
Automatic Tuning of Inlining Heuristics
for Java JIT Compilation

John Cavazos and Michael F.P. O’Boyle

Member of HiPEAC
Institute for Computing Systems Architecture (ICSA), School of Informatics

University of Edinburgh, United Kingdom

Abstract. Inlining improves the performance of programs by reducing the over-
head of method invocation and increasing the opportunities for compiler opti-
mization. Incorrect inlining decisions, however, can degrade both the running and
compilation time of a program. This is especially important for a dynamically
compiled language such as Java. Therefore, the heuristics that control inlining
must be carefully tuned to achieve a good balance between these two costs to re-
duce overall total execution time. This paper develops a genetic algorithms based
approach to automatically tune a dynamic compiler’s internal inlining heuristic.
We evaluate our technique within the Jikes RVM [1] compiler and show a 17%
average reduction in total execution time on the SPECjvm98 benchmark suite on
a Pentium-4. When applied to the DaCapo benchmark suite, our approach reduces
total execution time by 37%, outperforming all existing techniques.

1 Introduction

JavaTMis a highly portable programming language and is the language of choice
in adaptive distributed grid environments. However, this portability is often at the cost
of poor performance [8] and a deterrent to wider usage in high performance comput-
ing. This has encouraged compiler researchers to develop optimizations that improve
performance without sacrificing its portability.

One of the major areas of interest has been in using method inlining as a perfor-
mance enhancing optimization. It can significantly reduce execution time because it
reduces calling overhead and has the potential to increase opportunities for further op-
timizations.

Overly aggressive inlining, however, can have a negative impact on a program’s
performance due to a larger runtime memory footprint and increased I-cache misses. It
can also lead to increased compilation time and memory overhead. This is especially
important in the context of dynamically compiled programming languages, such as Java
and C# where compilation occurs at runtime and is part of the total execution time of a
program. Thus, inlining heuristics must be carefully tuned to increase inlining benefits
while avoiding its potential costs.

Determining whether or not to inline a method is a difficult compiler decision and
depends on the calling context of the method, the processor it is running on and the other
optimizations which the compiler considers. As with many compiler optimizations, a
heuristic typically controls when and to what extent inlining should be applied when

compiling a program. These heuristics are carefully tuned by compiler experts; a diffi-
cult and time-consuming task. However, the heuristics are inherently static, hard-coded
into the compiler and do not take account changing environment or platform.

(a) Effectiveness of Inlining for Optimiz-
ing Compiler.

(b) Effectiveness of Inlining for Adaptive
Compiler.

Fig. 1. Relative time reduction with inlining. Total time = Running time + dynamic compilation
time

This paper develops a machine learning based technique that automatically derives
a good inlining heuristic. In effect, it automates part of the compiler expert’s role by tun-
ing a heuristic across a large training set automatically. This job is performed just once,
off-line, each time the compiler is ported to a new platform and is then incorporated
into the compiler to be used on future application codes.

Optimizing inlining in the case of dynamic compilation adds another degree of com-
plexity, that of compilation scenario. Dynamic compilers frequently provide the pro-
grammer with a range of optimization scenarios: from fast non-optimizing compilation
right up to longer full aggressive optimization. The reason is that as compilation time is
part of execution time, there are occasions where it may be important to reduce the cost
of compilation rather than running time to reduce the overall cost of a program run or
vice-versa.

In addition dynamic compilers support adaptive or “hot spot” based compilation
where the program is initially compiled with a fast non-optimizing compiler and later,
when a frequently used method or hot spot is detected, an optimizing compiler is used to
recompile it. This attempts to provided a means of balancing compilation and running
time. In fact we show, in the next section, that the optimization scenario that achieves
the shortest execution time varies from program to program. So, as well as the issue of
adapting optimization heuristics to platform architecture, we would like the heuristic to
be specialized to the particular compilation scenario chosen by the programmer on the
command-line. Again, in practice, a single heuristic is currently used across different
optimization scenarios.

(a) Varying Inlining Depth for Compress. (b) Varying Inlining Depth for Jess.

Fig. 2. Execution time vs Inlining Depth for 2 SPECjvm98 benchmarks.

Clearly the “one-size-fits-all” heuristic is not the best for each of these compilation
scenarios. Instead this paper develops a technique that automatically determines the
best inlining heuristic for each compilation scenario. This is achieved by using an off-
line machine learning algorithm based on a genetic algorithm. When incorporated into
the Jikes RVM compiler, we show that our approach outperforms the best previously
known heuristic by 37% on the SPECjvm98 benchmarks. Thus our approach develops
inlining heuristics for new platforms, with no human intervention, that are better than
hand-crafted approaches. It specializes the heuristic to the particular compilation sce-
nario chosen by the programmer and is therefore able to outperform existing approaches
across all platforms, benchmarks and compilation options.

The paper is structured as follows, section 2 provides a motivating example showing
the impact of inlining and how it is difficult to determine the best compiler heuristic.
Section 3 outlines the various optimization scenarios considered in this paper and de-
scribes our machine learning based approach to determine the heuristic automatically.
Section 4 describes the experimental setup and is followed in section 5 by the method-
ology used. Section 6 analyses the results and is followed in section 7 by a review of
related work. This is followed by some concluding remarks in section 8.

2 Motivation

This section shows how inlining heuristics have a varying impact on performance
and are sensitive to the program, platform and compilation scenario.

Compilation scenario Figures 1(a) and 1(b) show the impact of enabling the existing
inlining heuristic in the Jikes RVM compiler across the standard SPECjvm98 suite of
Java benchmarks for two different compilation scenarios 1, full optimization (Opt) and

1 We will discuss the different compilation scenarios in more detail in Section 3.3

adaptive optimization (Adapt). Opt always uses an aggressive optimization level when
compiling and is therefore likely to take longer to compile but produces faster code.
Adaptive compilation initially uses a fast non-optimizing compiler and dynamically
recompiles with higher optimization levels if the method is a hot-spot. As compilation
time is dynamic and part of the overall execution time, it attempts to strike a balance
between compilation and running time to minimize overall or total execution time.

We therefore give two performance results: running time and total time. Running
time indicates the benchmark running times without compilation time while total time
indicate running times with compilation. The values are normalised to running and total
times without inlining so bars below 1 indicate performance improvement while bars
over 1 indicate performance degradation.

For the full optimization scenario in Figure 1(a), Jikes RVM is able to achieve a
substantial improvement in running time for several benchmarks giving an average im-
provement of 24%. However, this comes at the expense of increased compilation time,
which causes a large degradation for two programs, leading to an an average degrada-
tion of 3% in total execution time. Clearly the compiler developers have focussed on
reducing running time but here the inliner is overly aggressive and actually slows down
programs on average due to the excessive compilation time. A more balanced approach
is needed.

Under an adaptive compilation scenario the Jikes RVM inlining heuristic is almost
always beneficial (it degrades the total time of two programs) with an average improve-
ment in of 23% for running time and 8% for total time. These graphs show the impor-
tance of inlining and that one heuristics is not ideal for differing scenarios.

Parameter Sensitivity It is, in fact, very difficult to determine the right inlining heuristic.
The performance of inlining is highly sensitive to the heuristic controlling it. Consider
Figure 2(a) and 2(b) which shows the execution time in seconds of two programs when
inlining is enabled and we vary just one of the parameters that controls the inlining de-
cisions in Jikes RVM: inline depth. This is performed for the two different compilation
scenarios, Opt and Adapt.

First of all, it is worth noting that the choice of compilation scenario that is best
to use is not always obvious. For the first program compress, Opt is best and for the
second, jess Adapt is the best choice. This explains the need for supporting multiple
compilation scenarios in dynamic compilers.

Inline depth controls the maximum depth of the call chain that will be considered for
inlining at a particular callsite and we vary the value of this parameter from 0 to 10 for
the two different programs. The default value used in Jikes RVM for this parameter is 5.
These two graphs indicate that 5 is not the right value to use for both these benchmarks
under both compilation scenarios. For compress, 2 is a better value to use under Opt
and 8 is better for Adapt. For jess, 0 is the best value for Opt and 2 is the best value for
Adapt. Interestingly, the Jikes RVM value of 5 is the worst option for both compilation
scenarios for jess.

As can be seen by these graphs inlining is an important optimization that can re-
sult in substantial increases in benchmark performance. However, selecting the right
values that control inlining are important to achieving the best performance from this
optimization.

In Jikes RVM, there is generally a fixed heuristic for inlining regardless of the com-
pilation scenario Also, there is no mechanism of telling the compiler that it should
optimize toward a different goal, such as reducing running time or the total execution
time. In Section 6, we show results for machine learning derived heuristics for different
compilation scenarios, for different platforms targetted at different goals i.e. reducing
running time vs. total time. In each case our automatically derived optimization outper-
forms the manually tuned heuristic.

3 Problem and Approach

Manually fine tuning compiler heuristics is a tedious and complex task. It can take
a compiler writer many weeks to fine tune a heuristic and once a new architecture is
targetted or an optimization is added to the compilation system, the tuning process must
be repeated again. Machine learning automates this search process and is a desirable
alternative to manual experimentation. Our approach uses a genetic algorithm to fine
tune the inlining heuristic.

The first step in applying genetic algorithms to this problem requires discovering
what parameters control the particular optimization of interest. Typically, fine tuning
optimization heuristics requires experimenting with several different parameters and
parameter values. Jikes RVM, for instance, has four or five parameters depending on
the compilation scenario being used.

The second step is to phrase the problem of tuning a heuristic as a genetic search
problem. This entails being able to experiment with several parameter values used by
the heuristic and measuring the performance of the particular setting of these values in
order to provide feedback for the genetic algorithm.

We emphasize that these steps of tuning the heuristic happen off-line. We are simply
replacing the manual ad hoc tuning process of a compiler heuristic with an automatic
approach that searches a large space of parameter values. Once a heuristic is tuned, the
compiler is delivered with a fixed set of values for each different compilation scenario
or architecture of interest and there is no further evolving of these parameter values.
Thus there is no runtime overhead associated with this approach.

3.1 Applying Genetic Algorithms

We needed an machine learning algorithm that could search the large space of param-
eter values efficiently and that could use a program’s performance to guide the search.
Genetic algorithms are a good candidate. Here we describe genetic algorithms and then
the specifics to how we applied them to this problem.

Genetic algorithms start with a randomly generated number of individuals. This
population of individuals is then progressively evolved over a series of generations to
find the best individual based on a fitness function. The evolutionary search uses the
Darwinian principle of natural selection (survival of the fittest) and analogs of various
naturally occurring operations, including crossover (sexual recombination), mutation,
gene duplication, gene deletion. The genetic algorithm used is called ECJ [11].

Fitness Functions The fitness value used was the geometric mean of the performance
of the SPECjvm98 benchmarks. That is, the fitness value for a particular performance
metric is:

���������
	����� ���� �
����� �������������

where S was the benchmark training suite and Perf(s) was the metric to minimize
for a particular benchmark s.

The metrics we are interested in minimizing are: running time, total time, or a bal-
ance of both. When optimizing for balance the following formula for Perf(s) was used.������������������! #"%$��'&)(+*-,.,./
,�0.�����.1324$�"%�657�����

where
���6 8"%$��9:24$�"%�657����;8<%=>��?�(+*@,.,./A,�0.����;8<%=��

and
��;8<7=

is a run of benchmark s
using the default heuristic.

3.2 Inlining Heuristic in Jikes RVM

Figure 3 shows a high-level view of the inlining heuristic used in Jikes RVM. This
heuristic decides whether or not to inline based on a series of tests. The first two tests
pertain to the estimated size of the method being considered for inlining (callee). This
size is an estimate of the number of machine instructions that will be generated for the
method. The first test restricts methods that are particularly large (greater than the pa-
rameter CALLEE MAX SIZE) from being inlined. The second test causes small meth-
ods (methods less than the parameter ALWAYS INLINE SIZE) to be inlined. These
small methods should generate less code than the calling sequence and parameter setup
if the call was left in place. The third test imposes a limit on the maximum depth of
the inlining decisions at any given call site. The forth test checks whether the estimated
size of the caller method is large. If the caller method is larger than a particular value
(CALLER MAX SIZE), we restrict inlining and further code expansion to avoid ex-
cessive compilation times. Finally, if all tests are false, the callee method is inlined.

3.3 Compilation Scenarios

When running Java programs there are several compilation scenarios that one can
choose from. We ran experiments under two popular Java compilation scenarios: Adap-
tive and Optimizing.

Under the Adaptive (Adapt) scenario, all dynamically loaded methods are first com-
piled by the non-optimizing baseline compiler that converts bytecodes straight to ma-
chine code without performing any optimizations, not even inlining. The resultant code
is slow, but the compilation times are fast. The adaptive optimization system then uses
online profiling to discover the subset of methods where a significant amount of the
program’s running time is being spent. These ”hot” methods are then recompiled using
the optimizing compiler and calls in the methods are subject to the inlining heuris-
tic [3]. Under the Optimizing (Opt) scenario, an optimizing compiler is used to compile

inliningHeuristic(���
���������
	���

,
	�����	��������������

, ���
���������
	���

)
if (���

���������
	�����
CALLEE MAX SIZE)

return NO;
if (���

���������
	����
ALWAYS INLINE SIZE)

return YES;
if (

	�����	��������������!�
MAX INLINE DEPTH)

return NO;
if (���

��������"	���#�
CALLER MAX SIZE)

return NO;
// Passed all tests so we inline
return YES;

Fig. 3. Optimizing Inlining Heuristic

all methods. This scenario is typically used for long running programs where compila-
tion is a small fraction of the program’s running time. This scenario is also of interest
when running short running programs where the program will not run long enough for
profiling to return useful information.

Total vs Balance As well as the two different compiler scenarios Adapt and Opt we
also considered different optimization goals namely: total time, or a balance between
running and compilation time. As compilation is part of the total execution time for
dynamic compilers then optimizing for total time will try to minimize their combined
cost. It may be the case however, that reducing total cost by, say, reducing compilation
time may be at the expense of increasing running time, which is not always advanta-
geous. Instead, when the program is likely to run for a considerable length of time, it
may be preferable for the user to reduce the running time at the expense of potentially
greater compilation time. In between these two cases, we have probably the most useful
case of balance, where we aim to reduce the total execution time without excessively
increasing running time.

4 Experimental Setup

4.1 Benchmarks

We examine two suites of benchmarks. The first is the SPECjvm98 suite [14] detailed
in Table 1. These were run with the largest data set size (called 100). We used the
single-threaded version of mtrt, called raytrace, to get easily reproducible results.

The second set of programs consists of 5 programs from the DaCapo benchmark
suite [12] version beta050224 and two additional benchmarks: ipsixql and SPECjbb2000
all described in Table 2. The DaCapo benchmark suite is a collection of programs
that have been used for various different Java performance studies aggregated into one
benchmark suite. We ran the DaCapo benchmarks under its default setting. We also in-
cluded ipsixql a real-world application that implements an XML database and a modi-
fied version of SPECjbb2000 (hence, we call it pseudojbb) that performs a fixed number

of transactions (instead of running for a predetermined amount of time) to more easily
observe effects of inlining.

Program Description
compress Java version of 129.compress from SPEC 95
jess Java expert system shell
db Builds and operates on an in-memory database
javac Java source to bytecode compiler in JDK 1.0.2
mpegaudio Decodes an MPEG-3 audio file
raytrace A raytracer working on a scene with a dinosaur. This is the single-threaded vari-

ant of mtrt
jack A Java parser generator with lexical analysis

Table 1. Characteristics of the SPECjvm98 benchmarks.

Program Description
antlr parses one or more grammar files and generates a parser and lexical analyzer for

each
fop takes an XSL-FO file, parses it and formats it, generating a PDF file
jython inteprets a series of Python programs
pmd analyzes a set of Java classes for a range of source code problems
ps reads and interprets a PostScript file
ipsixql Performs a query against the complete works of William Shakespeare.
pseudojbb SPECjbb2000 modified to perform fixed amount of work. Executes 70000 trans-

actions for one warehouse.

Table 2. Characteristics of the DaCapo+JBB benchmarks.

4.2 Platforms

We tuned our inlining heuristics in the Jikes Research Virtual Machine [1] version 2.3.3
for two different architectures: an Intel and a PowerPC architecture. The Intel processor
is a 2.8 GHz Pentium-4 based Red Hat Linux workstation with 500M RAM and a
512KB L1 cache. The PowerPC architecture is an Apple Macintosh system with two
533 MHz G4 processors, model 7410 with 640M RAM and 64KB L1 cache. Both these
processors are aggressive superscalar architectures and represent the current state of the
art in processor implementations. We used the OptAdaptiveSemispace configuration of
Jikes RVM, indicating that the core virtual machine was compiled by the optimizing
compiler, that an adaptive optimization system in included in the virtual machine, and
that the basic semispace copying collector was used.

5 Evaluation Methodology

As is customary our learning methodology was to tune over one suite of bench-
marks, commonly referred to in the machine learning literature as the training suite.
We then test the performance of our tuned heuristic over another ”unseen” suite of
benchmarks, that we have not tuned for, referred to as the test suite. This makes sense
in our case for following reason. We envision developing and installing of the heuristic
“at the factory”, and it will then be applied to code it has not “seen” before. To evaluate
an inlining heuristic on a benchmark, we consider two kinds of results: total time and
running time.

Total time refers to the running time of the program including compilation time.
Running time refers to running time of the program without compilation time.
To obtain these numbers, we requested that the Java benchmark iterate at least twice.

The first iteration will cause the program to be loaded, compiled, and inlined according
to the appropriate inlining heuristic. We used this iteration as our total time measure.
The remaining iterations should involve no compilation; we use the best of the remain-
ing runs as our measure of running time.

(a) Performance on SPECjvm98 (b) Performance on DaCapo+JBB

Fig. 4. Reduction in time relative to Jikes RVM heuristic. Adaptive scenario tuned for balance on
x86

6 Experimental Results

We now consider the quality of the inline heuristic produced by our genetic algo-
rithms. We run experiments under different compilation scenarios and two different
architectures. Initially we consider the adaptive optimization scenario (Adapt) on the
x86 platform. As this scenario is aimed at balancing the cost of compilation with that
of running time, with careful hot spot based recompilation, we only consider optimiz-
ing for balance here. Next, we consider the optimizing Opt scenario, again for the x86,

(a) Performance on SPECjvm98 (b) Performance on DaCapo+JBB

Fig. 5. Optimizing scenario, Opt, tuned for balance on x86 (Opt:Bal)

for both balanced optimization (Opt:Bal) and reducing total execution time (Opt:Tot).
The experiments are repeated on the PowerPC for balanced optimization under Adapt
(Adapt(PPC)) and Opt (Opt(PPC)) compilation scenarios.

For each scenario, we use genetic algorithms to tune the inlining heuristic for the
SPECjvm98 benchmarks. We then use the tuned heuristic to compile our test bench-
marks, DaCapo+JBB. We present the results for both benchmarks suites. For each set
of results, we compare the running and total time reduction using our automatically
tuned heuristic versus the manually tuned heuristic found in Jikes RVM. Bars below 1
indicate a performance improvement over the default heuristic while bars over 1 indi-
cate a performance degradation.

6.1 Adaptive Balanced x86 Scenario

The first compilation scenario we experiment with is the Adaptive Adapt balanced
optimization scenario on the x86. Figure 4(a) shows the performance of our tuned
heuristic on SPECjvm98. Our tuned heuristic improves the running time of 5 bench-
marks, obtaining a significant reduction of 27% for raytrace. However, on mpegaudio
we degrade performance by 8%. On average, we obtain a good running time reduction
of 6% over the default heuristic. Our tuned heuristic also obtains reductions in total time
(with compilation) for several benchmarks, as much as a 10% reduction on jess. Overall
we get an average reduction in total time by 3% showing that inlining is a well-studied
optimization in Jikes RVM and the default heuristic has been well-tuned especially for
the SPECjvm98 benchmark suite.

Figure 4(b) shows no significant reductions or degradations in running time for the
DaCapo+JBB test suite and, on average, we achieve the same running time as the default
heuristic. However, we obtain impressive reductions in total time on 6 out of 7 of the
benchmarks by up to 56%. On average, we obtain an 29% reduction in total time for
these benchmarks. Clearly, the correct tuning of an inlining heuristic can have a large
impact on performance.

(a) Performance on SPECjvm98 (b) Performance on DaCapo+JBB

Fig. 6. Optimizing scenario, Opt, tuned for Total execution time on x86 (Opt:Tot)

6.2 Optimizing Compilation Scenario

The second compilation scenario we investigate is Opt. As previously mentioned,
under this scenario all methods that are dynamically invoked are compiled with an ag-
gressive optimizing compiler. We performed two different tuning experiments. Tuning
for a good balance and tuning for reduction in total time.

Tuning for Balance Figure 5(a) shows our results for tuning the inlining heuristic to
achieve a good balance of running time and total time for Opt in SPECjvm98. These
results show we can improve running time for several benchmarks under this scenario.
On average, we obtain a 4% reduction over the default heuristic. Because we are tuning
for a balance, the genetic algorithm may allow some degradation in running time if it
can achieve reductions in total time. This leads to an significant average reduction in
total time of 16%.

For the test suite, DaCapo+JBB, in Figure 5(b), we see even better performance
using our tuned heuristic. Our heuristic obtains large reductions in running time for a 2
benchmarks. We do get degradations on 4 benchmarks, however, on average we obtain
a modest improvement in running time of 3%. We obtain larger reductions in total time
over the default heuristic and on average, we obtain almost a 26% reduction in total
time over the default heuristic on these benchmarks.

Tuned For Total Time Under the third scenario, we tune our inlining heuristic to
obtain the best total times, shown in Figure 6. 2 Intuitively, the tuned heuristic should
be a less aggressive one, not degrading the running time of programs too much, but
decreasing compile time (and therefore total time) substantially. Here, we might be able
to achieve a further improvement in compiling time over the improvement we achieved
when tuning for a balance. On average, we can achieve a reduction in total time of 17%
with a slight reduction in running time on average of 1%.

2 As we are optimizing for total time, only the average running time is given.

(a) Performance on SPECjvm98 (b) Performance on DaCapo + JBB

Fig. 7. Adaptive scenario, Adapt, tuned for balance on PPC (Adapt:PPC)

The result for DaCapo+JBB benchmark suite are even more favorable. We reduce
average total time by more than 35% with a small (4%) increase in running time. This
small increase in running time is to be expected since we are optimizing for total time.
On several benchmarks in this suite, we can achieve dramatic reductions in total time
(35% for fop, 46% for pseudojbb, 50% for ipsixql, and 58% for antlr).

6.3 Tuned for a Different Architecture

We repeated two of our tuning experiments for the PowerPC archecture to see how
the values of our inlining parameters would change and what improvements we could
achieve over the default heuristic. We tuned the heuristic for the Adaptive and the Op-
timizing compilation scenarios, both tuned for balance.

Adaptive Compilation Scenario In Figure 7, we present results from tuning our
heuristic for Adapt for the PowerPC. Our results show we can reduce running time
for several programs, by at least 10% on mpegaudio and jess and by 5% or more for
jack and raytrace. On average we get a good reduction in running time of 5%. For total
time, the only benchmark we significantly reduce is jess by 8%. For the other bench-
marks we either have a slight increase or decrease or no change at all. On average we
achieve a ��� reduction in total time. Again, since we are tuning for balance this is to be
expected as the genetic algorithm finds a heuristic where there is the most to be gained
on average from running time and total time. In the case of the DaCapo+JBB suite, we
have the inverse result where we suffer a 1% increase in running time but reduce total
execution time by 6%.

Optimizing Compilation Scenario For the Opt scenario, shown in Figure 8, we obtain
an even better result. We improve total time on average by 6% with large reductions in
total time for jack (18%) and javac (13%) with no change in running time. And, we

(a) Performance on SPECjvm98 (b) Performance on DaCapo + JBB

Fig. 8. Optimizing scenario, Opt, tuned for balance on PPC (Opt:PPC)

achieve nice reductions on our test suite with average reductions in running time of 4%
and total time of 9%. We get significant reductions in total and running time for antlr
(28% and 33%) and we get good reductions in total time for fop (9%), pseudojbb (7%),
and jython (6%).

7 Related Work

Here we critically review the most relevant papers in inlining and machine learning
based compilation.

Inlining Arnold et al. [2] formulate the size/speed tradeoffs of inlining as a Knapsack
problem. They do not measure total execution-time, but instead focus on code size and
the running time of the program. This work is however a theoretical limit study as they
assume global knowledge of the program when making an inlining decison, information
not available to a dynamic compiler.

Dean et al.[7] present a technique for measuring the effect of inlining decisions for
the programming language SELF, called inlining trials, as opposed to predicting them
with heuristics. Using this technique, the authors were able to reduce compilation time
at the expense of an average increase in running time. We assert that better heuristics,
such as the ones found in this paper, can predict the opportunities enabled/disabled by
inlining and may achieve much of the benefit of inlining trials.

Leupers et al. [10] experiment with obtaining the best running time possible through
inlining while maintaining code bloat under a particular limit. They use this technique
for C programs targetted to embedded processors. This search based approach requir-
ing multiple executions of the program must be applied each time a new program is
encountered. This makes sense in an embedded scenario where the cost of this search is
amortised over the products shipped but is not practical for non-embedded applications.

Machine Learning Stephenson et al. [15] used genetic programming (GP) to tune
heuristic priority functions for three compiler optimizations: hyperblock selection, reg-
ister allocation, and data prefetching within the Trimaran’s IMPACT compiler. For two
optimizations, hyperblock selection and data prefetching, they achieved significant im-
provements. However, these two pre-existing heuristics were not well implemented. For
the third optimization, register allocation, they were only able to achieve on average a
2% increase over the manually tuned heuristic.

Cooper et al. [5] use genetic algorithms to solve the compilation phase ordering
problem. They were concerned with finding “good” compiler optimization sequences
that reduced code size. Unfortunately, their technique is application-specific.

Cavazos et al. [4] describe an idea of using supervised learning to control whether
or not to apply instruction scheduling. Using the induced heuristic, they were able to re-
duce scheduling effort by as much as 75% while still retaining about 92% effectiveness
of scheduling all blocks.

Monsifrot et al. [13] use a classifier based on decision tree learning to determine
which loops to unroll. They looked at the performance of compiling Fortran programs
from the SPEC benchmark suite using g77 for two different architectures, an Ultra-
SPARC and an IA64. They showed an improvement over the hand-tuned heuristic of
3% and 2.7% over g77’s unrolling strategy on the IA64 and UltraSPARC, respectively.

8 Conclusions

Inlining is an important optimization for many programming languages. It has been
well-studied and as a consequence well optimized within Jikes RVM, a high-performance
Java optimizing compiler. However, optimizing inlining heuristics is a time-consuming
and difficult process. We describe a technique using a genetic algorithm to tune inlining
heuristics that automates the process of developing optimizing heuristics that improves
on program performance.

Using a genetic algorithm, we can obtain heuristics that significantly outperform
the existing hand-tuned heuristic. On the set of benchmarks we learned our heuristics
on, we are able to achieve an average reduction of 17% in total running time on an Intel
machine and a 6% reduction on a PowerPC. More importantly, on an ”unseen” set of
benchmarks we can reduce the average total running time by an impressive 37% on an
Intel machine and by 7% on a PowerPC. Furthermore, when specializing a heuristic for
each application, we can achieve an average reduction of 15% in running time over the
default heuristic. Our results not only show that automatic optimization is better than
manual compiler writer tuning, but that different heuristics are required for different
compilation scenarios and/or architectures. We conclude that genetic algorithms are
successful at finding good inlining heuristics and shows promise for its application in
tuning other compiler heuristics.

References

1. B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P.Cheng, J.-D. Choi, A. Cocchi, S. J.
Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R.

Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan
and J. Whaley. The Jalapeño Virtual Machine. IBM Systems Journal, 39(1):211–238, Feb.
2000.

2. Matthew Arnold, Stephen Fink, Vivek Sarkar and Peter F. Sweeney. A Comparative Study of
Static and Profile-Based Heuristics for Inlining. In 2000 ACM SIGPLAN Workshop on Dy-
namic and Adaptive Compilation and Optimization (DYNAMO ’00), Boston, MA, Jan. 2000.

3. Matthew Arnold, Stephen Fink, David Grove, Michael Hind and Peter F. Sweeney. Adap-
tive Optimization in the Jalapeño JVM In ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA), pages 47–65, Minneapolis,
MN, Oct. 2000.ACM Press.

4. John Cavazos and J. Eliot B. Moss. Inducing Heuristics to Decide Whether to Schedule. In
Proceedings of the ACM SIGPLAN ’04 Conference on Programming Language Design and
Implementation, pages 183–194, Washington, D.C., June 2004. ACM Press.

5. Keith D. Cooper, Philip J. Schielke and Devika Subramanian. Optimizing for Reduced Code
Space using Genetic Algorithms. In Workshop on Languages, Compilers, and Tools for Em-
bedded Systems, pages 1–9, Atlanta, Georgia, July 1999. ACM Press.

6. Keith D. Cooper, Mary W. Hall and Linda Torczon. Unexpected Side Effects of Inline Sub-
stitution: A Case Study. ACM Letters on Programming Languages and Systems, 1(1):22–32,
March 1992.

7. Jeffrey Dean and Craig Chambers. Towards Better Inlining Decisions Using Inlining Trials.
In LISP and Functional Programming, pages 273–282, 1994.

8. Java Grande Forum. Making Java work for High-end Computing. In Supercomputing, 1998.
9. Kim Hazelwood and David Grove. Adaptive Online Context-Sensitive Inlining. In First An-

nual IEEE/ACM Interational Conference on Code Generation and Optimization, pages 253–
264, San Francisco, CA, March 2003.

10. Rainer Leupers and Peter Marwedel. Function inlining under code size constraints for em-
bedded processors. In ICCAD ’99: Proceedings of the 1999 IEEE/ACM international confer-
ence on Computer-aided design, pages 253–256, Piscataway, NJ, USA, 1999. IEEE Press.

11. Sean Luke. ECJ 11: A Java evolutionary computation library.
http://cs.gmu.edu/ � eclab/projects/ecj/, 2004.

12. DaCapo Project. DaCapo Benchmarks. http://www-ali.cs.umass.edu/DaCapo/gcbm.html,
2004.

13. Antoine Monsifrot and F. Bodin. A Machine Learning Approach to Automatic Production of
Compiler Heuristics. In Tenth International Conference on Artificial Intelligence: Methodol-
ogy, Systems, Applications (AIMSA), pages 41–50, Varna, Bulgaria, September 2002. Springer
Verlag.

14. Standard Performance Evaluation Corporation (SPEC), Fairfax, VA SPEC JVM98 Bench-
marks, 1998.

15. Mark Stephenson, Saman Amarasinghe, Martin Martin and Una-May O’Reilly Meta Opti-
mization: Improving Compiler Heuristics with Machine Learning. In Proceedings of the ACM
SIGPLAN ’03 Conference on Programming Language Design and Implementation, pages 77–
90, San Diego, Ca, June 2003. ACM Press.

