Gravel: A Communication Library to Fast Path MPI

Anthony Danalis, Aaron Brown, Lori Pollock, Martin Swany, and John Cavazos

Department of Computer and Information Sciences
University of Delaware, Newark, DE 19716
{danalis ,brown, pollock, swany, cavazos}@cis .udel.edu

Abstract. Remote Direct Memory Access (RDMA) technology allows data to
move from the memory of one system into another system’s memory without in-
volving either one’s CPU. This capability enables communication-computation
overlapping, which is highly desirable for addressing the costly communication
overhead in cluster computing. This paper describes the consumer-initiated and
producer-initiated protocols of a companion library for MPI called Gravel. Gravel
works in concert with MPI to achieve increased communication-computation
overlap by separating the meta-data exchange from the application data exchange,
thus allowing different communication protocols to be implemented at the appli-
cation layer. We demonstrate performance improvements using Gravel for a set
of communication patterns commonly found in MPI scientific applications.

1 Introduction

The communication overhead of cluster computing continues to challenge MPI pro-
grammers trying to maximize the performance of their applications. Remote Direct
Memory Access (RDMA) technology holds the promise of hiding these overheads by
facilitating the overlap of communication operations with computation. To exploit the
RDMA for communication-computation overlap, the communication library must pro-
vide support for one-sided communication and two-sided communication with low-
overhead rendezvous protocols, and the application must contain communication and
computation patterns that are amenable to overlap.

There already exist communication libraries that provide for asynchronous commu-
nication and have the goal of exploiting RDMA support; however, none provides the set
of features that the proposed library, Gravel, provides. MPI provides asynchronous com-
munication operations (e.g., [send, Irecv, and Wait) and even one-sided communication
support, although it enforces strict rules regarding the use of the latter. The User Direct
Access Programming Library, uDAPL [1]], provides functionality necessary to enable
RDMA from applications, with support for memory registration and connection estab-
lishment, but does not provide a “message” abstraction nor does it provide a high level and
intuitive interface for domain scientists and engineers to embrace. ARMCI [3] aims to be
a portable library for RDMA communication. However, it requires the use of a custom
memory allocator, which makes it unsuitable for substituting arbitrary MPI operations in
Fortran applications without major restructuring of the application buffers. GASNet [4]
provides similar capabilities and is intended to be used internally by a compiler or trans-
formation system, but as its name implies, is targeted to Global Address Space paral-
lel languages. Other communication libraries are provided by the hardware vendor as a

A. Lastovetsky et al. (Eds.): EuroPVM/MPI 2008, LNCS 5205, pp. 1111191 2008.
(© Springer-Verlag Berlin Heidelberg 2008

112 A. Danalis et al.

means of implementing higher-level libraries, such as MPI, for the given interconnect
(e.g., VAPI [5], GM [2]]), or are usable only on specific hardware interconnects (e.g.,
MX [6]]). Additionally, most of these libraries require either C pointer manipulation, or
the use of memory returned by C library functions (i.e., 1ib_specificmalloc()),
both of which are not possible directly from within FORTRAN programs.

In contrast to these approaches, our goal was to design a communication library that
provided minimal messaging protocol, maximal overlap potential, support for Fortran
and support for further communication optimization through code motion and trans-
formation. Fortran support implies several requirements, most notably explicit memory
registration functionality rather than special memory allocation routines. This paper
describes a portable communication library, Gravel, which works in conjunction with
MPI and is designed to (1) replace only key data exchange calls in MPI programs (2)
separate the meta-data exchange from the application data exchange, and (3) improve
the potential of code motion to increase the communication-computation overlapping
and hide communication latency.

2 Communication Library

Gravel is a minimal library designed to be used in conjunction with MPI by replacing
only key data exchange calls in MPI programs to exploit the potential communication-
computation overlap in applications. It implements a simple messaging abstraction de-
signed for RDMA-capable networks. The Gravel system is currently built on top the
uDAPL [[1] in the OpenFabrics software suite. However, it is not dependent on uDAPL,
therefore can be ported to additional network interconnects.

Gravel is neither aimed to be a replacement for MPI, nor a low level library that
one should use for implementing MPI. Rather, Gravel is designed to be used in MPI
applications to improve performance by replacing selected MPI calls. While systems
like ARMCI provide synchronization mechanisms, Gravel relies on those provided by
MPI. Gravel’s API is designed to be similar to that of MPI to facilitate automatic re-
placement (e.g., within a compiler) of performance-critical MPI calls with Gravel calls.
Gravel places a number of restrictions on when it can be used. Gravel never copies
messages, instead all message exchanges are “rendezvous” style, in MPI parlance. Fur-
ther, as is the case with all RDMA layers, memory must be registered to be a source or
destination for messages.

Gravel provides minimal RDMA-based messaging functionality that is decomposed
to maximize potential for overlapping communication with computation. In general, a
message can be seen as the exchange of message metadata (e.g., a message header)
and the exchange of the data itself, followed by some indication of completion. Gravel
separates this functionality into independent parts by providing distinct functions for
implementing explicit registration of memory, communication rendezvous (exchanging
message metadata), and performing the actual data transfer.

2.1 Rendezvous Protocols

Sur et al. [[7] discuss the behavior and performance of the simple rendezvous found
in a typical MPI implementation. They present a more advanced alternative which they

Gravel: A Communication Library to Fast Path MPI 113

implemented within MVAPICH, the Ohio State University implementation of MPI. Both
rendezvous protocols are “sender initiated”. The legacy protocol uses RDMA-write
for the transfer, and the advanced protocol uses RDMA-read to eliminate unnecessary
round-trip delays. Shipman et al. [§] also discuss advanced protocols used in MPI, but
for the OpenMPI implementation of the MPI standard.

Gravel provides distinct functions for transferring data and metadata in order to allow
an automatic program transformation tool (e.g., a compiler) or programmer to use the
most efficient model given the constraints of the application. Efficiency in this case
comes from appropriate overlapping of orthogonal computation.

Unlike highly abstracted libraries such as MPI, Gravel does not provide fixed data
exchange protocols hidden inside calls such as MPI_TI send. It rather provides the nec-
essary API and infrastructure for implementing any protocol at the application layer.
Details are hidden behind the library API, so that the application does not need to spec-
ify anything other than which task should do what and when. By doing so, Gravel enables
“function separation”, i.e., the handshake is separated from the data transfer. As a result,
each application can implement the appropriate exchange protocols that best fit the struc-
ture of each data exchange in that application. At the same time, the high-level, abstract
API enables programmers to easily implement highly efficient exchange protocols, even
in languages such as FORTRAN that does not support C pointers (pointers to arbitrary
memory locations, or pointers returned by C library functions). Four protocols that can
be implemented with Gravel are presented in Figure[Iland described below. In the fol-
lowing text, we use the term “producer” for the node that will send the application data
message, and “consumer” for the node that will receive the application data message.

Consumer Initiated RDMA-Write Protocol. In this case (shown in Figure[I(a)), the
consumer initiates the handshake (post_receive buffer_rdma ()) by sending a

Sender / Producer Receiver / Consumer

post_send_request_rdma()

Sender / Producer Receiver / Consumer ;
wait_send_request_rdma()

post_recv_buffer_rdma() post_recv_buffer_rdma()
wait_recv_buffer_rdma() wait_recv_buffer_rdma()
__--post_os_put() __-- post_os_put()
: send_FIN() send_FIN()
“Steny " Cren,
e wait() wait() e wait() wait()

(a) Consumer Initiated RDMA write protocol (b) Producer Initiated RDMA write protocol

Sender / Producer Receiver / Consumer
Sender / Producer ~ Receiver / Consumer post_recv_buffer_rdma()
post_send_buffer_rdma()
wait_recv_buffer_rdma()
wait_send_buffer_rdma() post_os_put()
post_os_get() -8
S post_os_put()
_.--post_os_put()
wait() <~ send_FIN()
send_FIN
. -FINO Seen ;
wait() T wait() wait()

(c¢) Producer Initiated RDMA read protocol (d) Advanced RDMA write based protocol

Fig. 1. Timing schematics of RDMA_write and RDMA_read based rendezvous protocols

114 A. Danalis et al.

metadata message to a predefined location in the producer’s memory (initialized by
gravel_init ()) referred to as the receive-info ledger. The details concerning the
ledger are hidden from the application and are automatically handled by Gravel. Thus,
the application does not need to allocate the ledger, register it, exchange its address be-
tween all the peers, etc. Furthermore, an application programmer, or compiler that uses
Gravel does not even need to know that there is such an entity as a ledger. With this
handshake message, the consumer passes to the producer the start of the local memory
where the data will be received (receive buffer), the size of the expected data, an ap-
plication defined tag, and a request handle to the call. After initiating the non-blocking
transfer of the handshake, the consumer can proceed with independent computation, but
it must assume that the receive buffer can be altered at any time between this call and
the return of the corresponding wait operation.

When the producer is ready to post a send, it reads the next metadata message from
its receive-info ledger (or blocks until the metadata message from the consumer ar-
rives). The producer then initiates a non-blocking RDMA-write (post_os_put())
operation to transfer the message data to the consumer, followed by an additional
non-blocking RDMA-write to send a small metadata message (into the RDMA-FIN
ledgerﬂ Then, the producer can proceed with independent computation. Finally, both
sides will wait for the completion of the transfer.

This protocol is well-suited for cases when the receive operation can be posted early
because the computation does not have data dependencies with the receive buffer. In
this scenario, the handshake overhead will be entirely overlapped with the independent
computation and the actual data transfer will be performed by an RDMA-write opera-
tion without any delays or copying, regardless of the size of the transfer, leading to an
efficient data exchange.

Producer Initiated RDMA-Write Protocol. Many MPI programs use the wildcard
MPI_ANY_SOURCE such that any peer could be the producer of the data. Supporting
this requires an extended version of the previous protocol, that is producer initiated, as
shown in Figure [I(b)] In this case, the producer first sends an asynchronous metadata
message to the consumer notifying it of an upcoming data send operation. This message
is written into the predetermined send-info ledger in the consumer’s memory.

When the consumer is ready to post the receive, it will read the first “send request”
from its send-info ledger, (or block until at least one peer sends a “send request”). At
this point, the consumer can continue with the exact same steps taken by the consumer
initiated RDMA-write protocol.

Producer Initiated RDMA-Read Protocol. This protocol (shown in Figure is
very different from the previous two protocols. Here, the producer initiates the hand-
shake, but only after the data is ready to be sent to the consumer. The producer sends a
small metadata message to a predefined location in the consumer’s memory (send-info
ledger). This message contains the location of the application data in memory (send
buffer), the size of the data to be sent, and the tag. Then, the producer can proceed with
independent computation and then block, waiting for the completion of the transfer.

UIf the underlying network does not support message ordering, appropriate measures need to be
taken for the FIN to arrive at the consumer after the application data.

Gravel: A Communication Library to Fast Path MPI 115

On the other side, the consumer reads the next entry from the send-info ledger, or
blocks waiting for the arrival of a metadata message from the producer. At this point,
the consumer initiates the transfer with a non-blocking RDMA-read operation. This
provides the RDMA engine with the necessary information about the transfer and re-
turns immediately. Thus, the consumer can execute independent computation during the
data transfer. Before the consumer can notify the producer about the completion of the
transfer, the consumer must wait for the RDMA-read to complete. When the transfer
is completed, the consumer writes to the RDMA-FIN ledger of the producer, signaling
the completion of the data transfer. Clearly, the producer must assume that the data is
being used at any point between the initiation of the rendezvous and the corresponding
wait () function, and cannot alter the data.

This protocol is expected to perform less efficiently than the “consumer initiated”
protocol described earlier, but is necessary for cases that meet all the following criteria:
1) the communication is symmetric and every node is both consumer and producer, 2)
the send operation takes place before the receive operation, and 3) the data or control
dependencies prevent the receive operation from being hoisted above the send operation.

mpi_irecv(...) mpi_irecv(...) gravel_post_ recv_buffer_rdma ()
doi=1, N mpi_irecv(...) doi=1, M
V[i] = ... doi=1,M V[i] = ...
end do V[i] = ... end do
mpi_isend(V[1:N]) end do gravel_wait_recv_buffer()
mpi_waitall() mpi_isend(V[1:M]) gravel post os_put(V[1:M])
doi=M N doi=MN
VI[i] = ... VI[i] = ...
end do end do
mpi_isend(V[M:N]) gravel_post_os_put(V[M:N])
mpi_waitall () gravel_send_fin()
gravel waitall()

A. Original Code B. Split Loop & MPI C. Split Loop & Gravel

Fig. 2. Communication overlapping before and after splitting computation

Advanced RDMA-Write Based Protocol. Figure[2la) shows an example of a parallel
program where every task computes, stores into an array V and transfers some data to
one or more neighbors. This simple case is common and does not provide an opportu-
nity for overlapping the communication generated by the send operation with useful
computation. However, if there are no dependencies on array V throughout the itera-
tion space of the loop, it can be transformed to enable overlapping. In Figure 2(b), we
see that the loop is split and therefore the mpi_isend (V[1:M]) call that transfers
the first part of the array can be overlapped with the computation of the second part of
the array. Although this could lead to performance benefits, due to overlapping, it also
has two major drawbacks. Namely, smaller messages experience lower throughput and
every additional message adds contention and overhead through multiple handshakes.
The latter concern can be alleviated with Gravel through a more advanced rendezvous
scheme, specialized for pipelined transfers. In particular, only one handshake message
is necessary, even if the transfer takes place in multiple segments. Indeed as is shown in
Figure 2l(c) only one call to the metadata transfer functions (post_recv_buffer (),
wait_.recvbuffer (), send_fin()) is performed, but the data is transferred in
two steps by calling post_os_put () twice, achieving overlap without the overhead of
additional control messages. Clearly, when post_os_put () is called multiple times,

116 A. Danalis et al.

each call needs to be given an “offset” equal to the cumulative amount of data trans-
ferred by the previous calls. Figure[I(d)] shows a schematic of a similar communication
pattern, where the data transfer takes place in three steps.

This example of an advanced protocol demonstrates the difference between MPI and
Gravel. MPI provides implicit protocols hidden behind calls such as MPT_Isend and
MPI_Irecv, designed without any knowledge of a particular application. In contrast,
Gravel provides the appropriate API and infrastructure for implementing the exchange
protocols at the application layer. This way, the particular characteristics of each appli-
cation can be exploited for maximizing communication-computation overlap.

3 Experimental Study

Experiment Design. For evaluation, we designed our experiments to explore how a
program’s performance is affected when key MPI calls are replaced by the equivalent
Gravel library calls and how the previously mentioned different Gravel protocols affect
performance.

We experimented with different communication libraries, message sizes, and strip-
mining to enable more overlapping. Our experiments were performed on an infiniband
cluster with 24 nodes running Linux 2.6.18. We used mvapich-1.0 and OpenMPI-1 2.5
implementations built on top of the infiniband layer provided by the OpenFabrics Al-
liance’s OFED-1.3. We also used our Gravel implementation on top of uDAPL-2.0
which is also provided by OFED-1.3. We experimented with different tuning param-
eters (mpi_leave_pinned=1 and btl_openib_use_eager_rdma for OpenMPI
and LAZY MEM_UNREGISTER for mvapich) to achieve good performance with each
MPI implementation. Each benchmark is implemented such that it starts with 1,000
cold runs that are not timed, so that the MPI engine is warmed up and exhibits “steady
state” performance before the timing begins. After the timer is started the code segment
that performs the computation and communication is also executed 1,000 times so that
the timing errors are amortized and anomalous behavior is averaged out.

mpi_irecv(rBuf(1), size, prev, rreq(1), ...)
do i=1, size
indx = 1+MOD(i-1,128)
sBuf(i) = temp(indx)
enddo
mpi_isend(sBuf(1), size, next, sreq(1), ...)
mpi_wait(rreq(1), ...)
do i=1, size
indx = 1+MOD(i-1,128)
temp2(indx) = rBuf(i)
enddo
mpi_wait(sreq(1), ...)

Fig. 3. 1-D Ring micro-benchmark critical part

% We also experimented with the trunk version of OpenMPI-1.3 and found that it performs sig-
nificantly faster than OpenMPI-1.2.5, but compares with Gravel the same way. Since the trunk
does not constitute a stable version of the library that others can use to replicate our experi-
ments, we do not report those results.

Gravel: A Communication Library to Fast Path MPI 117

We compared the runtime performance of a set of MPI Fortran micro-benchmarks
which represent communication-computation patterns found in many scientific applica-
tions. We used two micro-benchmarks: (1) a /1D-ring pattern where every task receives
data from the previous one and sends data to the next one and (2) a 2D-wavefront
where the tasks are organized in a 2-D grid and every task receives data from “north”
and “west” and sends data to “south” and “east”. The ID-ring pattern appears in well
known codes including SP, BT and LU in the NAS suite; the 2D-wavefront pattern ap-
pears in LU of the NAS suite and Sweep3D. The critical part of each micro-benchmark
performs some minimal computation (array to array copy) that fills the message buffer
to be sent, transfers the message and then performs some computation (copy) with the
message it received from its peer. Figure[3]demonstrates the critical part of the I-D Ring
micro-benchmark in pseudocode.

Results. Figure and Figure [4(b)] show the performance results for the /D-ring and
2D-wavefront micro-benchmarks, respectively. The Y axis of both graphs presents ex-
ecution time normalized to the ideal case, where communication is infinitely fast and

N
n

Overlaped Recv, MPI - OpenMPI
Overlaped Recv, MPI - MVAPICH
Overlaped Recv, Gravel RDMA-read
Overlaped Recv, Gravel RDMA-write

Overlaped Recv&Send (strip mined), MPI - OpenMPI
Overlaped Recv&Send (strip mined), MPI - MVAPICH
Overlaped Recv&Send (strip mined), Gravel RDMA-read
Overlaped Recv&Send (strip mined), Gravel RDMA-write

gw
W
W
8
(98]
az

g
o

Overlaped Recv&Send (strip mined) Single Handshakes, Gravel RDMA-read
Overlaped Recv&Send (strip mined) Single Handshake, Gravel RDMA-write

ED0 ENZN ENZN

n

Normalized Execution Time (slowdown)

S
S /TR

=)

Message Size (KBytes)
(a) 1-D Ring

Overlaped Recv, MPI - OpenMPI
Overlaped Recv, MPI - MVAPICH
Overlaped Recv, Gravel RDMA-read
Overlaped Recv, Gravel RDMA-write

Overlaped Recv&Send (strip mined), MPI - OpenMPI M
Overlaped Recv&Send (strip mined), MPI - MVAPICH
Overlaped Recv&Send (strip mined), Gravel RDMA-read
Overlaped Recv&Send (strip mined), Gravel RDMA-write

Overlaped Recv&Send (strip mined) Single Handshake, Gravel RDMA-read
Overlaped Recv&Send (strip mined) Single Handshake, Gravel RDMA-write

N
o

EO ENZN ENZN

n

Normalized Execution Time (slowdown)

<]

Message Size (KBytes)
(b) 2-D Wavefront

Fig. 4. Experimental evaluation of Gravel and MPI for 1-D Ring and 2-D Wavefront data ex-
changes

118 A. Danalis et al.

causes no overhead. This case is simulated by a version of the benchmark that does
not perform any communication, just the computation loops. All values above 1 des-
ignate the slowdown factor caused by the communication. Each micro-benchmark was
run several times, and the graph plots the minimum execution time for each scenario.
We found very little variation across several runs of the same micro-benchmark using
the same configuration. Each graph shows three different clusters of bars corresponding
to the three different message sizes we evaluated. Within each cluster, there are three
subgroups using dark, medium and light shadings, respectively. For all subgroups, the
“computation” is a simple buffer to buffer copy.

The first subgroup to the left end of each bar cluster demonstrates the scenario where
the transmission of data is not overlapped with computation and only the recv oper-
ation has potential for overlapping. Here, we attempt to answer the question of how
the program’s performance is affected when MPI calls are simply replaced by equiva-
lent Gravel library calls. By looking at the bars within this subgroup and in particular
the bar with the vertical stripes representing the non-transformed code using Gravel’s
consumer initiated RDMA-write protocol, one can see that the execution time of this
version is lower than that achieved with either MPI version across sizes and data ex-
change patterns.

The second subgroup within a cluster demonstrates the scenario where the computa-
tion is strip-mined into a double nested loop where the inner loop operates on a section,
or tile, of the buffer and the outer loop iterates over the consecutive tiles. In this sce-
nario, the communication is broken into smaller messages and inserted into the outer
loop of the loop nest such that after each tile of the buffer is computed, the transfer
of that tile is initiated and overlapped with the computation of the next tile. Here, one
can see that the transformed versions of the application that use Gravel experienced
lower overhead than the transformed versions that use MPI for large message sizes and
comparable overhead for small message sizes.

The third subgroup within a cluster demonstrates the scenario where we compare the
same overlapped code as the second subgroup, but Gravel’s ability to perform several
data transfers with only one handshake is utilized, to minimize protocol overhead. This
corresponds to the advanced RDMA based protocol shown in Figure[I(d)] By compar-
ing the bars of this subgroup with the corresponding medium shaded bars, the reader
can see that across message sizes and communication patterns, the advanced Gravel
protocols that use a single handshake for multiple data transfers perform better than the
MPI-like protocols where every data transfer requires a handshake. For small message
sizes, strip-mining to achieve overlapping might cause the application to run slower
than the original version (when either MPI or Gravel is used) due to increased protocol
overhead and significantly reduced throughput. For larger sizes, when either library is
used, overlapping through strip-mining benefits the communication performance.

The results show that for all but the very large sizes, the consumer-initiated RDMA-
write based protocol outperforms the producer-initiated RDMA-read based protocol.
The reason for the reversal of this behavior witnessed for large sizes will be further
investigated in the future. Also, by studying the graphs of Figures [4(a)] and [4(b)} one
can see that for every bar cluster, there is a trend going from more to less overhead as
we move from the left-most bar to the right-most bar. This is due to moving from a

Gravel: A Communication Library to Fast Path MPI 119

simpler form of the code to an optimized form as well as moving from pure MPI code,
to code that combines MPI and Gravel, and finally to code that combines MPI and an
advanced use of Gravel.

4 Conclusions and Future Work

In this paper we presented Gravel, a communication library designed to inter-operate
with MPI to fast-path key data transfers of parallel applications. We have described ren-
dezvous protocols that can be implemented at the application layer when using Gravel
as opposed to MPI’s exchange protocols that are fixed and do not exploit the structure
of each particular application. In addition, we have demonstrated the performance im-
provements that a parallel application can achieve with Gravel through communication-
computation overlapping. Currently, we are working on using Gravel with our compiler
transformation tool [9], to enable communication optimization of parallel applications
without the need for user intervention.

References

1. uDAPL: User Direct Access Programming Library,
http://www.datcollaborative.org/uDAPL doc_062102.pdf

2. GM reference manual, http://www.myri.com/scs/GM/doc/refman.pdf

3. Nieplocha, J., Carpenter, B.: ARMCI: A portable remote memory copy library for distributed
array libraries and compiler run-time systems. In: RTSPP IPPS/SDP 1999 (1999)

4. Bonachea, D.: GASNet specification. Technical Report CSD-02-1207, University of Califor-
nia, Berkeley (October 2002)

5. Mellanox Technologies Inc.: Mellanox IB-Verbs API (VAPI) (2001)

6. Myricom Inc.: Myrinet EXpress (MX): A High Performance, Low-level, Message-Passing
Interface for Myrinet (2003), http://www.myri.com/scs/

7. Sur, S., Jin, HW., Chai, L., Panda, D.K.: RDMA read based rendezvous protocol for MPI
over InfiniBand: design alternatives and benefits. In: PPoPP 2006: Proceedings of the eleventh
ACM SIGPLAN symposium on Principles and practice of parallel programming, pp. 32-39
(2006)

8. Shipman, G.M., Woodall, T.S., Bosilca, G., Graham, R.L., Maccabe, A.B.: High performance
RDMA protocols in HPC. In: Proceedings, 13th European PVM/MPI Users’ Group Meeting,
Bonn, Germany. LNCS. Springer, Heidelberg (2006)

9. Danalis, A., Pollock, L., Swany, M., Cavazos, J.: Implementing an open64-based tool for
improving the performance of mpi programs. In: Open64 Workshop in conjunction with
IEEE/ACM International Symposium on Code Generation and Optimization (CGO), Boston,
MA (April 2008)

http://www.datcollaborative.org/uDAPL_doc_062102.pdf
http://www.myri.com/scs/GM/doc/refman.pdf
http://www.myri.com/scs/

	Introduction
	Communication Library
	Rendezvous Protocols

	Experimental Study
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

