer security mechanisms and error han-

dling code. For example, in previous work [5], we detailed

an early version of RUGRAT that only tested security mech-

anisms that guard against stack smashing attacks.

New instantiations of RUGRAT require a new Dynatest

generator and oracle. A new generator needs to know the

possible testing points. For example, in the case of function

pointer protection mechanisms, a testing point is any indi-

rect function call. Next, the new generator needs to know

how to create a dynatest, such as changing the value of a

function at the testing point. Finally, the oracle needs to

know the expected program behavior to determine pass/fail.

5 Evaluation Methodology

Questions and Measures. The specific research questions

and measures for effectiveness vary slightly for the two test-

2An indirect call may be made with the function pointer value on the

stack and not in a register. The security mechanisms, however, will usually

modify the compiler to force all indirect calls to occur from registers only.

Program Description Source LOC # funcs

008.espresso Boolean function minimizer 9,844 363

130.li Lisp interpreter 4,888 366

132.ijpeg JPEG compressor 15,925 476

147.vortex Object Oriented database 40,242 925

164.gzip Gzip compression 5,604 106

space ESA ADL Interpreter 6,230 136

boxed-sim Box Simulator 8,994 199

lout Document Typesetter 19,768 457

Table 2: Subjects of Analysis

ing tasks. In both tasks, the cost associated with RUGRAT

is measured as the time needed to run the application under

RUGRAT. The space requirements for RUGRAT are negli-

gible as the memory needed for the dynatest generator is

small. DynamoRIO’s memory footprint is also small [7].

The specific questions on effectiveness of RUGRAT for

testing error handling code are:

RQ1 How much error handling code actually requires spe-

cific external environment conditions to trigger execu-

tion?

RQ2 How effective is RUGRAT in generating tests to cover

error handling code?

RQ3 How much of the error handling code covered by RU-

GRAT is covered without RUGRAT?

RQ4 How effective is RUGRAT in detecting failures in error

handling code execution?

The amount of error handling code (RQ 1) is measured

as the static number of lines of code (LOC) that handles a

particular error condition, if the condition is handled at all.

Ideally, we would like to know how difficult it would be

to test the targeted error handling without RUGRAT. How-

ever, it is difficult to quantitatively measure the difficulty

in testing error handling code without RUGRAT as it varies

with the error. Some errors, such as file open errors, could

be straightforward to test by temporarily removing, or re-

naming, key files. Other error conditions, such as fork or

malloc errors, are more difficult.

To obtain some sense of how well RUGRAT does, we

measured the error handling code coverage by running the

same program with the same inputs with and without RU-

GRAT. The coverage obtained with RUGRAT answers RQ 2,

while comparing this coverage against the coverage without

RUGRAT answers RQ 3. To answer RQ 4, we conducted a

case study of the failure detection capability of RUGRAT

with seeded faults in error handling code.

The specific questions on effectiveness of RUGRAT for

testing function pointer protection mechanisms are:

RQ1 How effective is RUGRAT at systematically generating

test cases to cover the targeted function pointer protec-

tion mechanism?

6

RQ2 How effective is RUGRAT in exposing faults in the

function pointer protection mechanism?

The function pointer protection mechanisms operate by

encrypting function pointers while in memory and decrypt-

ing the pointers just prior to their use. As such, each callsite

where the program uses a function pointer is a possible test

point for a generated dynatest. To answer RQ 1, we mea-

sured how well RUGRAT identifies indirect callsites as test

points in the program at run time and how many distinct

test cases can be automatically provided for the protection

mechanism by using RUGRAT. We implemented our own

function pointer protection mechanism similar to the Point-

Guard [9] mechanism. We also performed a case study

of RUGRAT’s capability to expose a fault in the function

pointer protection mechanism (RQ 2).

Subjects. After examining many codes from well known

benchmark suites, we chose a set of C programs that provide

the most opportunities to evaluate our approach. We chose

programs that use the most function pointers and/or contain

the most error handling code. The set includes programs

from the SPEC [22] and MiBench [13] suites, as well as the

space application [11]. Table 2 lists the applications and

their characteristics. Program inputs were either provided

with the suite, or created by the authors to provide adequate

coverage for our evaluation.

Methodology. All experiments were performed on a Red

Hat Fedora Core 5 Linux machine with 1.0 GB of memory.

Code coverage was measured by using gcov. Test pass/fail

was determined as the basic blocks execute, and currently

based on implementation of a check for the expected behav-

ior based on the test specification.

Threats to Validity. Threats to validity derive primarily

from the decision to use DynamoRIO as the underlying dy-

namic compiler which may introduce bias as we are reliant

upon DynamoRIO’s analysis. To guard against this, we

used PIN [16], when appropriate, to verify some of Dy-

namoRIO’s analysis. We had to limit our subjects to pro-

grams that would execute correctly on DynamoRIO. Simi-

larly, DynamoRIO limited us in some of the testing, which

should be doable with a more robust dynamic compiler.

Another threat to validity concerns the function pointer

protection mechanism we used in our study. We imple-

mented a mechanism patterned after PointGuard [9]. Our

mechanism works with the applications we used in our

study, but is not intended as a general function pointer pro-

tection mechanism. However, the general applicability of

our security mechanism is not important to the study.

Our study was limited to small-to-medium sized applica-

tions. Of more relevance is the function pointer usage and

error handling code. Additional calls and more error han-

dling code triggered by environmental conditions may be

necessary to generalize the results.

EH Total # # w/o %

call EH rugrat rugrat incr

Program/function sites stmts covrd covrd covrd

space/malloc 13/14 45 44 13 69

space/fopen 1 3 3 1 67

130.li/malloc 3 81 68 52 20

164.gzip/write 1 25 17 1 64

boxed-sim/malloc 71 0 – – –

lout/malloc† 27 87 56 19 43

lout/OpenFile 4 42 22 6 38
† lout has 8 malloc callsites with no EH code associated.

Table 3: RUGRAT effectiveness for error handling.

6 Results and Analysis

6.1 Program Coverage

Error Handling Code. Table 3 presents the results to an-

swer questions RQ 1, RQ 2, and RQ 3 for error handling

code. The first column shows the program and “trigger”

function that, under certain uncommon environmental con-

ditions, could trigger the error handling code under test. The

set includes both system and application functions. Because

the studied applications use few files, testing the error han-

dling code for fopen could indeed be done by simply re-

naming files. However, this is not the case for an application

where a large number of files are being accessed in differ-

ent places in the code. Testing the error handling code for

malloc without RUGRAT would require some way of allo-

cating most of the available memory. This can be obtrusive

as it may crash not only the program under test, but other

applications. Furthermore, testing the error handling code

at a particular callsite would require precise timing for when

to allocate all the memory.

The second column shows the number of unique call-

sites that were covered by the program inputs and would

result in calling the trigger function. The number of unique

callsites was obtained independently of RUGRAT and Dy-

namoRIO by writing a separate program that utilized PIN

[16]. When RUGRAT was used for testing, RUGRAT iden-

tified all but one of these callsites and inserted dynatests

accordingly. When testing space, RUGRAT tested 13 of

the 14 malloc callsites covered by the test cases. RU-

GRAT failed to detect one callsite because DynamoRIO in-

curred a segmentation fault for unknown reasons when a dy-

natest was inserted at that callsite. In general, the number

of unique callsites to target for testing error handling was

relatively small because these applications abstracted away

most of the relevant details into a small set of functions. To

demonstrate that RUGRAT is able to target application calls

as well as systems calls, RUGRAT was successfully used to

exercise error handling code in OpenFile from lout.

The ‘Total # EH stmts’ column is a count of the num-

ber of error handling statements to be targeted for testing,

7

and also answers RQ 1. The next two columns provide

the raw counts for statement coverage using RUGRAT and

then without using RUGRAT on the same inputs, followed

by the percent increase in error handling statement cover-

age achieved by using RUGRAT. In general, RUGRAT’s cov-

erage of error handling code was high. In some cases, the

applications’ error handling consisted of detecting the error,

printing a message, and quitting. In others, such as 130.li

and 164.gzip, the error handling was more complex. In

these instances, the application either tried to recover from

the error (see Figure 1 for how 130.li tries to recover

from an out of memory error) or attempted to exit more

gracefully by freeing allocated buffers and closing relevant

files. Upon closer examination of the error handling cov-

erage missed by RUGRAT, the error handling code includes

various options that were not covered by the test inputs.

Table 3 also shows RUGRAT’s ability to locate some

omission errors. In particular, the lout typesetting pro-

gram has 27 callsites where malloc is invoked. 8 of those

callsites have no associated error handling code. Similarly,

the 71 callsites in boxed-sim do not have any error han-

dling code. RUGRAT was able to automatically find these

omission errors during testing.

The distribution of space [11] that we used includes

over 13,000 test cases that were designed to maximize

statement coverage. Without RUGRAT, the system calls in

space always succeeded. The only error handling code

that was exercised by any of the 13,000+ test cases was the

IF statement that checked for a possible error. However,

RUGRAT is able to force space down paths to handle the

errors, and provides significantly increased coverage of the

error handling code. The lack of error handling coverage by

the large test suite of space demonstrates the difficulty in

creating test cases to exercise error handling code.

space also includes extensive code to handle applica-

tion errors during processing. Our examination of the cov-

erage for space for all 13,000+ test cases without RUGRAT

exposed 7 program points where code designed to handle

an application error was not exercised by any test case. We

inspected the code at each of the 7 missed points and de-

termined that 5 points were impossible to reach. The re-

maining 2 may be possible but were not covered by any of

the 13,000+ test cases. RUGRAT was able to cover the re-

maining 2 testing points by generating dynatests to fail the

associated application calls.

Function Pointer Protection Mechanisms. Table 4 shows

the data to address RQ 1 for testing function pointer security

mechanisms. Each unique callsite that calls a function in-

directly through a function pointer is a candidate for testing

the function pointer protection mechanism. For each ap-

plication, we used PIN [16] to count the number of unique

callsites that utilize function pointers and are covered by the

program inputs.

unique fptr callsites

Program = # callsites tested

132.ijpeg 126

008.espresso 10

130.li 3

147.vortex 7

164.gzip 2

Total 148

Table 4: RUGRAT effectiveness for protection mechanism

RUGRAT was very successful, as it identified all possible

function pointer callsites and generated dynatests to simu-

late attacks against each of the callsites. In the testing of

our protection mechanism, each test passed as each attack

was detected by the protection mechanism. Most impor-

tantly, RUGRAT was able to test all possible program points

where the protection mechanism should be applied without

requiring a vulnerable program.

In our study, we observed that some of the applica-

tions abstract away the details involved in invoking func-

tion pointers. In 130.li, there are only 3 function pointer

callsites. However, 130.li invokes over 150 different

functions through function pointers. These are primarily

called at one callsite. This exposes a limitation of using Dy-

namoRIO as the underlying dynamic compiler in RUGRAT.

DynamoRIO’s API allows the client module (dynatest gen-

erator) to analyze and modify particular basic blocks, but

does not provide any contextual information while doing

so. Thus, RUGRAT currently can target a particular callsite,

but not a particular invocation through that callsite. Future

versions of DynamoRIO could remove this limitation.

6.2 Failure Detection Case Studies

Error Handling Code. We performed a failure detection

case study using the space [11] program to examine RU-

GRAT’s effectiveness at revealing faults and to assess how

much tester effort RUGRAT can save. The space program

includes extensive error handling code to handle application

errors and over 13,000 test cases that are designed to max-

imize statement coverage. To meet the goals of our failure

detection study, we randomly selected 100 test cases.

We analyzed coverage information to identify “interest-

ing” error handling points. For our case study, an error han-

dling point consists of an IF statement that checks for an

error and the associated IF body that handles the error. “In-

teresting” error points were selected: (1) the IF statement of

the error handling point was covered but the associated IF

body was not (i.e., the test inputs did not trigger the error

handling code), and (2) the error handling code attempts to

handle the error rather than printing a message and quitting.

We identified 20 “interesting” points that met this criteria

for the 100 test cases. space was run under RUGRAT us-

8

ing the 100 test cases as inputs. We verified that RUGRAT

forced space to exercise the IF body for each error han-

dling point. The outputs of space under these conditions

were saved as the expected results.

Graduate students, but none of the authors, familiar with

C manually seeded faults in the IF bodies of any of the 20

error handling points. This process created 34 faulty ver-

sions with one seeded fault per version. The seeded faults

were distributed over 18 of the 20 interesting points. Each

faulty version of space was run under RUGRAT, which

forced space to exercise all of the error handling code.

We performed a study to estimate how many tests a tester

may need to generate to cover all 20 error handling points

used in our failure detection study if they did not use RU-

GRAT. We randomly chose an additional 100 test cases for

space and computed their error handling coverage. We

continued to randomly choose another 100 test cases un-

til we had a pool of cases that covered all 20 of the error

handling points. We found that we had to choose 1,600 ad-

ditional test cases to provide the desired coverage. While

this is just one case study, this provides an indication of how

much testing effort could be saved by RUGRAT. In this case,

a tester may have to create anywhere from an additional 20

to 1,600 test cases to cover the error handling points.

Next, the results of the faulty versions were compared

against the expected results to detect failures. Out of the

34 seeded faults, RUGRAT detected 15 failures. RUGRAT

did not expose failures for 19 of the seeded faults. Six of

the non-exposed faults affected the return values of func-

tions. The callers of these faulty functions only checked

for a non-zero return (e.g., a return value of 1 or -1 caused

the caller to perform the same action). Two of the unde-

tected faults involved allocating too little memory for a data

structure. space did not seem to notice the problem, pos-

sibly because the underlying implementation of malloc

allocated slightly more memory than was requested. One

fault caused callers of the faulty function to quit the pro-

gram. Two faults were not detected for unknown reasons.

Both of these faults initialized certain variables to different

values, but the execution of space was unaffected on the

test cases that covered these faults.

The remaining 8 undetected faults show an interesting

feature of the space program. The faults went undetected

by RUGRAT because the callers of the faulty functions sim-

ply repeated the error handling code. For example, if a func-

tion handled an error by the assignment *x = 0 and then

returned an error value, the caller would immediately set *x

= 0 as well. The 8 faults went undetected because space

corrected for the faults by repeating the proper assignments.

This makes space more robust with regard to errors, but

possibly more difficult to maintain.

Function Pointer Protection Mechanisms. We also per-

formed a case study on RUGRAT’s effectiveness at exposing

failures in function pointer mechanisms. Key generation is

important for the correct functioning of these mechanisms.

The encryption keys are randomly generated each time the

application starts so the key generator must be fast. Due

to the limited amount of vulnerable programs available for

testing [10], problems in key generation may go unnoticed

until the mechanism has been deployed. RUGRAT greatly

increases the amount of testing that can be performed by

dynamically creating dynatests.

We seeded a fault in our function pointer protection

mechanism by breaking the key generator so that 5% of the

generated keys were the identity key; far more often than

would normally be expected. The broken mechanism was

applied to 132.ijpeg (which has the most opportunities

for testing), which was then run under RUGRAT for all 126

indirect callsites. The identity key was generated 3 times

and all 3 attacks succeeded, indicating that the protection

mechanism was not functioning according to specification.

Note that RUGRAT was able to detect the failure without

using a vulnerable program.

6.3 Testing Costs

Timing data was collected by executing each application

with no testing (and no RUGRAT), and executing again with

RUGRAT performing testing. Due to space limitations, the

timing data is not shown. In general, testing error handling

code is fast because most programs terminate early when a

system error occurred. Some tests for 130.li and space

took longer than the normal execution time. This is due to

a combination of overhead from DynamoRIO and/or recov-

ering from errors. When the callsite shown in Figure 1 was

tested, 130.li attempted to recover from the error. The

recovery was successful and 130.li continued execution

and finished. The combination of the recovery and overhead

of DynamoRIO (and RUGRAT) led to a longer execution

time for this test case of 130.li. The overhead resulted in a

slowdown factor of 1.2. The testing times for space took

longer than normal because space is a short-lived program

so the startup time for DynamoRIO becomes significant.

In all cases, the time needed to perform the testing of the

function pointer protection mechanism using RUGRAT was

far less than the time needed to run the application with-

out any testing. Once an attack was made against a func-

tion pointer, the mechanism decrypted the function pointer

value into an invalid address. When the function pointer

was invoked, the application jumped to a bad address and

was terminated. This happened quickly, so the time needed

for testing was considerably shortened.

7 Conclusions and Future Directions

We presented and evaluated RUGRAT, a testing frame-

work for generating runtime tests for the uncommon cases

9

of error handling and dynamic security mechanisms which

are dependent on difficult-to-simulate environmental con-

ditions. Our experimental results indicate that RUGRAT is

cost effective in identifying testing points and creating test

cases at those points that can significantly increase the cov-

erage of rarely executed code. We also demonstrated that

RUGRAT can expose failures that may otherwise go unno-

ticed due to lack of test cases. Thus, the tester does not

need to create additioanl test cases, which may be difficult

to craft, to cover the error handling code.

We believe that RUGRAT is useful in addressing other

testing challenges. For example, RUGRAT could be used

to provide additional test cases for certain security policy

enforcement techniques that restrict resources that an ap-

plication may access (see, for instance, [19]). The restric-

tions that these techniques enforce are usually dictated by

a per-application security policy. RUGRAT could gener-

ate runtime tests that simulate that an application has been

taken over by an attacker. Lastly, RUGRAT could be imple-

mented for Java with an underlying dynamic compiler, with

specifics for language differences and exception raising se-

mantics carefully handled.

References

[1] AlephOne. Smashing the stack for fun and profit. http:

//www.insecure.org/stf/smashstack.txt.
[2] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A trans-

parent runtime optimization system. Programming Lan-

guage Design and Implementation, 2000.
[3] R. Bodı́k, R. Gupta, and V. Sarkar. ABCD: Eliminating array

bounds checks on demand. Programming Language Design

and Implementation, 2000.
[4] B. Breech, M. Tegtmeyer, and L. Pollock. A comparison of

online and dynamic impact analysis algorithms. European

Conf. on Software Maintenance and Reengineering, 2005.
[5] B. Breech, M. Tegtmeyer, and L. Pollock. An attack simula-

tor for systematically testing program-based security mech-

anisms. International Symposium on Software Reliability

Engineering, 2006.
[6] P. Broadwell, N. Sastry, and J. Traupman. FIG: A prototype

tool for online verification of recovery mechanisms. Work-

shop on Self-Healing, Adaptive and self-MANaged Systems

(SHAMAN), 2002.
[7] D. Bruening, T. Garnett, and S. Amarasinghe. An infras-

tructure for adaptive dynamic optimization. In International

Symposium on Code Generation and Optimization, 2003.
[8] M. Bruntink, A. van Deursen, and T. Tourwé. Discover-

ing faults in idiom-based exception handling. International

Conference on Software Engineering, 2006.
[9] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. Point-

Guard: Protecting pointers from buffer overflow vulnerabil-

ities. USENIX Security Symposium, 2003.
[10] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie,

A. Grier, P. Wagle, Q. Zhang, and H. Hinton. StackGuard:

Automatic adaptive detection and prevention of buffer-

overflow attacks. USENIX Security Symposium, 1998.

[11] H. Do, S. G. Elbaum, and G. Rothermel. Supporting con-

trolled experimentation with testing techniques: An infras-

tructure and its potential impact. Empirical Software Engi-

neering: An International Journal, 10(4):405–435, 2005.

[12] C. Fu, A. Milanova, B. Ryder, and D. G. Wonnacott. Robust-

ness testing of java server applications. IEEE Transactions

on Software Engineering, 31:292 – 310, 2005.

[13] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,

T. Mudge, and R. B. Brown. MiBench: A free, com-

mercially representative embedded benchmark suite. IEEE

Workshop on Workload Characterization, 2001.

[14] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure ex-

ecution via program shepherding. In USENIX Security Sym-

posium, 2002.

[15] D. Larochelle and D. Evans. Statically detecting likely

buffer overflow vulnerabilities. USENIX Security Sympo-

sium, 2001.

[16] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,

G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin:

Building customized program analysis tools with dynamic

instrumentation. Programming Language Design and Im-

plementation, 2005.

[17] B. Miller, L. Fredriksen, and B. So. An empirical study

of the reliability of UNIX utilities. Communication of the

ACM, 1990.

[18] J. Misurda, J. A. Clause, J. L. Reed, B. R. Childers, and

M. L. Soffa. Demand-driven structural testing with dynamic

instrumentation. International Conference on Software En-

gineering, 2005.

[19] N. Provos. Improving host security with system call policies.

USENIX Security Symposium, 2003.

[20] S. Sinha and M. J. Harrold. Analysis and testing of programs

with exception-handling constructs. IEEE Transactions on

Software Engineering, 2000.

[21] O. Spinczyk, D. Lohmann, and M. Urban. Advances in AOP

with AspectC++. Software Methodologies Tools and Tech-

niques, 2005.

[22] Standard Performance Evaluation Corporation. SPEC

benchmarks. http://www.spec.org.

[23] M. Süßkraut and C. Fetzer. Automatically finding and patch-

ing bad error handling. European Dependable Computing

Conference, 2006.

[24] H. H. Thompson, J. A. Whittaker, and F. E. Mottay. Soft-

ware security vulnerability testing in hostile environments.

Symposium on Applied Computing (SAC), 2002.

[25] N. Tracey, J. Clark, K. Mander, and J. McDermid. Auto-

mated test-data generation for exception conditions. Soft-

ware Practice and Experience, 2000.

[26] T. K. Tsai, M. Chen Hsueh, H. Zhao, Z. Kalbarczyk, and

R. K. Iyer. Stress-based and path-based fault injection. IEEE

Transactions on Computers, 48:1183, 1999.

[27] X. Zhang, N. Gupta, and R. Gupta. Locating faults through

automated predicate switching. International Conference on

Software Engineering, 2006.

[28] G. Zhu and A. Tyagi. Protection against indirect overflow

attacks on pointers. International Information Assurance

Workshop, 2004.

10

