
1

Using Statistical Simulation for Studying

Compiler-Microarchitecture Interactions
Lieven Eeckhout† John Cavazos‡

†ELIS Department, Ghent University, Belgium
‡School of Informatics, University of Edinburgh, UK

Abstract

I. INTRODUCTION

Simulation is an invaluable tool in the architecture and compiler communities. Cycle-by-cycle simu-

lation allow for tracking individual instructions as they flow through the pipeline during their execution.

Given the increasing complexity of contemporary processor designs, and the ever increasing complexity

and size of today’s applications—which is made possible thanks to the ever increasing performance of

today’s systems—simulation is a very time consuming process. For example, simulating an industry-

standard SPEC CPU2000 benchmark takes on the order of days and even several weeks on an optimized

architectural simulator, and this for a single benchmark with one input compiled with a single compiler

optimization setting for a single microarchitectural configuration. Obviously, detailed full-benchmark

simulation is impossible for exploring large compiler and/or microarchitecture design spaces.

Recently, researchers have proposed statistical simulation [7], [8], [9], [16], [17] as a solution to the

problem of long architectural simulation times. Statistical simulation profiles an application and computes

a number of important program characteristics such as instruction mix, inter-operation dependencies, cache

behavior, branch behavior, etc. This statistical profile is then used as input for generating a synthetic trace

that is subsequently fed into a statistical simulator. The important advantage of statistical simulation

over detailed simulation is that the synthetic trace is extremely short in comparison to real application

dynamic instruction counts. One million synthetic instructions is typically enough for making accurate

performance and energy consumption estimates. Previous work has shown that statistical simulation is

November 13, 2005 DRAFT

2

especially valuable when it comes to estimating relative performance variations across microarchitectures.

This property in conjunction with the fast simulation property make statistical simulation a powerful tool

for quickly exploring huge microarchitecture design spaces. Statistical simulation can thus be used to

quickly identify a region of interest which can then be further explored through detailed and thus slower

simulation runs.

To evaluate a new microarchitecture properly, it is necessary to have programs optimized for that

microarchitecture. However, manually tuning a compiler to get the best performance is a time-consuming

task and it is therefore not possible to have a hand-tuned compiler for all the configurations an architect

would like to evaluate. Therefore, it would be desirable to quickly and automatically tune an optimizing

compiler to any given architecture.

In recent years, iterative compilation has shown great promise in automatically finding good transfor-

mation sequences for particular programs [6], [10], [14]. However, iterative compilation can be costly

since testing thousands of different optimization configurations is typically required to obtain the best

performance for a program. Recently, a new technique [1] has been proposed that can greatly diminish

the cost of iterative compilation. However, evaluating even a small number of compiler configurations

using detailed simulation could take many days or even weeks for just one program, greatly reducing

the size of the architecture design space an architect can explore.

This paper describes a feasibility study for using statistical simulation instead of full detailed simulation

in conjunction with iterative compilation to explore a large spaces of microarchitecture and/or compiler

design spaces. Using a number of SPEC CPU2000 benchmarks and a number of compiler optimiza-

tion flags, we show that statistical simulation is capable of accurately tracking the performance/energy

differences induced by different compilation settings. For example, we obtain correlation coefficients

between detailed simulation results and statistical simulation results for estimating performance between

0.84 and 0.99. These preliminary results are very encouraging for persuing future research into the

applicability of statistical simulation for studying compiler-microarchitecture interactions. We envision

and discuss a number of potential applications for this approach in this paper, namely (i) rapid compiler

development using statistical simulation instead of detailed simulation in case no real hardware is available

yet, (ii) microarchitecture/compiler design space co-exploration, (iii) iterative compilation where the best

performing compiler optimization flags are determined for a given application and a given microprocessor,

and (iv) quickly exploring potential compiler optimizations.

This paper is organized as follows. We first discuss the statistical simulation method. We subsequently

detail our experimental setup in section III. In section IV we then evaluate the accuracy of statistical

November 13, 2005 DRAFT

3
b

e
n

c
h

m
a

rk

microarchitecture-
independent
profiling tool

specialized
simulation

of locality events

statistical profile containing:
- statistical flow graph
- instruction types
- number of operands per instruction
- dependency distance per operand
- branch characteristics
- cache characteristics

synthetic trace

synthetic trace simulation

performance metrics

synthetic trace generation

1

2

3

Fig. 1. Statistical simulation: general framework.

simulation for tracking performance and energy differences between different compiler optimizations.

Section V then discusses potential applications for using statistical simulation when studying com-

piler/microarchitecture interactions. We finally conclude in section VI and discuss future work.

II. STATISTICAL SIMULATION

Statistical simulation [7], [8], [9], [16], [17] consists of three steps as shown in Figure 1. We first

measure a statistical profile which is a collection of important program execution characteristics such as

instruction mix, inter-instruction dependencies, branch miss behavior, cache miss behavior, etc. Subse-

quently, this statistical profile is used to generate a synthetic trace consisting on the order of a million

instructions. In the final step, this synthetic trace is simulated on a statistical simulator which yields

performance metrics such as IPC and energy consumption. We now discuss these three steps in more

detail.

A. Statistical profiling

In statistical profiling we make a distinction between microarchitecture-dependent and microarchitecture-

independent characteristics. The microarchitecture-independent characteristics can be used across different

microarchitectures during design space exploration. The microarchitecture-dependent characteristics on

the other hand are particular to specific (subparts of) a microarchitecture.

1) Statistical flow graph: The key structure in the statistical profile is the statistical flow graph

(SFG) [7] which represents the control flow in a statistical manner.

In an SFG, each node represents a particular basic block and its basic block history, i.e., the predecessor

basic blocks executed prior to the given basic block. The order of the SFG corresponds to the number

November 13, 2005 DRAFT

4

of blocks in the basic block history leading up to a basic block in each node of the SFG. Consider,

for example, the following trace of basic blocks ‘ABBAABAABBA’. A 4th-order SFG would make a

distinction between basic block ‘A’ given its basic block history ‘ABBA’, ‘BAAB’, ‘AABA’, ‘AABB’;

this SFG will thus contain the following nodes: ‘A|ABBA’, ‘A|BAAB’, ‘A|AABA’ and ‘A|AABB’. The

edges in the SFG interconnecting the nodes represent transition probabilities between the nodes. The

idea behind the SFG is to model program characteristics that are correlated with path behavior. Different

statistics are therefore computed for different basic block histories. For example, in a 4th-order SFG,

cache miss statistics for basic block ‘A’ would be different when its basic block history is ‘ABBA’ and

when its basic block history is ‘BAAB’.

Such cases can be modeled in a 4th-order SFG. On the other hand, in case a correlation between

program characteristics spans a number of basic blocks that is larger than the SFG’s order, it will be

impossible to model such correlations within the SFG, unless the order of the SFG is increased.

2) Microarchitecture-independent characteristics: The first microarchitecture-independent character-

istic is the instruction mix. We classify the instruction types into 12 classes according to their seman-

tics: load, store, integer conditional branch, floating-point conditional branch, indirect branch, integer

alu, integer multiply, integer divide, floating-point alu, floating-point multiply, floating-point divide and

floating-point square root. And for each instruction we record the number of source operands. Note that

some instruction types, although classified within the same instruction class, may have a different number

of source operands.

For each operand we also record the dependency distance which is the number of dynamically

executed instructions between the production of a register value (register write) and the consumption

of it (register read). We only consider read-after-write (RAW) dependencies since our focus is on out-

of-order architectures in which write-after-write (WAW) and write-after-read (WAR) dependencies are

dynamically removed through register renaming as long as enough physical registers are available. Note

that recording the dependency distance requires storing a distribution since multiple dynamic versions of

the same static instruction, e.g., due to different basic block histories in the SFG, could result in multiple

dependency distances.

3) Microarchitecture-dependent characteristics: In addition to these microarchitecture-independent

characteristics we also measure a number of microarchitecture-dependent characteristics that are related to

locality events. We model locality events in a microarchitecture-dependent way because they are hard to

model using microarchitecture-independent metrics. We therefore take a pragmatic approach and collect

cache miss and branch miss information for particular cache configurations and branch predictors.

November 13, 2005 DRAFT

5

For the branch statistics we measure (i) the probability for a taken branch, (ii) the probability for a fetch

redirection (target misprediction in conjunction with a correct taken/not-taken prediction for conditional

branches), and (iii) the probability for a branch misprediction.

The cache statistics consist of the following six probabilities: (i) the L1 I-cache miss rate, (ii) the L2

cache miss rate due to instructions only1, (iii) the L1 D-cache miss rate, (iv) the L2 cache miss rate due

to data accesses only, (v) the I-TLB miss rate and (vi) the D-TLB miss rate.

We want to emphasize that all the program characteristics discussed above, both the microarchitecture-

dependent and -independent characteristics, are measured in the context of an SFG. Thus, separate

statistics are kept for different basic block histories or execution paths.

B. Synthetic trace generation

The second step in the statistical simulation methodology is to generate a synthetic trace from the

statistical profile. The synthetic trace generator takes as input the statistical profile and outputs a synthetic

trace that is fed into a statistical simulator. Synthetic trace generation uses random number generation

for generating a number in [0,1]; this random number is then used with the cumulative distribution

function to determine a specific value for a given program characteristic. The synthetic trace is a linear

sequence of synthetic instructions. Each instruction has an instruction type, a number of source operands,

an inter-instruction dependency for each source operand (which describes the producer for the given

source operand), I-cache miss info, D-cache miss info (in case of a load), and branch miss info (in case

of a branch). The locality miss events are just labels in the synthetic trace describing whether the load

is an L1 D-cache hit, L2 hit or L2 miss and whether the load generates a TLB miss. Similar labels are

assigned for the I-cache and branch miss events.

C. Synthetic trace simulation

Simulating the synthetic trace is fairly straightforward. In fact, the synthetic trace simulator itself is

very simple as it does not need to model branch predictors nor cache hierarchies—misses are just tagged

to the synthetically generated instructions; also, all the ISA’s instruction types are collapsed in a limited

number of instruction types. The important benefit of statistical simulation is that the synthetic traces

are fairly short. The performance metrics quickly converge to a steady-state value when simulating a

1We assume a unified L2 cache. However, we make a distinction between L2 cache misses due to instructions and due to

data.

November 13, 2005 DRAFT

6

benchmark input
vpr lgred-route
crafty lgred
gap lgred
gzip lgred-graphic
bzip2 lgred-source
vortex lgred
twolf lgred
mcf lgred
parser lgred

TABLE I
THE SPEC CPU2000 INTEGER BENCHMARKS USED IN THIS STUDY ALONG WITH THEIR INPUTS.

synthetic trace. As such, synthetic traces containing a million of instructions are sufficient for obtaining

stable performance estimates.

Note that, next to estimating performance, statistical simulation can also be used for estimating

energy consumption. The synthetic trace simulator needs to be enhanced with an architectural-level

energy estimation tool. An architectural-level energy simulation tool basically measures unit-level activity

counters and multiplies those activity counters with unit-level power consumption numbers based on the

size of the units and their technological constraints. As such, incorporating architectural-level energy

estimation into a synthetic trace simulator is easily done.

III. EXPERIMENTAL SETUP

We use a number of SPEC CPU2000 benchmarks in our experimental setup. The inputs used for

each of these benchmarks are the large (lgred) inputs from the MinneSPEC reduced input sets [13].

The benchmarks and inputs we used are shown in Table I. The dynamic instruction count for each of

these benchmarks varies between 500M and 4B instructions. We choose these reduced input sets instead

of the reference inputs provided by SPEC because of the excessive simulation times for some of these

benchmarks when run with their reference inputs. Moreover, we had to simulate each benchmark multiple

times for each of the different compiler optimizations that we experimented with. The binaries were

compiled using the Alpha cc compiler V6.3-025 on a Compaq Tru64 UNIX platform. All benchmarks

were statically linked using the -non shared flag. The nine compiler optimization flags that we consider

in this paper are shown in Table II. We limited ourselves to only nine compiler optimization flags because

of the excessive simulation times; for each of the optimizations we had to run a detailed simulation next to

a statistical simulation. Note that this is exactly the problem we are tackling with statistical simulation.

November 13, 2005 DRAFT

7

flags description
-O1 Local optimizations and recognition of common subexpressions.

Global optimizations, including code motion, strength reduction and test replacement,
split lifetime analysis, and code scheduling.

-O3 Inline expansion of static and global procedures. Additional global optimizations
that improve speed (at the cost of extra code size), such as integer multiplication and
division expansion (using shifts), loop unrolling, and code replication to eliminate branches.

-O3 -noinline By default, -O3 provides function inlining. The -noinline option
disables this optimization.

-O3 -unroll By default, -O3 includes loop unrolling. The -unroll option
lets the compiler decide whether loop unrolling is appropriate or not.

-O3 -om Additional optimizations after linking such as removing NOP instructions
and reallocating common symbols.

-O4 Software pipelining using dependency analysis, vectorization of some loops on
8-bit and 16-bit data (char and short), and insertion of NOP instructions to improve scheduling.

-O4 -noinline By default, -O4 provides function inlining. The -noinline option
disables this optimization.

-O4 -unroll By default, -O4 includes loop unrolling. The -unroll option
lets the compiler decide whether loop unrolling is appropriate or not.

-O4 -om Additional optimizations after linking such as removing NOP instructions
and reallocating common symbols.

TABLE II
THE OPTIMIZATION CONFIGURATIONS FOR THE ALPHA cc COMPILER THAT ARE USED IN THIS PAPER.

The simulation results that we present in this paper are obtained using SimpleScalar/Alpha v3.0 [3].

The baseline processor model that we assume here is an aggressive out-of-order microarchitecture, see

Table III. The energy numbers reported here were obtained using Wattch v1.02 [5].

IV. EVALUATION

We now evaluate the ability of statistical simulation to estimate execution time, energy consumption and

energy-delay product across binaries that are optimized using different compilation flags. The primary

question we want to address is: “Is statistical simulation accurate enough to track performance and

energy differences between application binaries compiled with different optimizations?”. Estimating

the total execution time is done by multiplying CPI (cycles per committed instruction) with the total

dynamic instruction count. Estimating the total energy consumption is done by multiplying EPI (energy

consumption per committed instruction) with the total dynamic instruction count. Finally, the energy-

delay product (EDP) [4] is a fused metric that combines execution time with energy consumption:

EDP = EPI × CPI . EDP is a well known energy-efficiency metric for microprocessors. The lower

the EDP, the more energy-efficient the design is.

Before evaluating whether statistical simulation is indeed capable of tracking compilation variations we

first discuss the prediction accuracy of statistical simulation. This is done in Figure 2 where the average

November 13, 2005 DRAFT

8

instruction cache 32KB, 2-way set-associative, 32-byte block, 2 cycles access latency
data cache 64KB, 4-way set-associative, 32-byte block, 2 cycles access latency
unified L2 cache 4MB, 4-way set-associative, 64-byte block, 20 cycles access latency
I-TLB and D-TLB 128-entry 8-way set-associative with 4KB pages
memory 150 cycle round trip access
branch predictor 8K-entry hybrid predictor selecting between an 8K-entry bimodal predictor and

a two-level (8K x 8K) local branch predictor xor-ing the local history with
the branch’s PC, 512-entry 4-way set-associative BTB and 64-entry RAS

speculative update at dispatch time
branch misprediction penalty 14 cycles
IFQ 32-entry instruction fetch queue
RUU and LSQ 128 entries and 32 entries, respectively
processor width 8 issue width, 8 decode width (fetch speed = 2), 8 commit width
functional units 8 integer ALUs, 4 load/store units, 2 fp adders, 2 integer and 2 fp mult/div units

TABLE III
BASELINE PROCESSOR SIMULATION MODEL.

-15%

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

b
z
ip

2

c
ra

ft
y

g
a
p

g
z
ip

m
c
f

p
a
rs

e
r

tw
o
lf

v
o
rt

e
x

v
p
r

p
re

d
ic

ti
o
n

e
rr

o
r

execution time

energy consumption

EDP

Fig. 2. Prediction errors when estimating execution time, energy consumption and EDP across the different benchmarks. The

bars respresent the average error, and the error bars represent the minimum and maximum errors observed across the nine

compiler optimizations.

prediction error is shown over the nine optimization configurations that we consider in this paper. This is

done for estimating execution time, energy consumption and EDP. The solid bars represent the average

error and the error bars show the minimum and maximum error observed over those nine optimization

configurations. We observe that the prediction error is fairly small. For estimating performance, the

average error across the benchmarks is only 6.5%; and the largest error is for mcf (18%). For estimating

energy consumption, the error is higher (11.3% on average) and seems to be a consistent overestimation.

The reason is that the architecture-level energy estimation tool uses data values for computing the number

November 13, 2005 DRAFT

9

bzip2

8.0

8.1

8.2

8.3

8.4

8.5

8.6

8.1 8.2 8.3 8.4 8.5 8.6

detailed simulation

s
ta

ti
s
ti
c
a
l
s
im

u
la

ti
o
n

crafty

3.5

3.7

3.9

4.1

4.3

4.5

4.7

4.9

4.0 4.5 5.0 5.5

detailed simulation

s
ta

ti
s
ti
c
a
l
s
im

u
la

ti
o
n

gap

5.0

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.2 5.4 5.6 5.8 6.0

detailed simulation

s
ta

ti
s
ti
c
a
l
s
im

u
la

ti
o
n

gzip

7.9

8.0

8.1

8.2

8.3

8.4

8.5

8.6

8.7

7.7 7.8 7.9 8.0 8.1 8.2 8.3

detailed simulation

s
ta

ti
s
ti
c
a
l
s
im

u
la

ti
o
n

mcf

12.5

13.0

13.5

14.0

14.5

15.0

10.5 11.0 11.5 12.0 12.5 13.0 13.5

detailed simulation

s
ta

ti
s
ti
c
a
l
s
im

u
la

ti
o
n

parser

28.0

28.5

29.0

29.5

30.0

30.5

31.5 32.0 32.5 33.0 33.5 34.0

detailed simulation

s
ta

ti
s
ti
c
a
l
s
im

u
la

ti
o
n

twolf

6.0

6.2

6.4

6.6

6.8

7.0

7.2

6.0 6.5 7.0 7.5 8.0

detailed simulation

s
ta

ti
s
ti
c
a
l
s
im

u
la

ti
o
n

vortex

4.0

4.2

4.4

4.6

4.8

5.0

5.2

5.4

5.6

4.5 5.0 5.5 6.0

detailed simulation

s
ta

ti
s
ti
c
a
l
s
im

u
la

ti
o
n

vpr

5.0

5.1

5.2

5.3

5.4

5.5

5.0 5.2 5.4 5.6

detailed simulation

s
ta

ti
s
ti
c
a
l
s
im

u
la

ti
o
n

Fig. 3. Estimating total execution time using statistical simulation (Y axis) versus detailed simulation (X axis).

of bit switches per cycle. These bit switches are accounted for during detailed simulation, but they are

not during statistical simulation. Statistical simulation assumes that the probability for a bit switch equals

0.5, which seems to lead to a consistent overestimation. Estimating EDP, which is the cross-product of

CPI and EPI, is done with an average error of 9.8%. However, more importantly than the average errors

shown in Figure 2 is that the deviation from this average error is fairly small. Indeed, the error bars are

well centered around the solid bars, i.e., the difference between the minimum and maximum error is fairly

small compared to the average error. This suggests that although there is a consistent error when using

statistical simulation, statistical simulation might be able to accurately estimate relative performance and

energy differences.

We now discuss the ability of statistical simulation to measure relative performance and energy

differences between different compiler options. Figures 3, 4 and 5 show scatter plots estimating execution

time, energy consumption and the energy-delay product, respectively. The vertical axes in all the graphs

show the respective metrics for statistical simulation; the horizontal axes show the respective metrics

for detailed simulation. For each of the benchmarks there is a separate graph, and per benchmark we

November 13, 2005 DRAFT

10

bzip2

2.70

2.75

2.80

2.85

2.90

2.95

2.40 2.45 2.50 2.55 2.60

detailed simulation

s
ta

ti
s
ti
c
a
l
s
im

u
la

ti
o
n

crafty

1.20

1.25

1.30

1.35

1.40

1.45

1.10 1.15 1.20 1.25 1.30

detailed simulation

s
ta

ti
s
ti
c
a
l
s
im

u
la

ti
o
n

gap

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

0.86 0.88 0.90 0.92 0.94

detailed simulation

s
ta

ti
s
ti
c
a
l
s
im

u
la

ti
o
n

gzip

2.72

2.74

2.76

2.78

2.80

2.82

2.84

2.86

2.88

2.90

2.92

2.35 2.40 2.45 2.50 2.55

detailed simulation

s
ta

ti
s
ti
c
a
l
s
im

u
la

ti
o
n

mcf

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.60 0.62 0.64 0.66 0.68

detailed simulation

s
ta

ti
s
ti
c
a
l
s
im

u
la

ti
o
n

parser

5.6

5.7

5.8

5.9

6.0

6.1

6.2

5.20 5.25 5.30 5.35 5.40 5.45

detailed simulation

s
ta

ti
s
ti
c
a
l
s
im

u
la

ti
o
n

twolf

1.40

1.45

1.50

1.55

1.60

1.65

1.70

1.30 1.35 1.40 1.45 1.50 1.55

detailed simulation

s
ta

ti
s
ti
c
a
l
s
im

u
la

ti
o
n

vortex

1.36

1.38

1.40

1.42

1.44

1.46

1.48

1.50

1.52

1.54

1.56

1.20 1.25 1.30 1.35 1.40

detailed simulation

s
ta

ti
s
ti
c
a
l
s
im

u
la

ti
o
n

vpr

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

1.18

0.85 0.90 0.95 1.00 1.05 1.10

detailed simulation

s
ta

ti
s
ti
c
a
l
s
im

u
la

ti
o
n

Fig. 4. Estimating total energy consumption using statistical simulation (Y axis) versus detailed simulation (X axis).

bzip2

22.0

22.5

23.0

23.5

24.0

24.5

25.0

20.5 21.0 21.5 22.0

detailed simulation

s
ta

ti
s
ti
c
a
l
s
im

u
la

ti
o
n

crafty

5.4

5.5

5.6

5.7

5.8

5.9

6.0

5.2 5.4 5.6 5.8 6.0 6.2

detailed simulation

s
ta

ti
s
ti
c
a
l
s
im

u
la

ti
o
n

gap

5.2

5.3

5.4

5.5

5.6

5.7

5.8

4.7 4.8 4.9 5.0 5.1 5.2 5.3

detailed simulation

s
ta

ti
s
ti
c
a
l
s
im

u
la

ti
o
n

gzip

23.0

23.2

23.4

23.6

23.8

24.0

24.2

24.4

24.6

19.0 19.5 20.0 20.5 21.0

detailed simulation

s
ta

ti
s
ti
c
a
l
s
im

u
la

ti
o
n

mcf

7.5

8.0

8.5

9.0

9.5

10.0

6.5 7.0 7.5 8.0 8.5

detailed simulation

s
ta

ti
s
ti
c
a
l
s
im

u
la

ti
o
n

parser

155.0

160.0

165.0

170.0

175.0

180.0

185.0

190.0

165.0 170.0 175.0 180.0 185.0

detailed simulation

s
ta

ti
s
ti
c
a
l
s
im

u
la

ti
o
n

twolf

9.5

9.6

9.7

9.8

9.9

10.0

10.1

10.2

10.3

10.4

8.5 9.0 9.5 10.0 10.5

detailed simulation

s
ta

ti
s
ti
c
a
l
s
im

u
la

ti
o
n

vortex

5.5

6.0

6.5

7.0

7.5

8.0

8.5

5.0 6.0 7.0 8.0 9.0

detailed simulation

s
ta

ti
s
ti
c
a
l
s
im

u
la

ti
o
n

vpr

4.5

5.0

5.5

6.0

6.5

4.0 4.5 5.0 5.5 6.0

detailed simulation

s
ta

ti
s
ti
c
a
l
s
im

u
la

ti
o
n

Fig. 5. Estimating the energy-delay product (EDP) using statistical simulation (Y axis) versus detailed simulation (X axis).

November 13, 2005 DRAFT

11

benchmark R for time R for energy R for EDP
bzip2 0.902 0.761 0.902
crafty 0.993 0.963 0.708
gap 0.947 0.889 0.826
gzip 0.842 0.973 0.761
mcf 0.842 0.147 0.970
parser 0.940 0.781 0.917
twolf 0.989 0.994 0.905
vortex 0.998 0.991 0.999
vpr 0.976 0.990 0.989

TABLE IV
THE CORRELATION COEFFICIENTS FOR ESTIMATING EXECUTION TIME, ENERGY AND EDP BETWEEN STATISTICAL

SIMULATION AND DETAILED SIMULATION.

consider all the compiler optimization configurations, where each configuration is represented as a point

in the scatter plot. Obviously, the more the dots appear on the diagonal of these graphs, the better. Thus,

a higher correlation between the metrics obtained through statistical simulation and the metrics obtained

through detailed simulation is desired. It can visually be observed that there is a strong correlation between

the metrics estimated by statistical simulation versus the metrics obtained through detailed simulation.

Table IV quantifies these correlations. We observe that typically very high correlation coefficients are

obtained across all three metrics (time, energy and EDP). In most cases, the correlation coefficients are

above 0.9. In some cases, the correlation coefficient is around 0.7 and 0.8, which is still a very good

correlation. There is however one exception, namely when estimating the energy consumption for mcf, in

which case the correlation coefficient is only 0.147. Overall, we can conclude that statistical simulation

is indeed a very accurate technique for tracking performance and energy differences between applications

compiled with different optimization configurations.

V. APPLICATIONS

Now that we have shown that statistical simulation is indeed accurate enough for tracking performance

differences across different compiler optimizations on out-of-order microarchitectures, we now discuss a

number of potential applications.

A. Rapid compiler development

One possible application is speeding up the compiler development process. In cases where there is

no real hardware available, simulation is the only way to estimate the performance benefit for a given

November 13, 2005 DRAFT

12

compiler optimization. In such scenarios, statistical simulation could be used to speed up the compiler

tuning process.

Recall that in statistical simulation, a profiling phase is first performed to compute the program’s

statistical profile. This step needs to be done for every potential compiler optimization that is to be

evaluated.

Fortunately, statistically profiling an application is much faster than running a detailed cycle-by-cycle

simulation. Profiling is typically an order of magnitude faster than detailed simulation when profiling

is done through functional simulation [3]. If profiling is performed using static instrumentation (using

for example ATOM [18]) or dynamic instrumentation (using for example Pin [15]) additional speedups

can be expected. Generating and simulating the synthetic trace is also done fast given the very short

synthetic traces. As such, statistical simulation can yield a compiler development speedup by at least

one order of magnitude over detailed simulation. Nevertheless, if statistical profiling was a bottleneck in

using statistical simulation for compiler development, sampled profiling [2] could be employed to reduce

the overhead of collecting the statistical profile.

There are at least two scenarios where compiler development relies on simulation rather than on

native hardware execution. First, when designing embedded processors, it is unlikely that hardware is

available at the time the compiler is being developed. The reason is the short time-to-market constraints

on the embedded market. Nevertheless, it is important that the compiler be tuned for the processor under

development so that the entire product (which includes both hardware and software) gets to the market

quickly. Second, compiler developers would like to determine the optimal compilation flags for a given

microprocessor that is still under development. For example for the SPEC CPU benchmark suite, the

SPEC peak rate refers to the best achievable performance for the given microprocessor and benchmark.

When determining the SPEC peak rate, any combination of compiler optimization flags is allowed to

be used for compiling the benchmark. Given the fact that a microprocessor company wants to know (or

even announce) the highest possible SPEC peak rate for their upcoming product as soon as possible, it

is important to be able to determine the best possible compiler flags combination efficiently before the

real hardware is available. Statistical simulation may help in that pursuit.

B. Design space exploration

When designing an application-specific embedded processor it is important to optimize the hardware

and the software concurrently. This is refered to as hardware/software co-evolution, i.e., the hardware and

software design space is explored concurrently. The reason for exploring both design spaces concurrently

November 13, 2005 DRAFT

13

worst option detailed simulation statistical simulation
benchmark best option improv best option improv
bzip2 -O4 -unroll -O3 -om 4.5% -O4 -om 4.3%
crafty -O3 -om -O3 21.8% -O3 21.8%
gap -O4 -unroll -O1 9.3% -O1 9.3%
gzip -O1 -O4 -om 5.1% -O4 -om 5.1%
mcf -O4 -unroll -O4 -om 16.0% -O3 15.7%
parser -O4 -inline -O3 -om 6.0% -O3 -om 6.0%
twolf -O4 -inline -O3 -om 16.4% -O3 -om 16.4%
vortex -O4 -unroll -O4 -om 21.5% -O4 -om 21.5%
vpr -O4 -inline -O4 -om 8.5% -O4 -om 8.5%

TABLE V
OPTIMAL COMPILER OPTIONS FOR BOTH DETAILED AND STATISTICAL SIMULATION. THE IMPROVEMENTS OVER THE

WORST PERFORMING COMPILER OPTION ARE ALSO SHOWN.

is that there are important interactions between the compiler’s output and microarchitecture that is being

designed. Obviously, during hardware/software design space co-exploration there is no hardware available.

Statistical simulation could help in exploring the design space more effectively and efficiently. Previous

work has shown that statistical simulation achieves a high relative accuracy making it a useful tool in

the early stages of microarchitecture design space exploration [7]. The results presented in this paper,

show that statistical simulation can also be used to evaluate compiler optimizations. As such, the use of

statistical simulation for exploring both the microarchitecture and compiler design spaces looks like a

promising and efficient hardware/software co-exploration tool.

C. Iterative compilation

The idea of iterative compilation is to apply search techniques for tuning compiler optimization flags

and finding a good phase ordering for a given program on a given hardware platform. Previous work has

demonstrated that iterative compilation can yield significant performance speedups for iteratively compiled

benchmarks [6], [10], [14], [1]. Table V shows the optimal compiler options for the various benchmarks

when optimizing for performance. Also, the improvement in execution time is shown compared to the

worst performing compiler option in our data set. Although this is a very small example compared to

what is being done in iterative compilation where hundreds or even thousands of compiler options are

evaluated, this table clearly shows that the optimal compiler option varies across benchmarks. Also,

this table shows that statistical simulation is accurate in determining what compiler option results in

near-optimal performance. In all but a few cases, statistical simulation identifies the optimal performing

compiler option; in a few cases statistical simulation gets in the neighbourhood of the optimal compiler

November 13, 2005 DRAFT

14

option. Statistical simulation can thus help in determining well performing compiler options. These near-

optimal compiler options can then be further evaluated using more slowly detailed simulation runs.

We see at least two applications for statistical simulation in the context of iterative compilation. First,

very much as discussed above, in case hardware is not yet available, compiler developers (and application

developers) will have to rely on simulation. Speeding up the iterative compilation process is a well

recognized problem which is a subject of active research [11]. Again, statistical simulation could also be

a viable option. Second, statistical simulation can be used to obtain a preliminary idea of how much the

program can be sped up from a given compiler optimization. If the potential performance improvement

is limited when optimizing a given program characteristic, it might not be worth the effort to further

optimize the compiler settings. Fursin et al. [12] proposed an algorithm that estimates the performance

to be expected from perfect memory behavior. Their approach estimates this speedup by modifying a

program to convert all loads and store to access a local array instead. Unfortunately, their approach only

applies to caches and cannot be extended to other architecture features, e.g., branch predictors. In contrast,

statistical simulation can be used to estimate perfect performance of several architecture features. If one

wants to know the estimated performance under perfect cache behavior, or if one wants to know the

estimated speedup for a perfect branch predictor, statistical simulation can be used as an efficient and

accurate tool for estimating these upperlimits in performance.

A special form of iterative compilation is called Optimization Space Exploration (OSE) proposed

by Triantafyllis et al. [19]. OSE could be viewed as a special class of iterative compilation that is

applicable to general-purpose computing environments. As briefly mentioned above, iterative compilation

typically requires a very large number of optimization flags and optimization orders to be explored.

Evaluating all those optimization configurations can take a substantial amount of time. Although this

is acceptable for application-specific embedded processor design where compilation time is not a major

issue, it is not acceptable for general-purpose computing. In general-purpose computing, compilation

time is an important constraint. Therefore, Triantafyllis et al. [19] proposed OSE for general-purpose

compilers which builds a tree of well performing optimization flag combinations and orderings. Based

on an analytical model they decide what path of the tree to take. Statistical simulation could be used

alternatively instead of analytical models for evaluating the various optimization configurations. We

believe that statistical simulation would be more accurate than an analytical model, however, this comes

at the cost of having to profile the application for computing the statistical profile to drive the statistical

simulation.

November 13, 2005 DRAFT

15

D. Exploring potential compiler optimizations

Another important application for statistical simulation is to study what-if questions. Statistical simu-

lation allows for varying the different program characteristics that are used as input to the synthetic trace

generation. And all of these can be varied independently of each other. There are a number of important

applications that are enabled by doing this. First, a benchmark suite rarely covers the entire workload

space, i.e., weak spots exist in the workload space that are not covered by the benchmark suite. Addressing

these weak spots can be done in two ways. One way could be to try to find real benchmarks to fill these

holes, which is hard to do. Alternatively, one could generate synthetic traces that estimate the performance

in those holes. A second application enabled by varying program characteristics that we are specifically

interested in here is to quickly investigate performance benefits of potential compiler optimizations. For

example, if a compiler optimization would target reducing the branch misprediction penalty by focusing

on load misses that feed mispredicted branches, then we could easily estimate the upperbound potential

performance benefit achievable for such an optimization. When generating the synthetic trace we can

easily make sure that all the load misses that lead to a branch misprediction are cache hits instead of

cache misses. Thus, compiler developers could use statistical simulation to do a preliminary feasibility

study on a potential compiler optimization on a set of benchmarks before hardware is available without

having to rely on expensive detailed simulations.

VI. CONCLUSION AND FUTURE WORK

REFERENCES

[1] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, M. O’Boyle, J. Thomson, M. Toussaint, and C. Williams. Using machine

learning to focus iterative optimization. In CGO-4: The Fourth Annual International Symposium on Code Generation

and Optimization, 2006.

[2] M. Arnold and B. Ryder. A framework for reducing the cost of instrumented code. In Proceedings of the 2001 ACM

SIGPLAN Conference on Programming Languages Design and Implementation (PLDI’01), pages 168–179, June 2001.

[3] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An infrastructure for computer system modeling. IEEE Computer,

35(2):59–67, Feb. 2002.

[4] D. Brooks, P. Bose, S. E. Schuster, H. Jacobson, P. N. Kudva, A. Buyuktosunoglu, J.-D. Wellman, V. Zyuban, M. Gupta,

and P. W. Cook. Power-aware microarchitecture: Design and modeling challenges for next-generation microprocessors.

IEEE Micro, 20(6):26–44, November/December 2000.

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for architectural-level power analysis and optimizations.

In Proceedings of the 27th Annual International Symposium on Computer Architecture (ISCA-27), pages 83–94, June

2000.

November 13, 2005 DRAFT

16

[6] K. D. Cooper, A. Grosul, T. J. Harvey, S. Reeves, D. Subramanian, L. Torczon, and T. Waterman. Acme: adaptive

compilation made efficient. In LCTES’05: Proceedings of the 2005 ACM SIGPLAN/SIGBED conference on Languages,

compilers, and tools for embedded systems, pages 69–77, 2005.

[7] L. Eeckhout, R. H. Bell Jr., B. Stougie, K. De Bosschere, and L. K. John. Control flow modeling in statistical simulation

for accurate and efficient processor design studies. In Proceedings of the 31st Annual International Symposium on

Computer Architecture (ISCA-31), pages 350–361, June 2004.

[8] L. Eeckhout and K. De Bosschere. Hybrid analytical-statistical modeling for efficiently exploring architecture and

workload design spaces. In Proceedings of the 2001 International Conference on Parallel Architectures and Compilation

Techniques (PACT-2001), pages 25–34, Sept. 2001.

[9] L. Eeckhout, S. Nussbaum, J. E. Smith, and K. De Bosschere. Statistical simulation: Adding efficiency to the computer

designer’s toolbox. IEEE Micro, 23(5):26–38, Sept/Oct 2003.

[10] B. Franke, M. O’Boyle, J. Thomson, and G. Fursin. Probabilistic source-level optimisation of embedded programs. In

LCTES’05: Proceedings of the 2005 ACM SIGPLAN/SIGBED conference on Languages, compilers, and tools for

embedded systems, pages 78–86, 2005.

[11] G. Fursin, A. Cohen, M. O’Boyle, and O. Temam. A practical method for quickly evaluating program optimizations. In

Proceedings of the 2005 HiPEAC International Conference on High Performance Embedded Architectures and

Compilers, Nov. 2005.

[12] G. Fursin, M. O’Boyle, O. Temam, and G. Watts. Fast and accurate method for determining a lower bound on execution

time. Concurrency Practica and Experience, 16(2-3):271–292, 2004.

[13] A. J. KleinOsowski and D. J. Lilja. MinneSPEC: A new SPEC benchmark workload for simulation-based computer

architecture research. Computer Architecture Letters, 1(2):10–13, June 2002.

[14] P. Kulkarni, S. Hines, J. Hiser, D. Whalley, J. Davidson, and D. Jones. Fast searches for effective optimization phase

sequences. In PLDI ’04: Proceedings of the ACM SIGPLAN 2004 conference on Programming language design and

implementation, pages 171–182, 2004.

[15] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin:

Building customized program analysis tools with dynamic instrumentation. In Proceedings of the 2005 ACM SIGPLAN

Conference on Programming Languages Design and Implementation (PLDI’05), pages 190–200, June 2005.

[16] S. Nussbaum and J. E. Smith. Modeling superscalar processors via statistical simulation. In Proceedings of the 2001

International Conference on Parallel Architectures and Compilation Techniques (PACT-2001), pages 15–24, Sept. 2001.

[17] M. Oskin, F. T. Chong, and M. Farrens. HLS: Combining statistical and symbolic simulation to guide microprocessor

design. In Proceedings of the 27th Annual International Symposium on Computer Architecture (ISCA-27), pages 71–82,

June 2000.

[18] A. Srivastava and A. Eustace. ATOM: A system for building customized program analysis tools. Technical Report 94/2,

Western Research Lab, Compaq, Mar. 1994.

[19] S. Triantafyllis, M. Vachharajani, and D. I. August. Compiler optimization-space exploration. Journal of Instruction-level

Parallelism, Jan. 2005. Accessible at http://www.jilp.org/vol7.

November 13, 2005 DRAFT

