
Timing CPU and GPU Kernels
CISC 879 – Advanced Parallel Programming

William Killian

2013 March 05



Outline

• Timing CPU Code

• gettimeofday

• clock_gettime

• Timing GPU Code

• Profiling

• Use CPU Timers

• Use Events



Using gettimeofday for Timing

• gettimeofday uses the system time for timing

• Accurate within 10us on average

Example:
#include <time.h>

#include <sys/time.h>

struct timeval begin, end;

gettimeofday (&begin, NULL);

// execute some arbitrary code/kernel

gettimeofday (&end, NULL);

int time = 1e6 * (end.tv_sec - begin.tv_sec) + (end.tv_usec - begin.tv_usec);



Using clock_gettime for Timing

• clock_gettime uses the number of cycles that have passed on the 
CPU for timing

• Accurate within 1ns on average (clock rate of the CPU)

• Must link with the realtime library when compiling (-lrt)

Example:
#include <time.h>

struct timespec begin, end;

clock_gettime (CLOCK_PROCESS_CPUTIME_ID, &begin);

// execute some arbitrary code/kernel

clock_gettime (CLOCK_PROCESS_CPUTIME_ID, &end);

uint64_t time = 1e9 * (end.tv_sec - begin.tv_sec) + (end.tv_nsec -
begin.tv_nsec);



Using Profiling for Timing

• When running on GPUs, we can profile our code to see the total 
execution time of every kernel or memory transfer

• Enabled by setting COMPUTE_PROFILE environment variable to 1
• export COMPUTE_PROFILE=1 # bash

• setenv COMPUTE_PROFILE 1 # csh

• Execute your code normally
• ./matrixMultiply

• One or more profile logs will be generated
• i.e. cuda_profile_0.log or opencl_profile_0.log

• Under these log files there are a few different columns:
• Method – kernel invocation

• GPUtime – time to run on the GPU (what we care about)

• CPUtime – time to run on the CPU (sometimes interesting)

• Occupancy – how much of the GPU was used for the given kernel



Using Events for Timing

• Events are special kernels that can be invoked for precise timing on 
the GPU

• OpenCL and CUDA have their own respective events

• On the next two slides are specific instances for OpenCL and CUDA

• Requires specific API calls to each (not generic)



OpenCL Events for Timing



CUDA Events for Timing

cudaEvent_t start, stop;
float time;
cudaEventCreate (&start);
cudaEventCreate (&stop);
cudaEventRecord (start, 0);
kernel <<<grid, threads>>> (d_odata, d_idata, size_x, size_y, NUM_REPS);
cudaEventRecord (stop, 0);
cudaEventSynchronize (stop);
cudaEventElapsedTime (&time, start, stop);
cudaEventDestroy (start);
cudaEventDestroy (stop);

• Here cudaEventRecord() is used to place the start and stop events into the 
default stream, stream 0.

• The device will record a timestamp for the event when it reaches that event 
in the stream. 

• The cudaEventElapsedTime() function returns the time elapsed between the 
recording of the start and stopevents.

• return value is expressed in milliseconds (with resolution of 0.5 us)
• timing resolution is operating-system-independent.



Questions / Comments
Perhaps a Demo?


