
GPU Profiling and
Optimization

Scott Grauer-Gray

Benefits of GPU Programming

● "Free" speedup with new architectures
○ More cores in new architecture
○ Improved features such as L1 and L2 cache
○ Increased shared/local memory space

Benefits of GPU Programming

● GPU program performance likely to improve
on new architecture w/ no program
adjustment
○ Used to be the case for single-threaded programs on

CPUs
○ No longer true there since they moved to multi-core

design

GPU Programs Across Generations

GPU Optimization

● New architecture may be a couple years
away...
○ Want performance improvement now!
○ Solution: optimize on current architecture

■ Even small speedup can be significant

GPU Optimization

● Challenging problem
○ Particular GPU optimizations may help one program

and decrease performance in another
○ Best optimization configuration differs across

architectures

NVIDIA GPU Architecture

● CUDA cores grouped into
multiprocessors
○ On C1060, there are 8

cores/multiprocessor
○ Multiprocessor contains a

limited number of registers
○ Multiprocessor contains fast

shared memory (local
memory in OpenCL)

GPU Program Execution Model
● GPU threads grouped into a

grid of thread blocks
● Thread block dimensions

defined by user
● C1060 GPU allows up to 8

active thread blocks /
multiprocessor

● Each active thread block
needs to use separate
registers/shared memory on
multiprocessor

GPU Program Execution Model
● GPU threads (within thread block)

execute in groups of 32 on same
multiprocessor
○ Each set of 32 threads is called

a warp
● All threads in a warp execute

same instructions simultaneously
● Different warps are executed

independently by scheduler unless
there is explicit synchronization
call

● Possible for one warp to run until it
needs to wait for data, then
another warp runs on same
multiprocessor

Multiprocessor occupancy

● Defined as number of warps running
concurrently on multiprocessor divided by max
warps that can run concurrently

■ Max warps differs across architectures
■ On C1060: max of 32 concurrent warps
■ On Kepler K20: max of 64 concurrent warps

Multiprocessor Occupancy

● Can be limited by register and shared memory
usage

■ Registers and shared memory are shared among all
active warps on multiprocessor

■ Higher register/shared memory usage in each thread
limits number of simultaneous warps

Multiprocessor Occupancy

● Higher occupancy is often a
goal in GPU optimization

● Greater occupancy can hide
instruction latency
○ Read-after-write register

latency
○ Latency in reading data from

global memory
○ While threads in one warp

waiting for data, another
warp can run on
multiprocessor

Multiprocessor Occupancy

● However, maximizing
occupancy does not
always result in best
performance

● Increased multiprocessor
occupancy can be at
expense of faster
register/shared memory
accesses

Multiprocessor Occupancy Factors

● Thread block dimensions
● Register usage per thread
● Shared memory usage per

thread block
● Target GPU architecture

CUDA Occupancy Calculator

● Provided by NVIDIA to compute occupancy of CUDA kernel
● User enters GPU compute capability and resource usage
● Occupancy calculator computes occupancy
● Shows impact of...

○ Adjusting thread block size
○ Adjusting register usage
○ Adjusting shared memory usage

● Can be used as a tool to tweak CUDA program to improve
multiprocessor occupancy

CUDA Occupancy Calculator

Available at http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

CUDA Occupancy Calculator

Available at http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

CUDA Occupancy Considerations

● All things equal, same program with higher
occupancy should run faster

● However, may be necessary to sacrifice register
/ shared memory usage to increase occupancy
○ May increase necessary memory transfers from global

memory
○ May slow program more than reduced occupancy

Other Optimization Considerations

● Thread block dimensions
● Global memory load/store pattern
● Register usage
● Local memory usage
● Branches within kernel
● Shared memory
● Constant memory
● Texture memory

Thread Block Dimensions

● CUDA threads grouped together in thread block
structure
○ Run on same multiprocessor
○ Have access to common pool of fast shared memory
○ Can synchronize between threads in same thread block

● On C1060, maximum of 8 active thread blocks /
multiprocessor

● Max thread block size on C1060 is 512

Optimizing Thread Block Dims (C1060)

● On multiprocessor
○ Up to 1024 threads can execute concurrently
○ Up to 8 thread blocks can be active

● To allow full occupancy, thread block size
must be at least 128 and a factor of 1024

● Should use thread block size of at least 128*

* - unless shared memory requirement forces
lower block size

Optimizing Thread Block Dimensions

● Use multiple of warp size (32)
○ Otherwise will be partially full warp --> wasted resources

● Different thread block dimensions work best for
different programs

● Experiment and see what works best
○ Common thread block sizes: 128, 192, 256, 384, 512
○ If 2D thread block, common dimensions are 32X4, 32X6,

32X8, 32X12, 32X18

Global memory load/store pattern
● Global memory latency is over 400 clock cycles
● Minimize accesses as much as possible
● Best to arrange accesses in coalesced manner

Global memory ld/st pattern (C1060)
● Memory accesses in chunks of 32, 64, and 128 bytes
● Global memory accesses are per half-warp (16 threads)
● If data perfectly aligned and thread memory accesses

contiguous, data for threads in half-warp retrieved in one
chunk

● If data accesses not in same array chunk, need additional
memory accesses
○ Anywhere between 1-16 memory accesses necessary to

retrieve data from global memory

Global Memory Accesses by
Architecture

Global Memory Accesses by
Architecture

Global Memory Accesses by
Architecture

Register Usage
● Registers allow quick access to data on GPU
● Limited number of registers on each GPU multiprocessor

○ C1060: 16,384 registers per multiprocessor
● Limited number of registers / thread allowed

○ C1060: up to 127 registers allowed per thread
○ Fermi / Kepler GK104: up to 63 registers allowed per

thread
○ Kepler GK110: up to 255 registers allowed per thread

Register Usage
● Greater register usage limits number of concurrent threads /

multiprocessor
○ Decreases multiprocessor occupancy
○ Optimization trade-off

■ Quicker access to data but lower occupancy
● Can limit register use per thread w/ compiler flag

○ –maxrregcount=N flag to NVCC
○ Limiting register use may increase occupancy
○ Can cause spillover to local memory

Local Memory Usage

● Local memory on CUDA
○ Data in local memory not

explicitly defined
■ No reason to

intentionally place data
in local memory

○ Corresponds to register
spillover and array defined
in thread that is accessed
in non-unrolled loop

○ Stored in slow global
memory space

Local Memory Usage

● Local memory on CUDA
○ Best to avoid as much as

possible
■ May be able to place

data in registers or
shared memory

■ Not as "bad" on
Fermi/Kepler due to L1
and L2 cache

Branches Within Kernel

● GPU architecture dedicates most transistors
to computation
○ Not much focus on branch prediction / recovery
○ C1060: If divergence in warp, all threads need to

step through both branches
○ Thread divergence in warp can hurt performance
○ If branching within thread, want all threads in warp to

branch in same direction if possible

Branches Within Kernel

● Example branch within kernel w/ divergence
in 32-thread warp
○ All threads in first warp (corresponding to threads 0-31) need to

step through both branches

__global__ void foo(int* data)
{

if (threadIdx.x < 24){
data[threadIdx.x] = 5; }

else { data[threadIdx.x] = 7; }
}

Shared Memory

● Can be as fast as registers for data access
○ Can be used as user-managed cache

● Shared between all threads within a thread block
○ Can be used for communication between threads

● C1060: 16KB shared memory/multiprocessor
● Can be limiting factor for multiprocessor

occupancy

Shared Memory

● Can be statically declared in CUDA kernel
○ Specified using __shared__ keyword
○ Space for entire thread block given in declaration
○ Example shows shared memory array of size

4*THREAD_BLOCK_SIZE

Shared Memory Example
__global__ void sharedMemDemo(float* data)
{

//declare space for shared memory array on GPU
__shared__ int sharedMemArray

[4*THREAD_BLOCK_SIZE];

//write thread index to shared memory array at
thread index (no inter-warp conflict since using shared
memory...)

sharedMemArray[threadIdx.x] = threadIdx.x;
..

}

Constant Memory

● Potentially faster for read-
only data
○ Best when all threads in warp

are reading same data
simultaneously

○ Allows for single memory read
with data then broadcast to
remaining threads in half-warp

○ Constant memory also cached
■ Cached constant memory

can be as fast as registers

Constant Memory

● Can allocate up to 64KB of constant memory
○ Constant memory cache is 8KB

● Constant memory is transferred to GPU from
host using cudaMemcpyToSymbol
command

//declare constant memory
__constant__ float cst_ptr[size];
//copy data from host to constant memory
cudaMemcpyToSymbol(cst_ptr,host_ptr,data_size);

Texture Memory

● Also for read-only data
● Uses texture cache on GPU
● Optimized for data with 2D

locality

● Can bind linear array or 1D,
2D, or 3D CUDA array to
texture

● CUDA array supports linear,
bilinear, and trilinear hardware
interpolations

Texture Memory Example

● Declare texture to be bound to "float" array
○ texture<float, 1, cudaReadModeElementType>

gpuTexture;

● Bind array in global memory to texture:

● Values bound to texture retrieved in kernel using tex1Dfetch
(gpuTexture, indexVal)

Texture Memory Example

● Bind array in global memory to texture:
//declare array in global memory on GPU and allocate space
float* gpuGlobMemArray; cudaMalloc(&gpuGlobMemArray, arraySize);
//copy data from host to GPU
cudaMemcpy(gpuGlobMemArray, hostArray, arraySize, cudaMemcpyHostToDevice);
//bind texture to array
cudaBindTexture(0, gpuTexture, gpuGlobMemArray, arraySize);

Performance Measurement

● May need to retrieve run-time characteristics
to find possible bottlenecks
○ Often can't determine bottleneck from just inspecting

code
○ Solution: use profiler!
○ NVIDIA provides command-line and GUI profiler to

retrieve run-time measurements

CUDA Profiler Measurements (C1060)

Info that can be obtained from CUDA Profiler:
● GPU kernel runtime
● Multiprocessor occupancy
● Register use per thread
● Local memory loads/stores
● Number of divergent branches
● Number and type of loads from global memory

Using CUDA Profiler

● Profiler automatically installed with CUDA
● Need to set CUDA_PROFILE (or

COMPUTE_PROFILE) environment variable
to 1 to enable profiler

● Then run program with profiler enabled
● Profiling output in cuda_profile_0.log
● Default settings give runtime of all GPU

kernels and occupancy
○ Can be used for kernel timing

Using CUDA Profiler

● Need to set flags for more advanced metrics
○ Create text file profileMetrics.dat
○ Place specific metrics to measure in file
○ Set CUDA_PROFILE_CONFIG to profileMetrics.dat
○ Set CUDA_PROFILE to 1
○ Run program with profiling enabled with given metrics
○ Output in cuda_profile_0.log gives specified run-time

metrics
■ Output GPU kernel runtime may be slower when

profiling with certain metrics

Using CUDA Profiler

● Run-time metrics on C1060 (not complete list)
gld_32b: 32-byte global memory load transactions
gld_64b: 64-byte global memory load transactions
gld_128b: 128-byte global memory load transactions
gld_request: Global memory loads
gst_32b: 32-byte global memory store transactions
gst_64b: 64-byte global memory store transactions
gst_128b: 128-byte global memory store transactions
gst_request: Global memory stores

● Will be more memory transactions if memory accesses
non-coalesced than if coalesced

Using CUDA Profiler

● Run-time metrics on C1060 (not complete
list)
local_load: Local memory loads
local_store: Local memory stores
branch: Branches taken by threads executing a kernel
divergent_branch: Divergent branches taken by threads
executing a kernel
instructions: Instructions executed
warp_serialize: Number of thread warps that serialize on
address conflicts to either shared or constant memory
cta_launched: Number of threads blocks executed

Using CUDA Profiler

● Run-time metrics on C1060
○ Can only measure up to 4 metrics at once
○ To measure more than 4 metrics, need to adjust

profileMetrics.dat file and re-run program

Sample Output Using Profiler

● Running MonteCarlo in CUDA SDK
● Results with no flags set:

CUDA_PROFILE_LOG_VERSION 2.0
CUDA_DEVICE 0 Tesla C1060
TIMESTAMPFACTOR fffff68f58f9e5c8
method,gputime,cputime,occupancy
method=[memset32_aligned1D] gputime=[4.288] cputime=[25.000] occupancy=[1.000]
method=[memset32_aligned1D] gputime=[2.400] cputime=[9.000] occupancy=[1.000]
method=[_Z16inverseCNDKernelPfS_j] gputime=[30.816] cputime=[8.000] occupancy=[
1.000]
method=[memcpyHtoD] gputime=[5.696] cputime=[9.000]
method=[_Z27MonteCarloOneBlockPerOptionPfi] gputime=[3209.408] cputime=[13.000]
occupancy=[0.750]
method=[memcpyDtoH] gputime=[5.440] cputime=[3232.000]

Sample Output Using Profiler

● Running MonteCarlo in CUDA SDK
● Results with gld_32b, gst_32b, gld_64b, and

gst_64b flags set:
CUDA_PROFILE_LOG_VERSION 2.0
CUDA_DEVICE 0 Tesla C1060
TIMESTAMPFACTOR fffff68fe15c7d58
method,gputime,cputime,occupancy,gld_32b,gst_32b,gld_64b,gst_64b
method=[memset32_aligned1D] gputime=[4.256] cputime=[48.000] occupancy=[1.000]
gld_32b=[0] gst_32b=[0] gld_64b=[0] gst_64b=[56]
method=[memset32_aligned1D] gputime=[3.936] cputime=[27.000] occupancy=[1.000]
gld_32b=[0] gst_32b=[0] gld_64b=[0] gst_64b=[32]
method=[_Z16inverseCNDKernelPfS_j] gputime=[31.264] cputime=[58.000] occupancy=[
1.000] gld_32b=[0] gst_32b=[0] gld_64b=[0] gst_64b=[1664]
method=[memcpyHtoD] gputime=[5.952] cputime=[8.000]
method=[_Z27MonteCarloOneBlockPerOptionPfi] gputime=[3645.568] cputime=[3673.000]
occupancy=[0.750] gld_32b=[0] gst_32b=[52] gld_64b=[425984] gst_64b=[0]
method=[memcpyDtoH] gputime=[5.632] cputime=[33.000]

Sample Output Using Profiler

● Running MonteCarlo in CUDA SDK
● Results with local_load, local_store, branch,

and divergent_branch flags set:
CUDA_PROFILE_LOG_VERSION 2.0
CUDA_DEVICE 0 Tesla C1060
TIMESTAMPFACTOR fffff68f1cf27808
method,gputime,cputime,occupancy,local_load,local_store,branch,divergent_branch
method=[memset32_aligned1D] gputime=[3.168] cputime=[41.000] occupancy=[1.000]
local_load=[0] local_store=[0] branch=[12] divergent_branch=[0]
method=[memset32_aligned1D] gputime=[3.072] cputime=[23.000] occupancy=[1.000]
local_load=[0] local_store=[0] branch=[8] divergent_branch=[0]
method=[_Z16inverseCNDKernelPfS_j] gputime=[30.432] cputime=[55.000] occupancy=[1.000]
local_load=[0] local_store=[0] branch=[2728] divergent_branch=[0]
method=[memcpyHtoD] gputime=[5.952] cputime=[8.000]
method=[_Z27MonteCarloOneBlockPerOptionPfi] gputime=[3626.016] cputime=[3654.000]
occupancy=[0.750] local_load=[0] local_store=[0] branch=[75528] divergent_branch=[9]
method=[memcpyDtoH] gputime=[5.792] cputime=[32.000]

Using CUDA Profiler

● Profiler more complicated on Fermi/Kepler
○ More/different flags
○ Including measurements of L1 and L2 cache hit rate
○ Rules of which metrics can be measured concurrently

not given (likely because too complicated)
■ Output will specify if particular metric can't be

measured due to conflict
○ GUI Visual profiler allows user to set metrics to measure

and runs program multiple times to retrieve data
○ GUI profiler automatically analyzes data / outputs

possible bottlenecks

CUDA Visual Profiler

Conclusions

● Many factors in GPU optimizations
● Optimization may help one program and hurt

another program
● Necessary to experiment among possible

optimizations
● Use CUDA profiler to retrieve run-time

measurements than can help with
optimization

