
GPU Programming 
Problems

Scott Grauer-Gray



Project 1

● Sample loop for project 1:

● Should not parallelize outer 'nl' loop (only 'i' 
loop)
○ Purpose is for 'i' loop to run multiple times for accurate timing

■ Same kernel will be called multiple times on GPU

○ dummy function on CPU is to ensure that outer loop is actually run 4*ntimes

■ May not be necessary on GPU

for (int nl = 0; nl < 4*ntimes; nl++) 
{

for (int i = 0; i < LEN; i++) 
{

s = b[i] + c[i] * d[i];
a[i] = s * s;

}
dummy(a, b, c, d, e, aa, bb, cc, 0.);

}



Project 1

● Sample loop for project 1:

● OpenCL Code:

for (int nl = 0; nl < 4*ntimes; nl++) 
{

for (int i = 0; i < LEN; i++) 
{

s = b[i] + c[i] * d[i];
a[i] = s * s;

}
dummy(a, b, c, d, e, aa, bb, cc, 0.);

}

//outer loop still on CPU
for (int nl = 0; nl < 4*ntimes; nl++) 
{

//run 'i' loop in parallel on GPU
clEnqueueNDRangeKernel(command_queue, iKernel, ...)

//synchronize so kernel completes before beginning next iteration
clFinish(command_queue);

}



Program Parallelization on GPU

● Need to ensure that program can be 
parallelized for computation on GPU

● Cannot have dependencies between loop 
iterations

 



Program Parallelization on GPU

● i-loop below not parallelizable on GPU
○ aa[i-1] must be computed before aa[i] for each 

iteration
○ All iterations are parallel on GPU (in theory)
○ Not parallelizable on GPU as a result

 for (int i= 1; i < N; i++) 
{

aa[i] = aa[i-1] + b[i] * c[1];
}



Program Parallelization: Data Races

● Given summation loop:
○ Sum all values from i=0 to N-1 in array 'A' w/ result in A[N]

a[N] = 0.0f;
for (int i= 0; i < N; i++) 
{

a[N] += a[i];
}



Program Parallelization: Data Races
a[N] = 0.0f;
for (int i= 0; i < N; i++) 
{

a[N] += a[i];
}

● If parallelized on GPU w/ every iteration in 
parallel...
○ All iterations read the initial value of a[N] in parallel
○ All iterations i add a[i] to initial a[N] and write updated 

value to a[N] in parallel
○ Data race between all i iterations
○ Only one a[i] value actually added to a[N]

 



Program Parallelization: Data Races

● Still possible to use GPU
○ One option: using atomics...GPU kernel code becomes:

int iVal = blockIdx.x*blockDim.x + theadIdx.x;
if ((iVal >= 0) && (iVal < N))
{

atomicAdd(&(a[N]), a[i]);
}
○ Atomic operation forces each atomicAdd operation to be 

sequential, defeating purpose of using GPU
■ Will likely be slower than on CPU



Program Parallelization: Data Races

● Still possible to use GPU
○ Better option: reduction with multiple steps
○ More difficult to parallelize than embarrassingly parallel 

loop
○ May be able to find reduction as part of a programming 

library
■ Implemented/optimized in thrust (CUDA library) and 

OpenACC compilers
■ Likely better performance using other people's 

optimized code than writing own implementation

 



Program Parallelization: Reduction

● Illustration of reduction on GPU on 8-element array



GPU Problems and Detection

● GPU Problem Categories:
● Intra-group Data Races
● Inter-group Data Races
● Barrier Divergence

● GPUVerify is a program that can be used to help verify the 
integrity and check for the above conditions in GPU kernels



GPU Problems and Detection

● Intra-group Data Races
○ OpenCL – Data Race between work items within the same work group
○ CUDA – Data Race between threads in the same thread block

Example from GPUVerify documentation:



GPU Problems and Detection

Example from GPUVerify documentation - Explanation:



GPU Problems and Detection
● Inter-group Data Races

○ OpenCL – Data Race between work items in different work groups
○ CUDA – Data Race between threads in a different thread block

Example from GPUVerify documentation:



GPU Problems and Detection
Example from GPUVerify documentation - Explanation:



GPU Problems and Detection
● Barrier Divergence

○ When a barrier occurs the threads within a thread block/work group should 
evaluate the barrier condition uniformly. If they do not, a single thread could 
diverge (or skip)

Example from GPUVerify documentation:



GPU Overhead

● Max GPU performance much better than CPU
 



GPU Overhead

● Theoretical performance doesn't account for 
overhead of GPU computing
○ Time to set up GPU environment
○ Time to compile GPU program at run-time (in OpenCL)
○ Time to set up and free memory on GPU
○ Time to transfer data from CPU to GPU and vice versa
○ Possible resource overhead of dedicating portion of 

workforce to GPU programming



GPU Overhead

● Overhead often not accounted for in work 
showing GPU speedup
○ GPU programmer wants to show as large a speedup 

as possible
○ Overhead time may differ across systems



GPU Overhead - Timing Considerations

● Overhead time may differ across systems
○ Transfer time may differ depending on file system 

and RAM configuration
● Programmer may intend to keep data on 

GPU for possible further processing
● Need full application/use cases to be able to 

measure influence of transfer time



GPU Overhead

● "Fixing" Overhead issue
○ Initial GPU implementation doesn't show speedup 

when using GPU due to overhead
○ Solution: make the problem space larger!



GPU Overhead - increased problem 
size

● Increase parallelism, makes overhead lower 
portion of overall computation

● Often valid solution in academic work
● Interesting to show how speedup vary 

across various problem sizes
● Feel free to adjust loop sizes in project 1 and 

show results for different configurations



Advertised vs. Actual Speedup

● Speedup shown in GPU papers often are 
compared to un-optimized CPU code
○ NVIDIA admits that most of the 100x+ speedups are 

from academia and compared to un-optimized CPU 
code



Advertised vs. Actual Speedup

● Quote from GM of NVIDIA's Tesla business: "Most 
people we find who have optimized CPU code, and 
really you'll only find optimized CPU code in the HPC 
world, get between 5x to 10x speed up, that's the 
average speed up that people get. In some cases it's 
even less, we've seen people getting speed ups of 2X 
but they are delighted with 2x because there is no way 
for them to get a sustainable 2X speed up from where 
they are today" 



Advertised vs. Actual Speedup

● Paper from Intel: "Debunking the 100X GPU vs. CPU Myth: 
An Evaluation of Throughput Computing on CPU and GPU"
○ Authors of paper "find that after applying optimizations 

appropriate for both CPUs and GPUs the performance 
gap between an Nvidia GTX280 processor and the Intel 
Core i7 960 processor narrows to only 2.5x on average" 
on a set of common benchmarks



Advertised vs. Actual Speedup

● Maximum GPU speedup after applying 
optimizations is 14.9x



Advertised vs. Actual Speedup

● NVIDIA's response: "It’s a rare day in the world of 
technology when a company you compete with stands up at 
an important conference and declares that your technology 
is *only* up to 14 times faster than theirs. In fact in all the 
26 years I’ve been in this industry, I can’t recall another 
time I’ve seen a company promote competitive benchmarks 
that are an order of magnitude slower." 

● Also claim easier to code/optimize on GPU using CUDA than 
on multi-core CPU


