Multicore Computing - Evolution

Performance Scaling

Source: Shekhar Borkar, Intel Corp.

ECE 4100/6100 (2)
Intel

- Homogeneous cores
- Bus based on chip interconnect
- Shared Memory
- Traditional I/O

IBM Cell Processor

Heterogeneous MultiCore

- High speed I/O
- High bandwidth, multiple buses
- Classic (stripped down) core
- Co-processor accelerator

Source: Intel Corp.

Source: IBM
AMD Au1200 System on Chip

PlayStation 2 Die Photo (SoC)
Multi-* is Happening

Cores and Logical Thread Roadmap

Current Platforms

<table>
<thead>
<tr>
<th>Year</th>
<th>Processor</th>
<th>Cores</th>
<th>Threads</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>Montecito</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2006+</td>
<td>Dispose</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Future

<table>
<thead>
<tr>
<th>Year</th>
<th>Processor</th>
<th>Cores</th>
<th>Threads</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006+</td>
<td>Dispose</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

MP Servers

<table>
<thead>
<tr>
<th>Year</th>
<th>Processor</th>
<th>Cores</th>
<th>Threads</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>Sunni</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2008</td>
<td>Sunni</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Source: Intel Corp.

Intel’s Roadmap for Multicore

- Drivers are
 - Market segments
 - More cache
 - More cores

Source: Adapted from Tom's Hardware
Distillation Into Trends

- **Technology Trends**
 - What can we expect/project?

- **Architecture Trends**
 - What are the feasible outcomes?

- **Application Trends**
 - What are the driving deployment scenarios?
 - Where are the volumes?

Technology Scaling

- 30% scaling down in dimensions \rightarrow doubles transistor density

- Power per transistor
 - V_{dd} scaling \rightarrow lower power

- Transistor delay $= C_{gate} \frac{V_{dd}}{I_{SAT}}$
 - C_{gate}, V_{dd} scaling \rightarrow lower delay
Fundamental Trends

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>High Volume</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>8</td>
</tr>
<tr>
<td>Integration Capacity</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Delay (ps/layer)</td>
<td>0.7</td>
<td>0.7</td>
<td>1.7</td>
<td>0.7</td>
<td>1.7</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Energy/Logic Op</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Metal Layers</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RC Delay</td>
<td>Reduce slowly towards 2-2.5</td>
<td></td>
</tr>
<tr>
<td>Integration Capacity</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Metal Layers</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RC Delay</td>
<td>Reduce slowly towards 2-2.5</td>
<td></td>
</tr>
</tbody>
</table>

Source: Shekhar Borkar, Intel Corp.

Moore’s Law

- How do we use the increasing number of transistors?
- What are the challenges that must be addressed?

Source: Intel Corp.
Impact of Moore’s Law To Date

- Increase Frequency ➔ Deeper Pipelines
- Increase ILP ➔ Concurrent Threads, Branch Prediction and SMT
- Push the Memory Wall ➔ Larger caches
- IBM Power5

Source: IBM

Manage Power ➔ clock gating, activity minimization

Shaping Future Multicore Architectures

- The ILP Wall
 - Limited ILP in applications
- The Frequency Wall
 - Not much headroom
- The Power Wall
 - Dynamic and static power dissipation
- The Memory Wall
 - Gap between compute bandwidth and memory bandwidth
- Manufacturing
 - Non recurring engineering costs
 - Time to market
The Frequency Wall

- Not much headroom left in the stage to stage times (currently 8-12 FO4 delays)
- Increasing frequency leads to the power wall

Options

- Increase performance via parallelism
 - On chip this has been largely at the instruction/data level

- The 1990's through 2005 was the era of instruction level parallelism
 - Single instruction multiple data/Vector parallelism
 - MMX, SSIMD, Vector Co-Processors
 - Out Of Order (OOO) execution cores
 - Explicitly Parallel Instruction Computing (EPIC)

- Have we exhausted options in a thread?
The ILP Wall - Past the Knee of the Curve?

Performance

- Scalar In-Order
- Moderate-Pipe Superscalar/OOO
- Very-Deep-Pipe Aggressive Superscalar/OOO

“Effort”

Made sense to go Superscalar/OOO: good ROI

Very little gain for substantial effort

Source: G. Loh

The ILP Wall

- Limiting phenomena for ILP extraction:
 - **Clock rate**: at the wall each increase in clock rate has a corresponding CPI increase (branches, other hazards)
 - **Instruction fetch and decode**: at the wall more instructions cannot be fetched and decoded per clock cycle
 - **Cache hit rate**: poor locality can limit ILP and it adversely affects memory bandwidth
 - **ILP in applications**: serial fraction on applications

- Reality:
 - Limit studies cap IPC at 100-400 (using ideal processor)
 - Current processors have IPC of only 1-2

Source: G. Loh
The ILP Wall: Options

- Increase granularity of parallelism
 - Simultaneous Multi-threading to exploit TLP
 - TLP has to exist → otherwise poor utilization results
 - Coarse grain multithreading
 - Throughput computing

- New languages/applications
 - Data intensive computing in the enterprise
 - Media rich applications

The Memory Wall

“Moore’s Law”

Processor-Memory Performance Gap: (grows 50% / year)
The Memory Wall

- Increasing the number of cores increases the demanded memory bandwidth
- What architectural techniques can meet this demand?

The Memory Wall

- On-die caches are both area intensive and power intensive
 - StrongArm dissipates more than 43% power in caches
 - Caches incur huge area costs
- Larger caches never deliver the near-universal performance boost offered by frequency ramping (Source: Intel)
The Power Wall

\[P = \alpha CV_{dd}^2 f + V_{dd}I_{st} + V_{dd}I_{\text{leak}} \]

- Power per transistor scales with frequency but also scales with \(V_{dd} \)
 - Lower \(V_{dd} \) can be compensated for with increased pipelining to keep throughput constant
 - Power per transistor is not the same as power per area \(\rightarrow \)
 - Power density is the problem!
 - Multiple units can be run at lower frequencies to keep throughput constant, while saving power

Leakage Power Basics

- Sub-threshold leakage
 - Increases with lower \(V_{th} \), \(T \), \(W \)
 \[I_{\text{sub}} = K W e^{-V_{\text{th}}/nkT} (1 - e^{-V/kT}) \]

- Gate-oxide leakage
 - Increases with lower \(T_{ox} \), higher \(W \)
 - High K dielectrics offer a potential solution
 \[I_{\text{ox}} = K_w W \left(\frac{V}{T_{ox}} \right)^2 e^{-a T_{ox}/V} \]

- Reverse biased pn junction leakage
 - Very sensitive to \(T \), \(V \) (in addition to diffusion area)
 \[I_{pn} = J_{\text{leakage, p+\text{n}}} (e^{qV/kT} - 1) A \]
The Current Power Trend

Source: Intel Corp.

Improving Power/Performance

\[P = \alpha C V_{dd}^2 f + V_{dd} I_{st} + V_{dd} I_{leak} \]

- Consider constant die size and decreasing core area each generation = more cores/chip
 - Effect of lowering voltage and frequency \(\rightarrow \) power reduction
 - Increasing cores/chip \(\rightarrow \) performance increase

Better power performance!
Accelerators

TCP/IP Offload Engine

Opportunities: Network processing engines
MPEG Encode/Decode engines, Speech engines

Source: Shekhar Borkar, Intel Corp.

Low-Power Design Techniques

- Circuit and gate level methods
 - Voltage scaling
 - Transistor sizing
 - Glitch suppression
 - Pass-transistor logic
 - Pseudo-nMOS logic
 - Multi-threshold gates

- Functional and architectural methods
 - Clock gating
 - Clock frequency reduction
 - Supply voltage reduction
 - Power down/off
 - Algorithmic and software techniques

Two decades worth of research and development!
The Economics of Manufacturing

- Where are the costs of developing the next generation processors?
 - Design Costs
 - Manufacturing Costs

- What type of chip level solutions is the economics implying?

- Assessing the implications of Moore’s Law is an exercise in mass production

The Cost of An ASIC

Example: Design with 80 M transistors in 100 nm technology

Estimated Cost - $85 M - $90 M

- Cost and Risk rising to unacceptable levels
- Top cost drivers
 - Verification (40%)
 - Architecture Design (23%)
 - Embedded Software Design
 - 1400 man months (SW)
 - 1150 man months (HW)
 - HW/SW integration

12 – 18 months

The Spectrum of Architectures

- **Customization fully in Hardware**
- **Design NRE Effort**
- **Increasing NRE and Time to Market**
- **Increasing NRE Effort**
- **Decreasing Customization**

Hardware Development:
- Custom ASIC
- Structured ASIC
- FPGA
- Polymorphic Computing Architectures
- Tiled architectures

Software Development:
- Fixed + Variable ISA
- Microprocessor

Synthesis

- LSI Logic
- Leopard Logic
- Xilinx
- Altera
- MONARCH
- SM, RAW, TRIPS
- PACT, PICOChip
- Tensilica
- Stretch Inc.

Interlocking Trade-offs

- **Memory**
 - Bandwidth
 - Latency

- **Power**
 - Leakage power
 - Dynamic power

- **ILP**
 - Instruction-Level Parallelism

- **Frequency**
 - Dynamic frequency

- Improving one property comes at the expense of the other
- We need new approaches to co-optimization!
Multi-core Architecture Drivers

- Addressing ILP limits
 - Multiple threads
 - Coarse grain parallelism \(\rightarrow\) raise the level of abstraction

- Addressing Frequency and Power limits
 - Multiple slower cores across technology generation
 - Scaling via increasing the number of cores rather than frequency
 - Heterogeneous cores for improved power/performance

- Addressing memory system limits
 - Deep, distributed, cache hierarchies
 - OS replication \(\rightarrow\) shared memory remains dominant

- Addressing manufacturing issues
 - Design and verification costs
 \(\rightarrow\) Replication \(\rightarrow\) the network becomes more important!