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Università di Siena, Italy

bartolini@dii.unisi.it

§Member of HiPEAC,
Department of Electronics and

Information Systems (ELIS),

University of Ghent, Belgium

bruno.debus@elis.ugent.be

ζComputer and

Information Sciences,

University of Delaware, USA

cavazos@cis.udel.edu

Abstract

Fetching instructions from a set-associative cache in an

embedded processor can consume a large amount of energy

due to the tag checks performed. Recent proposals to ad-

dress this issue involve predicting or memoizing the correct

way to access. However, they also require significant hard-

ware storage which negates much of the energy saving.

This paper proposes way-placement to save instruction

cache energy. The compiler places the most frequently exe-

cuted instructions at the start of the binary and at runtime

these are mapped to explicit ways within the cache. We com-

pare with a state-of-the-art hardware technique and show

that our scheme saves almost 50% of the instruction cache

energy compared to 32% for the hardware approach. We

report results on a variety of cache sizes and associativi-

ties, achieving 59% instruction cache energy savings and

an ED product of 0.80 in the best configuration with negli-

gible hardware overhead and no ISA changes.

1 Introduction

Embedded processors often dissipate a large fraction of

their total power budget in their on-chip memories. The

StrongARM SA-100, for example, consumes 27% of its to-

tal energy in the instruction cache [13]. However, design-

ers must often use higher-energy set-associative instruction

caches, rather than direct-mapped, to maintain high perfor-

mance and reduce cache misses.

There have been many recent proposals to reduce the en-

ergy of a set-associative instruction cache access [12, 6].

For example, Ma et al. [12] proposed a way-memoization

scheme that avoids tag checks completely in the vast major-

ity of accesses. Cache lines are augmented with link infor-

mation that points to the next cache way to be accessed. In

this approach the next instruction can be fetched from the

linked cache line without any tag comparison, as long as

the link is valid. However, the downside to this and similar

pure-hardware schemes is that they require extra storage to

be added to the processor to indicate the next way to be ac-

cessed, introducing a power overhead and negating some of

the energy savings achieved.

This paper proposes a novel instruction cache energy

saving method that is compiler-controlled, rather than re-

quiring substantial hardware support. Our scheme is flex-

ible, working across different cache configurations with-

out the need for any recompilation, and requires no ISA

changes. It works by placing frequently executed code at

the start of the program binary. Whenever these instructions

are brought into the cache they are explicitly placed in a set

and way determined by bits from their addresses. The por-

tion of the binary mapped in this manner is termed the way-

placement area. We choose the frequently executed instruc-

tions to place in this manner since they cause the majority of

instruction cache accesses. Whenever a way-placed instruc-

tion is fetched from the cache, only the specific set and way

that it resides in needs to be accessed. The tag checks for

the other ways can be removed, saving energy. By explicitly

placing frequently executed instructions in particular ways,

we remove the uncertainty surrounding prediction schemes

[6], avoid the need for extra storage [12], and eliminate the

tag check in all other ways of the cache.

Furthermore, depending on the specific configuration of

the instruction cache, e.g. its size or the amount of asso-

ciativity it uses, different sizes of the way-placement area

can be selected. The size of the way-placement area can

be dynamically decided since our optimised program layout

is compatible with different sizes of way-placement area.

Hence, there is no need to recompile programs using our

way-placement scheme.

The rest of this paper is structured as follows. Section

2 gives a small example of how our way-placement scheme

works and section 3 then provides a detailed overviewof our

scheme. Section 4 discusses the hardware modifications we

make and section 5 describes our experimental setup. We

present our results in section 6 and related work in section

7. Finally, we conclude this paper in section 8.
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Figure 1. Access to three instructions from the instruction cache. The instructions are shown with

their tags in brackets. We show a small cache with two sets and four ways as an example. During
normal access all the tags in one set are checked, resulting in 12 comparisons. Using our scheme

means that only one tag in one set needs to be compared each time, meaning just 3 comparisons.

2 Way-placement example

In embedded processors, associative caches are typically

employed and their usage can contribute to a significant

fraction of total processor energy. In figure 1 we show an

example of accessing ways in the instruction cache in both

the baseline and using our way-placement approach.

Figure 1(a) shows three instructions, their addresses, and

their tags. The accessing of these three instructions from

the instruction cache is shown in figure 1(b). Each diagram

shows a two-set, four-way cache laid out in the same man-

ner as in the XScale1 [7]. Each set in the cache is a fully-

associative sub-bank with all the ways grouped together. So

each vertical block is a set containing all four ways and each

horizontal line is a way within the set. As in the XScale,

cache tags on the left of each block are stored in a CAM

cache [16] and are searched first with instructions on the

right accessed on a tag match [7]. In this baseline case

(figure 1(b)), first the add is fetched, so the left-hand set

is queried by performing a fully-associative search. Next is

br so the right-hand set is searched. Finally the mul which

requires the right-hand set to incur another fully-associative

tag lookup. Thus, a standard instruction cache without way-

placement requires 12 tag comparisons.

The method for querying the instruction cache in our ap-

proach is shown in figure 1(c). Here we know exactly which

set and way the required instruction will be in, if it is in the

cache, as described in section 4. Therefore we just need one

tag comparison each time. As before, the add is fetched first

and we only require tag check in the left-hand set. When the

br and mul instructions are accessed we perform one tag

lookup for each in the right-hand set. In total, our approach

requires only 3 tag comparisons, a saving of 75%.

1We implement our scheme in an XScale simulator

3 Compiler analysis for way-placement

Our compiler-controlled technique uses profile infor-

mation to place frequently-executed code in the way-

placement area. First we read in the object files and libraries

that are to be linked together, constructing an interprocedu-

ral control-flow graph (ICFG) where each node is a basic

block. These blocks are annotated with execution counts

obtained through profiling. We then construct chains of ba-

sic blocks, linking blocks when they have a predefined or-

dering that we must respect (i.e. call/return site pairs or

blocks that have a fall-through edge between them). Once

this is complete, all remaining basic blocks are considered

as chains by themselves.

The next stage of our algorithm uses the execution

counts, with which we have annotated the blocks, to guide

code placement. We assign a weight to each chain that is

equal to the sum of the instruction counts in that chain.

Then we order the chains by weight so that the heaviest

chain is first, and link them together to form one large chain

for the program, which is written out as the final binary.

4 Microarchitectural modifications

The modifications to the microarchitecture to support our

way-placement scheme are minor and are made to the in-

struction translation lookaside buffer (I-TLB), described in

section 4.1, and the instruction cache, described in section

4.2. The overheads of our scheme are simply one bit per

entry in the I-TLB and a single extra bit for the whole in-

struction cache.

4.1 I-TLB modifications

We make the way-placement area a multiple of the mem-

ory page size, meaning we can associate a single bit with
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Figure 2. Overview of our microarchitectural

changes. Way-placement bits are stored in

the I-TLB. Since the cache and I-TLB are ac-
cessed in parallel the way-hint bit indicates

whether to perform a way-placement access.

each page in the I-TLB that indicates an access to the way-

placement area. We call this the way-placement bit. It is

stored with existing page permission bits and set by the op-

erating system when it writes into the I-TLB. Our compiler

pass (described in section 3) always puts the best candi-

date instructions for way-placement at the start of the binary

and those that are less suitable towards the end. Knowing

that this will happen enables the operating system to choose

the best sized way-placement area either on a static or per-

program basis, even adjusting it during program execution.

This coarse-grained approach to way-placement keeps the

hardware overheads extremely low.

Accesses to the I-TLB must be performed in parallel

with the instruction cache in order to keep the access la-

tency low [7]. This means that we do not know whether

we are reading from the way-placement area until after the

access has occurred (and we have read the way-placement

bit). To overcome this problem we provide a single extra bit

which is accessed before the instruction cache. It is called

the way-hint bit and it records whether the previous access

was to the way-placement area or not. Figure 2 shows how

the I-TLB, instruction cache and way-hint bit are accessed.

There are two scenarios where the way-hint bit could be

wrong. In the first, the way-hint bit falsely indicates a non-

way-placement access. Here we simply miss an opportu-

nity to save energy. In the second scenario the way-hint bit

informs us that we are accessing an instruction in the way-

placement area, but after reading the I-TLB we find out that

we were not. In this case we must perform a second access

to the instruction cache, reading all ways. Here we incur

a cycle penalty and energy overhead for the additional in-

struction cache access.

Using the way-hint bit to predict a way-placement ac-

cess is very accurate since the processor will spend a

long time reading instructions from the way-placement

area. The instruction stream rarely switches between the

way-placement area and outside because we have grouped

the frequently executed basic blocks together (section 3).

. . . . . . ...
InstructionsTags
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SetTag

Way

. .
InstructionsTags

Figure 3. Accessing the instruction cache in

our scheme. As normal, the address is bro-

ken up into the set and the tag. In addition,
the least significant bits of the tag are also

used to select the correct way within the set.

Hence in reality the performance and energy overheads of

using this bit are negligible. However, they are still ac-

counted for fully in all our experiments.

4.2 Instruction cache modifications

The modifications we make to the instruction cache are

simple to achieve and allow us to perform a tag check in

only one way of one set in our highly associative cache. We

target the XScale processor [7] which uses content address-

able memory (CAM) to implement the cache [13], although

our scheme could also easily be applied to a standard RAM

cache. Each CAM sub-bank within the cache contains all

the ways from one cache set [16]. A fully-associative search

is made for the required tag in one sub-bank on each access.

There is one match line for each way within each sub-bank

and these are precharged at the start of the access. If one of

the CAM tags matches the broadcast tag then it discharges

its match line and reads the corresponding data.

Our modifications are to simply disable the tag check

and match line precharging to all but the required way on

a way-placement access. The correct way is chosen by us-

ing the least significant bits from the address tag. A simple

multiplexor can be used to select one of 2N ways given N

bits from the tag. For example, a 32-way cache uses the

lower 5 bits from the tag to select the way when perform-

ing way-placement accesses. Note that the tag remains the

same length as the way-placement bits are also used as part

of it. A further modification, also used in [12], is to avoid

tag checks completely when accessing an instruction from

the same line as the previous access.

5 Experimental setup

We wrote our profile-guided code placement scheme in

the Diablo [15] framework. We used the ARM backend for

our experiments, run on the XTREM simulator [2] which

has been validated against the Intel XScale processor [7].



Table 1. Baseline system configuration.
Parameter Configuration

Pipeline 7/8 Stages

Functional Units 1 ALU, 1 MAC, 1 Load/Store

Issue Single Issue, In-Order

Commit Out-of-Order (Scoreboard)

Memory Bus Width 32 Bit

Memory Latency 50 Cycles

I-TLB, D-TLB 32-Entry Fully Associative

I-Cache, D-Cache 32KB, 32-Way, 32B Block

Data Buffers 32B Fill Buffer (Read)

and 16B Write Buffer

An overview of the microarchitectural parameters are

given in table 1. We keep all parameters constant and vary

the size and associativity of the instruction cache in both the

baseline and for our scheme (so we always compare equally

configured machines). We describe all changes we make in

the sections where we present the results.

We used the MiBench benchmark suite [4] and, for each

benchmark, used two inputs: the small set for profiling and

the large inputs for performance and power evaluation. We

were unable to run some benchmarks within our environ-

ment (lame, mad, typeset, ghostscript and gsm) because

they contain code which is rejected by the recent version of

gcc. Other benchmarks we chose to leave out because small

(train) and large (test) inputs require different programs to

run (basicmath, qsort, dijkstra and stringsearch).

In section 6 we show the energy-delay (ED) product to

determine the trade-off between performance and energy

consumption. This is an important metric in microarchitec-

ture design because it indicates how efficient the processor

is at converting energy into speed of operation, the lower

the value the better [5].

For comparison in section 6 we use a baseline with no

instruction cache modification. We have also implemented

the way-memoization scheme from [12]. This approach

completely avoids tag lookups in the instruction cache by

storing extra information (called links) in the data side of

the cache that indicate which way the next access will oc-

cur in. The instruction cache we use has a 32B line size,

meaning 8 instructions and 9 links in each line. In our ini-

tial 32KB, 32-way set-associative cache, each link is 6 bits,

meaning a 21% overhead in the data side of the cache for

this hardware scheme.

6 Results

We now present the results for our way-placement

scheme and compare with a state-of-the-art approach to

show that we can provide significant benefits over other

techniques. Section 6.1 presents an initial evaluation of our

way-placement approach. Section 6.2 considers altering the

size of the way-placement area, then section 6.3 applies our

scheme to a variety of differing cache sizes and associativi-

ties. Section 6.4 gives a summary of our results.

6.1 Initial evaluation

For our initial evaluation we used a 32KB, 32-way in-

struction cache as in the XScale processor [7]. Our ini-

tial way-placement area size is 16KB. There is no change

in performance when using either way-placement or way-

memoization, hence we show only instruction cache energy

and ED product due to space limitations and because the ED

product captures the trade-off between performance and en-

ergy, as described in section 5.

The instruction cache energy consumed by each bench-

mark and on average is shown in figure 4(a) where it is im-

mediately clear that our approach saves more energy than

way-memoization. In our technique, energy savings ap-

proach 50% compared with the way-memoization scheme

where 32% of energy is saved. This is because of the over-

heads in the data side of the instruction cache to store link

information that are inherent in this technique.

Figure 4(b) shows the ED product for each benchmark

and on average. We achieve an ED product of 0.93 on av-

erage with two benchmarks below 0.9. This shows that our

scheme saves considerable energy in the instruction cache

and overall in the processor, out-performing the state-of-

the-art way-memoization approach and producing an im-

pressive ED product value.

6.2 Evaluating way-placement area size

Having shown that our way-placement scheme is ben-

eficial this section explores the effects of altering the size

of the way-placement area. As described in section 4.1,

we do not have to recompile to perform these alterations.

Again we use a 32KB, 32-way instruction cache. Figure

5 shows the results where we vary the way-placement area

from 16KB (as in section 6.1) down to just 1KB. Our results

are averaged across all benchmarks.

As figure 5(a) shows, significant energy savings occur in

the instruction cache with all sizes of way-placement area.

Even with just a 1KB way-placement area, energy is re-

duced to 56% of the baseline. This is still significantly

more than the way-memoization scheme which can only re-

duce it to 68%. The ED product for each way-placement

area size is shown in figure 5(b). The ED product for

all way-placement sizes is always better than for the way-

memoization scheme, achieving 0.94 in the 1KB case.

6.3 Varying cache parameters

We now consider the effects of varying the size and as-

sociativity of the instruction cache on our scheme. Figure



 50

 55

 60

 65

 70

 75

a
v
e
ra

g
e

ff
t_

i
ff
t

c
rc

ra
w

d
a
u
d
io

ra
w

c
a
u
d
io

s
h
a

ri
jn

d
a
e
l_

e
ri
jn

d
a
e
l_

d
b
lo

w
fi
s
h
_
e

b
lo

w
fi
s
h
_
d

rs
y
n
th

is
p
e
ll

p
a
tr

ic
ia

ti
ff
m

e
d
ia

n
ti
ff
d
it
h
e
r

ti
ff
2
rg

b
a

ti
ff
2
b
w

d
jp

e
g

c
jp

e
g

s
u
s
a
n
_
s

s
u
s
a
n
_
e

s
u
s
a
n
_
c

b
it
c
o
u
n
t

N
o
rm

a
lis

e
d
 I
n
s
tr

u
c
ti
o
n

C
a
c
h
e
 E

n
e
rg

y
 (

%
)

Way-memoization
Way-placement 16KB

(a) Instruction cache energy

 0.8

 0.85

 0.9

 0.95

 1

a
v
e
ra

g
e

ff
t_

i
ff
t

c
rc

ra
w

d
a
u
d
io

ra
w

c
a
u
d
io

s
h
a

ri
jn

d
a
e
l_

e
ri
jn

d
a
e
l_

d
b
lo

w
fi
s
h
_
e

b
lo

w
fi
s
h
_
d

rs
y
n
th

is
p
e
ll

p
a
tr

ic
ia

ti
ff
m

e
d
ia

n
ti
ff
d
it
h
e
r

ti
ff
2
rg

b
a

ti
ff
2
b
w

d
jp

e
g

c
jp

e
g

s
u
s
a
n
_
s

s
u
s
a
n
_
e

s
u
s
a
n
_
c

b
it
c
o
u
n
t

E
D

 P
ro

d
u
c
t

Way-memoization
Way-placement 16KB

(b) ED product

Figure 4. Normalised instruction cache energy and ED product for the way-memoization scheme and
our way-placement approach compared to the baseline with no instruction cache optimisations.
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Figure 5. Normalised instruction cache energy and ED product for the way-memoization scheme and
our approach with differing way-placement area sizes averaged across all benchmarks.

6(a) shows that our scheme saves considerable instruction

cache energy no matter the size or associativity of the cache

used. We achieve at least 59% energy savings for all way-

placement area sizes for the 64KB, 16-way configuration.

In the 16KB, 64-way cache, where the way-memoization

performs poorly by increasing cache energy, our schemes

all reduce instruction cache energy consumption to 82%.

Figure 6(b) shows the ED product when using these

cache configurations. We achieve the best ED product in

the 64KB, 16-way instruction cache. This is 0.80 for the

16KB and 8KB way-placement area sizes and 0.81 for the

4KB, 2KB and 1KB sizes. The highest ED product for any

of our schemes, which is still better than the baseline and

the way-memoization technique, is 0.98 for the 2KB way-

placement area size in the 16KB, 64-way instruction cache.

6.4 Summary

We have presented results for our way-placement

scheme and shown that it can reduce instruction cache

energy and ED product on all cache configurations, out-

performing a state-of-the-art hardware approach. We saved

almost 50% cache energy in our initial evaluation and in the

best case, with a 64KB, 16-way cache we achieved an ED

product of 0.80 using a 16KB or 8KB way-placement area.

7 Related work

Several papers have addressed the problem of high in-

struction cache energy consumption by using an additional

buffer or cache between the CPU and instruction cache.

[1, 11, 9]. However, these schemes introduce a non-

negligible amount of extra hardware in the form of another

cache between processor and main instruction cache which

can introduce extra fetch latency when a miss occurs.

Ravindran et al. [14] proposed a compiler assisted

method for dynamically reconfiguring the scratchpad mem-

ory content to reduce cache accesses. However, this scheme

requires a scratchpad memory to be provided in the proces-
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sor and would generally only apply to loops. Ishihara et

al. [8] highlight the benefits of using a non-uniform way-

reconfigurable cache in embedded systems. Other proposals

aimed to reduce the number of tag checks in an associative

cache by predicting the cache way to be accessed [6, 12].

However, for these schemes, incorrect predictions require

extra logic for recovery and a performance penalty is in-

curred.

Further techniques specifically address the problem of

leakage power in caches. Flautner et al. [3] and Kaxiras et

al. [10] proposed schemes to selectively place some of the

unused cache lines into a low-leakage, state-preserving or

switched-off state. They relied on hardware runtime mech-

anisms to estimate cache line usage. These approaches are

orthogonal to our scheme and can therefore be used together

for additional energy savings.

8 Conclusions

This paper has presented a novel approach to energy sav-

ing in the instruction cache. We place frequently executed

portions of the code together in the program binary in a

way-placement area which can be set to any size required,

even at runtime. Accesses to instructions in this area only

need to perform one tag check, saving energy.

We compare our scheme to a state-of-the-art hardware

approach and find that we save significantly more energy in

the instruction cache. For our initial evaluation we saved

almost 50% of the energy compared with 32% for the hard-

ware scheme. We evaluated our approach across a variety of

cache sizes and associativities and found that we can always

pick a way-placement area size that is beneficial in terms of

energy. In the best case we reduce instruction cache energy

by 59% and achieve an ED product of 0.80, out-performing

the best hardware approach.
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