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Abstract. Iterative optimization has become a popular technique taiobm-
provements over the default settings in a compiler for perémce-critical appli-
cations, such as embedded applications. An implicit assomgowever, is that
the best configuration found for any arbitrary data set widkkvwell with other
data sets that a program uses.

In this article, we evaluate that assumption based on 20s#dsaper benchmark
of the MiBench suite. We find that, though a majority of pragsaexhibit stable
performance across data sets, the variability can significéncrease with many
optimizations. However, for the best optimization confagions, we find that this
variability is in fact small. Furthermore, we show that ipigssible to find a com-
promise optimization configuration across data sets whiafften within 5% of
the best possible configuration for most data sets, and ltkaitérative process
can converge in less than 20 iterations (for a populatior06f @timization con-
figurations). All these conclusions have significant andtp@simplications for
the practical utilization of iterative optimization.

1 Introduction

Iterative optimization is an increasingly popular altdiva to purely static compiler
optimization [17,12, 8,24, 7,10, 18, 3,20, 23]. This is dodlte growing complexity
of processor architectures and applications, its abititgdapt to new platforms and the
fact it is a simple and systematic optimization process. el@x, with this approach
comes new issues, e.g., the necessity to quickly explorga tptimization space [7,
10,18, 3,11], and the sensitivity to data sets.

Iterative optimization is based on the notion that the cdenpvill discover the best
way to optimize a program through many evaluations of déffefoptimization config-
urations. However, in reality, a user rarely executes tineesdata set twice. Therefore,
iterative optimization is based on the implicit assumptibat the best optimization
configuration found will workwell for all data setsof a program. To the best of our
knowledge, this assumption has never been thoroughlytigetsd.

Most studies on iterative optimization repeatedly exe¢htesame program/data
set pair [7,12,10, 18, 3]. Therefore, they demonstratepibiential of iterative opti-
mization, but not how it would behave in real conditions. @thktudies [15] have used
thet est /t r ai n/r ef data sets provided by the SPEC benchmark suite. A few studies
have gone further and collected several data sets for a senalber of benchmarks [5,
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Questions

1. Do programs exhibit significant performance variatioaoas data sets ?
2. More broadly, do data sets react similarly to most optations ?

3. Does it matter which data set you train on for iterativeroation ?

4. Can iterative optimization perform well when trainingdisne over multiple data sets ?
5. How fast can iterative optimization converge across ipleldata sets ?
6. In practice, is it possible to compare the effect of twdmtations on two data sets|?

Table 1.Key questions about the impact of data sets on iterativeranogptimization.

4], but these studies have only focussed on the effect cdreifit data sets to one opti-
mization.

In order to investigate whether a compiler can effectivébgdver optimizations that
work well across data sets, we need to: (1) have a benchmigelvguere each program
comes with a significant number of data sets, (2) get a batéstical understanding
of the impact of data sets on program performance and progpmization, and (3)
evaluate iterative optimization under more “realistichditions where data sets change
across executions.

We have assembled a collection of data sets, 20 per benchfoa®6 benchmarks
(560 data sets in total) of the free, commercially represtdre MiBench [14] bench-
mark suite, which especially (but not only) target embedidezlapplications; we call
this data set suite MiDataSets. Using this data set suitepraide quantitative an-
swers to 6 key questions listed in Table 1 about the impactatd dets on program
performance and program optimization. Finally, we make st fittempt at emulating
iterative compilation across different data sets, as itld/dappen in reality.

We find that, though a majority of programs exhibit stablef@enance across data
sets, the variability can significantly increase with mamjimizations. However, for
the best optimization configurations, we find that this \aifity is in fact small. Fur-
thermore, we show that it is possible to find a compromise gandition across data
sets which is often within 5% of the best possible optim@ationfiguration for most
data sets, and that the iterative process can convergesrtHas 20 iterations (for a
population of 200 optimization configurations).

Section 2 briefly explains how we evaluated the differenadats and varied pro-
gram optimizations. Section 3 provides qualitative anchtjtetive answers to the ques-
tions listed in Table 1. Section 4 describes an attempt tda&maontinuous optimiza-
tion in a realistic setting, that is, across several data. setctions 5 and 6 describe
related work and provide some initial conclusions.

2 Methodology

Platform, compiler and benchmarks All our experiments are performed on a cluster
with 16 AMD Athlon 64 3700+ processors running at 2.4GHz heaith 64KB of L1
cache, 1MB of L2 cache, and 3GB of memory. Each machine isimgniandriva
Linux 2006. To collect IPC, we use the PAPI 3.2.1 hardwarentalibrary [1] and
PAPIEX 0.99rc2 tool. We use the commercial PathScale EKiOampiler 2.3.1 [2]
with the highest level of optimization,Of ast, as thebaselineoptimization level.
This compiler is specifically tuned to AMD processors, andawarage performs the
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Fig. 1. Average best speedup and std. deviation across all datdlszteline- Of ast optimiza-
tion).

same or better than the Intel 9.0 compilers on the same ptatféo perform iterative
optimization on each program and data set, we use a tooldcBbE¢hOpt that comes
with the EKOPath compiler suite. This tool can run a prograitha variety of global
compiler flags to find a set of flags that obtains the best pmidoce on the targeted
platform. We use 121 compiler flags that are known to influgreormance and we
use PathOpt to iteratively select random configurationsamfsfl* We ran the same
randomly generated 200 configurations for each of the MiBdrenchmarks and data
sets. The PathOpt tool uses CPU execution time to compareffibets of different
transformations. Figure 1 shows the average speedupsvadhier each benchmark
and the standard deviation across all data sets (the bemkfiara sorted by decreasing
speedup).

Data setsMost of the data sets for MiBench benchmarks are based odestfile
types, e.g., text, audio, image, etc. It is difficult to sekedruly representative sample
from the population of all possible data inputs. Instead whected 18 different data
sets per benchmark from a variety of sources including tteriet, trying to vary size
and nature as well as the data set properties as much aslpoBsibexample, we col-
lected images with various sizes, color depth, scenerytetts and audio with various
length and styles. Some benchmarks share the same dataskisterestingly, the out-
put of several benchmarks could be directly used as inputthers. We largely decided
against synthesizing data sets which would artificiallyreise® programs except for a
few programs such d&s t count orqui cksort which can readily accomodate syn-
thetic data sets. Finally, we reused 2 data setallandlarge from the original bench-
marks, thus reaching 20 data sets per benchmark in totahiRgiall data sets usually
did not require any modification of the benchmarks (excepsfa i ngsear ch where
the data set is in fact embedded in the source code). It ismbemtion to make these
data sets publically available for other researchers to use

! For more information about EKOPath compiler flags and Path@g refer to the EKOPath
compiler manual [2]
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Fig. 2. Program IPC variation across data sets (baseliref ast optimization).

3 Impact of Data Sets on Program Performance and Optimizatia

In this section, we try to understand how varying data setsatect program perfor-
mance and iterative optimization by answering the key goestin Table 1. Beyond
providing qualitative and quantitative answers to thesestjons, we observe a num-
ber of properties which are directly relevant to the pradtimplementation of iterative
optimization.

3.1 Do programs exhibit significant performance variationsacross data sets ?

The purpose of this question is to understand whether progehavior isstableacross
data sets. One way of examining this is to observe the IPC oigram across different
datasets. If the IPC varies considerably, it is likely thdfiedent parts of the program
are exercised depending on data input. In such a case anizgion found by iterative
compilation for a particular dataset may be inappropriateahother. It is important to
note that higher IPC doe®tmean faster code. We are merely using IPC as a means of
comparing the same program across different data sets,

We ran all data sets on the programs compiled with-tBeast default optimiza-
tion flag (ourbaselineperformance). In Figure 2, we plot the percentage of IPC-vari
ation with respect to the average IPC over all data sets;\theage is computed per
benchmark; the benchmarks are sorted by decreasing sthdeaation of IPC across
all their data sets.

Figure 2 shows that MiBench benchmarks vary in their levedtability. There are
very stable benchmarks across data sets susluaan_s, partly stable ones such as
adpcmc and highly varying ones such &s f f 2r gba. susan_s is an application
that smoothes images and has a regular algorithm with dittierol flow dependencies.
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In this case, changing data set size or values does not icBube application’s IPC.
In contrastadpcmc, which is a convertor of Pulse Code Modulation (PCM) samples
andti f f 2r gba, which is a convertor of TIFF images to RGBA color space, have
most of their execution time spent in encoding/decodingautnes. These procedures
have many data and control flow dependencies and hence #wrior and IPC can
vary considerably among different data sets. Still, onlyuéaf 26 benchmarks can be
considered unstable. The fact that the IPC of most benchsniafairly stable across
data sets is good news for iterative optimization, as it piddly makes performance
improvement across data sets possible in practice.

Yet, these experiments do not prove this trend will be cdestsacross all applica-
tions, or even across all data sets for a given applicationirfStancecr ¢32 is a sim-
ple application which performs a cyclic redundancy chedie Tore of the program is
a loop which references a large pre-defined array with a cexngtcess function (sub-
script). For some function and cache size parameters, éfésence could potentially
result in significant conflict misses, even thoughc32 is only moderately unstable
across all our data sets.

Even though there are few unstable programs, the perforenaaigations, when
they occur, are far from negligible. In 59 out of 560 expenmsg a data set’'s IPC was
more thant-10% away from the average, with a maximum of -64%.

3.2 Do data sets react similarly to optimizations ?

We now want to understand whether programs running diftedata sets react dif-
ferently to program optimizations. This issue is even mdosaly related to iterative
optimization.

Experiments show that the conclusions of Section 3.1 camadhlfe misleading.
Programs can have fairly consistent behavior across détdaea given optimization
configuration, e.g., the baselin€X ast as in Section 3.1, but can react quite differ-
ently when optimized in a different manner. Consider beratkausan_e in Figure 3;
for clarity, we only plotted 6 data sets, but they are repnéaive of the different trends
over the 20 data sets. The x-axis corresponds to the optimizeonfiguration id. As
explained in Section 2, an optimization configuration is mmbmation of optimization
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flags and parameters; recall we evaluated 200 configurafidvesy-axis is the speedup
over the baseline configuration. The configurations areedatcording to the speedup
for data set #1; therefore, any non-monotonic behavior eafithe other data set curves
means this data set reacts differently to one or severahig#tions. In the rightmost 50
optimizations, the behavior of the benchmark across dasavages wildly, with almost
30% difference for some optimizations. Similar variati@me visible across the whole
optimization spectrum. The behaviorofisan_e as compared to the baseline results of
Section 3.1 provides a striking contrast. When the progsaoompiled with- Of ast ,

its performance varies only moderately across all data €etdhe other hand, Figure 3
shows that for other optimizations this conclusion doeshodd. Consequently, the re-
sults of Section 3.1 are misleading as they suggest iterafpimization can be easily
applied because performance is stable. The stability ptiegeacross data sets can sig-
nificantly vary with the program optimizations. As a resii#frative optimization across
data sets may prove a more complicated task.

Moreover, other programs can naturally exhibit strongatéoins for many optimiza-
tions. Consider, for instancgpeg_d in Figure 4; all 20 data sets are plotted. For some
optimizations, the speedup difference across data setexza®ed 50%. Unfortunately,
even though the rightmost 50 optimizations are consistamtiong the top performers
across all data sets and benchmarks, the higher their jpatepeedup, the higher their
variability as well.

Still, for some programs, the speedup variations acrossglmizations can be
strong, but very consistent across data sets, and thus rootife stability observed
in Section 3.1. Consideati j kst ra in Figure 5; all 20 data sets have been plotted.
Performance is obviously very stable across all data setsptimizations, even though
the speedups are far from negligible.

Overall, these three programs are fairly representativb@fifferent possible be-
havior of the remaining benchmarks, and we roughly foundstimae number of bench-
marks belong to each of the three aforementioned categ@w@ssequently, a signif-
icant number of benchmarks are not so stable across datavketsfactoring in the
optimizations, thereby complicating the iterative optiation task.
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In order to summarize the stability of programs across data, sve introduce
a data set distancenetric. We define the distancé between two data sets; as:
d = \/ZKOPKQOO(% - sf;pt)z, whereopt denotes an optimization configuration.
This distance characterizes how differently two data sed&trto optimizations. The
repartition of distances of all possible pairs of data setsafprogram is itself an in-
dication of the program stability across data sets. On @epthe metric is based on
the absolutespeedup difference rather than the relative speedup, ierdacdcompare
distances across programs. We compute the distances lbedllgmirs of data sets
for each program, and report them in Figure 6. Programsdikgkst r a, which are
very stable across data sets have small distances, no naoré thto 0.5, while unstable
programs likg pged_d have significant distances, more than 1; the maximum reghorte
distance is greater than 10 (dekef f 2bw). At least 8 programs have rather large data
set distances, characteristic of their unstable behacimsa optimizations.
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3.3 Does it matter which data set you train on for iterative ogimization ?

Because iterative optimization techniques almost sysieaily experiment with single
data sets, they bothain andteston the same data set. With more data sets, it is possible
to move closer to a more realistic implementation of iteatptimization where train
and test sets are distinct.

In order to evaluate the impact of this more realistic situratas well as the choice
of the training data set, we implement a simple iterativarojation strategy where
we train on a single data set and test on the 19 remaining d#&taFor the training,
we exhaustively search the 200 optimizations on the singta det. We then select
the best configuratiot’ for this data set, and run the remaining 19 data sets on the
program optimized withC'. We then measure the difference between the performance
obtained withC' and with the actual best possible optimization for each dataas
shown in Figures 7 and 8, where the x-axis corresponds tor#iigirig data set, the
z-axis corresponds to the testing data set.

While Section 3.2 shows that a significant fraction of thegpaons can react fairly
differently across data sets for many optimizations, ihtuout that, for the best opti-
mization, programs have little or no variability with regpéo data sets. Most programs
show similar trends to Figure 7. Out of all the 26 benchmahnkswe studied, 20 bench-
marks show little variance when using the best optimizatimnfiguration of the differ-
ent data sets, therefore any data set could be used foriviergitimization. The best
optimization for that program will work well regardless dfet data set used. This has
positive implications for the practical application ofridive optimization. However, it
should also be remebered that the sample number of configsatonsidered (200)
is small compared to the entire optimization space. It mayhieecase that for other
non-sampled configurations, that variation is much greater

However there is a small group of programs that show mediuhigb variability
with regards to the best optimization among data sets. Fogtbup of programs, a user
cannot simply use any single data set for iterative optitronaif they wish to obtain
the best performance for the rest of that program’s data Blsisg the best optimiza-
tion configuration of iterative optimization for any panlar data set can significantly
degrade performance when used on other data sets of the sagram over the com-
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piler's baseline configuration. Fortunately, this occursonly 6 of the 26 MiBench
benchmarks we evaluated.

It is worth noting that programs that are related (i.e., el@re/decoders of the same
audio/graphics formats or encryption/decryption alduoris for the same protocol) do
not necessarily have similar sensitivity to data sets. kan®le, the encoding version
of ri j ndael , has little variability with respect to the best performiogtimization
configuration across data sets. In contrast, its decodirgjore has large variability in
the performance of the best configuration across data sets.

3.4 Can iterative optimization perform well when training is done over multiple
data sets ?

We now see if iterative optimization can perform well if waitr over multiple data sets.
It will also show whether it is possible to find an optimizatimonfiguration that is better
on average over all the data sets of a program than the hitghestof optimization
available in the compiler.

For that purpose, we implement again a simple iterativensiptition strategy which
finds the “best average” optimization configuration acrdsdata sets. For each data
set, we compute the speedup achieved with each optimizatimhdetermine which
optimization performs best across all data sets on avefdgs.strategy roughly em-
ulates an iterative optimization process running for a Itinge, and finding the best
optimization configuration compromise. We then compare ‘thést average” configu-
ration against the actual best configuration for each ddta se

Figures 9 and 10 depict the results of our analysis for twa@mms. Each graph
shows the percent difference of the best optimization candition found for each data
set relative to the best average configuration across all skts. Interestingly, the best
average configuration across all data sets performs exlyemed, typically within less
than 5% of the best optimization configuration for each data®his again has very
positive implications for practitioners. We show in Senti8.3 that, for certain pro-
grams, it is important to not use one data set when perforibéngtive optimization.
In that section, we showed that the best optimization cordigpn for any one data set
can lead to potential degradation in performance when usédother data sets. Here
we show that a possible answer is to collect various datafsefgrograms with high
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sensitivity to data sets and choose an optimization cordtgur that performs well on
average over these data sets.

3.5 How fast can iterative optimization converge across mtiple data sets ?

In this section we evaluate the difficulty of quickly findingag optimization configura-
tions using iterative optimization across multiple datis send more precisely of getting
close to the “best average” optimization mentioned in $ec3.4. For that purpose, we
iteratively pick random optimization configurations angbthem to all data sets until
the performance of the configuration is within a certain éaggercentage threshold of
the best average configuration found previously.

Figure 11 shows the average number of iterations neededdofitimizations that
are within 1%, 5%, and 10% of the best optimizations we foundhfa large explo-
ration of the space. The figure shows that with a relativelglsmumber of evaluations
(usually around 5 evaluations) we obtain an optimizationfiguration that is within
10% of the best configuration found. Interestingly, if we wambe within 5% of the
best optimization configuration we found, for most prograihsequires on average
less than 10 evaluations. For only one program, dijkstrét, asbit harder to obtain a
configuration within 5% of the best configuration we foundisTrogram requires on
average evaluating around 30 configurations. Still, oVveratively very few evalua-
tions of optimization configurations are required to get matthe benefit of expensive
iterative optimization. As one would expect on averageketa much longer number
of iterations to get within 1%.

3.6 In practice, is it possible to compare the effect of two dpmizations on two
data sets ?
Up to now, we have assumed that we can compare the impact obptumizations
and/or two data sets. However, in practice, we cannot coeningt speedup due to an
optimization because we would need two executions of thees#ata set: one to com-
pute the execution time of the baseline optimization, anattear run to compute the
execution time of the optimization itself. As stated eaylgeuser is unlikely to run the
same program on the same data set twice. Instead we woultblig@nsider IPC as a
means of comparing the performance of two different optation configurations on
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different runs and data sets. IPC is an absolute performaetéc and thus potentially
does not require a base line run to measure improvement imastio speedup. How-
ever, some optimizations, such as loop unrolling, can effgnamic instruction count
which, in turn, affects the IPC.

Our experiments show that for most of the MiBench benchmérksept two) the
best found option corresponds to the best found IPC. Fig@rshbws the average
speedup and IPC for all benchmarks and data sets for the MiBbanchmark rel-
ative to using PathScale’s -Ofast configuration. This teisufjood news for iterative
optimization as it means that we can use IPC to evaluate feet@f two optimization
configurations regardless of the data sets used.

However, we note that the observations in this section mayhall for some ar-
chitectures and with other compiler optimizations not eadéd in this study. In future
work, we plan to enhance the technique of comparing the teffemptimizations using
additional metrics to IPC and without the knowledge of thedbime execution time and
the data set.

4 Emulating Continuous Optimization

If iterative compilation becomes mainstream, compiledsaaintinuously optimize pro-
grams across executions with different data sets. Afteh ea®cution, a program’s
performance results will be analyzed and a new optimizatmnfiguration to evaluate
will be selected and the code will be optimized for the nexdaetion. Some recent
publications [19, 16] describe run-time continuous optiation frameworks but do not
evaluate the influence of various datasets on optimizadodgperformance.

We leverage the observations of previous sections and pttenemulate continu-
ous optimization under as real conditions as possible.herotvords, we assume it is
not possible to know the speedup brought by a given optinoizaiver baseline for a
data set, only IPC is available to understand the effect afdgimization, data sets are
executed in any order, and for each data set a different ggation is applied.

In addition, we use a simple strategy for selecting optitidraconfigurations con-
tinuously. Each time an optimization configuration is tri@d a data set, the IPC is
recorded, the average observed IPC for that configuratiopdated, and the configura-
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tions ranking is then updated accordingly. Upon each itematonfigurations are ran-
domly picked among the tofy,, configurations (or we progressively bias the choice
towards the current best known if not all optimizations hge¢ been tried; we use
N:op = 10). In order to periodically revisit this ranking and adaptiew data sets, only
95% of the configurations are in fact picked amongifg, top, the remaining 5% are
picked among all 200 configurations; the iterations wheig tlccurs are themselves
randomly picked according to the 95/5 uniform distribution

Because continuous optimization is bound to occur over nitengtions, our num-
ber of data sets is still too limited, so they have to be exetumultiple times, but
Section 3.2 suggests that there are not as many behavioe asithber of data sets.
Therefore, iterating over a collection of data sets is a nmoie reasonable approxi-
mation than iterating over a single data set.

Figure 13 shows the average difference with respect to thegmssible configura-
tion over the different iterations; this difference is ifssveraged over all benchmarks,
so the point at iteration corresponds to the average difference over all benchmarks a
that iteration. In addition to t er at i ve compilation, the performance ofreandom
strategy (configurations randomly picked according to darmi distribution) and the
basel i ne optimization are provided. The clear convergence of thraiiee compila-
tion process towards the best possible configuration shieatsttis possible to learn the
best optimizations, across data sets, and without anycéatifneans for evaluating the
effect of optimizations.

In this section, no attempt was made to speed up the conwagkance, our fu-
ture work will take advantage of the existing literature qutimization search tech-
niques [10, 11].

5 Related Work

Berubeet al.construct a system calléestimowhich allows experimentation of feedback-
directed optimization using different inputs [5]. The amth collect a large set of ad-
ditional inputs for 7 SPEC benchmarks and study the vaitghof different inputs on
inlining. They use the Open Research Compiler (ORC) and usfégzdirected input
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to control inlining. However, even though several data setee collected for 7 bench-
marks results and analysis in the paper are only presentdirijp?2. The results show
that the choice of inputs from which to generate profile infation and control opti-
mizations can have significant performance variability wheed with different inputs.
In contrast, we find that input variability largely dependastbe benchmarks and/or the
optimizations used, but for the most part most programshéihighly stable perfor-
mance across data sets.

Bartolini et al.develop a software-based approach, called CAT, that reposicode
chunks to improve cache performance [4]. The approach fg@mriven, that is, given
an instrumented run of the program, a profile is collectedciitiontains precise de-
tection of possible interference between code chunks. Tofdeis then used to place
code into memory in a way that reduces i-cache miss ratese $fire layout of the code
is a function of the program input used during profiling, thethers evaluate different
inputs and execution conditions to see the effect on inmiteity. The authors eval-
uate different inputs on four multimedia application (jpergcoder/decoder and mpeg
encoder/decoder) and find that even though there is vatiabgtween inputs, their
code placement technique is robust to this variability. SEhevo papers are steps in the
right direction to evaluating input sensitivity among praigns, but they only present re-
sults for one optimization applied to a limited set of benakks and therefore general
conclusions about data sets, applications, or optimirat@nnot be drawn. In contrast,
we look at the effects of many different optimizations apglto an entire benchmark
suite using a larger number of data sets.

Hanedaet al. attempt to investigate the sensitivity of data inputs toaitiee opti-
mization [15]. They perform iterative optimization usirgett r ai n inputs on seven
SPEC benchmarks. They perform iterative optimization gi$ShCC 3.3.1 and control
42 of its options to find the best configuration for these bematiks. They use a tech-
nique called Orthogonal Arrays to perform iterative optiation since it allows them
to quickly find optimization flags that work well for a partiem program. They obtain
the best optimization flags using the train inputs for eaahchenark and then apply
this configuration to the benchmarks using the ref inpute dilthors find that the best
optimization configuration found using train works well whapplied to ref inputs.

Kulkarni et al. describe a partially user-assisted approach to seleanigatiion
sequences for embedded applications [18]. This approactbioes user-guided and
performance information with a genetic algorithm to selecal and global optimiza-
tion sequences. As is usually the case with iterative ogttion papers, the authors
do not consider input sensitivity and only show results faedi benchmark/data set
pairs. Other authors [13, 6] have explored ways to searcgrpm- or domain-specific
command line parameters to enable and disable specificngptiovarious optimizing
compilers. Again, these authors keep the benchmark/depass fixed.

Machine learning predictive modelling has been recentbdidsr non-search based
optimization. Here the compiler attempts to learn a goodhaipation heuristic offline
which is then used instead of the compiler writer's handetlimethod. While this work
is successful in speeding up the generation of compileliiiesg, the performance gains
have been generally modest. Stepheret@i. used genetic programming to tune heuris-
tic priority functions for three compiler optimizationsyperblock selection, register
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allocation, and data prefetching within the Trimaran’s M compiler [22]. The au-
thors construct their heuristic on a training data set apdntgesults on both a training
data set and a test data set for the different optimizatidsisig a data set different from
the one used for training causes some degradation and incasae dramatic reduction
in performance. This may be due to the genetic algorithm r*ditng” or specializing
to the data set being trained on.

Eeckhoutet al. attempt to find a minimal set of representative programs apdts
for architecture research [9]. They cluster program-irgmmbinations using principal-
componentanalysis (PCA) of dynamic program charatesissigch as cache misses and
branch mispredictions. They find that while different inptd the same program were
often clustered together, in several cases different miuthe same program result in
data points in separate clusters.

MinneSPEC [21] is a set of reduced inputs for various SPEC ZIRO bench-
marks. They are derived from the reference inputs using ietyaof techniques, such
as modifying inputs (e.g., reducing number of iteratiofi$ley are often used to reduce
simulation time for architecture research.

6 Conclusions and Future Work

In this article, we present a data set suite, called MiDatSer the MiBench bench-
marks, which can be used for a more realistic evaluationeshitve optimization; this
suite will be made publicly available. The scope of thiseeixtends beyond iterative
optimization as many architecture research works are basddedback mechanisms
which are sensitive to data sets.

We use this data set suite to understand how iterative opdiioh behaves in a
more realistic setting where the data set varies acrosaugres. We find that, though
programs can exhibit significant variability when transfed with several optimiza-
tions, it is often possible to find, in a few iterations, a coomise optimization which
is within 5% of the best possible optimization, across athdsets. This observation,
supported by a reasonable set of experiments (codes, aptions, and data sets), has
significant implications for the practical application amdre widespread use of itera-
tive optimization. Especially in embedded systems, butenegal-purpose systems as
well, the possibility that iterative optimization comeghwjreat performance variability
has slowed down its adoption up to now.

In future work, we plan on implementing a practical continao@ptimization frame-
work and enhance techniques of comparing the effect of dpditions without the
knowledge about the data set or base line execution. Thisheip both validating
the results of this article on a larger scale and in makingifiee optimization more
practical. We also plan to investigate the many differersgifale continuous optimiza-
tion strategies on a fine-grain level, including for codethwiiigh variability. We plan
to enhance our MiDataSets based on program behaviour aredamerage. We also
plan to evalute the influence of datasets on power and menomguenption which is
critical for embedded systems.
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