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Benefits of GPU Programming

e "Free" speedup with new architectures
o More cores in new architecture
o Improved features such as L1 and L2 cache
o Increased shared/local memory space



Benefits of GPU Programming

e GPU program performance likely to improve
on new architecture w/ no program

adjustment

o Used to be the case for single-threaded programs on
CPUs

o No longer true there since they moved to multi-core
design



GPU Programs Across Generations

Polybench Code
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0.0033
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0.0162
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16.5000

0.4690

0.0026
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0.0047
0.0102
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0.0037
0.0150
6.2600
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0.2580

C2050 Time K20 Time K20 Speedup

1.2729
1.4107
1.2840
1.5882
2.0364
2.0556
1.2883
1.2912
1.5163
1.4890
2.5267
1.0719
2.0260
2.4372
1.8178

1.6742
1.5211



GPU Optimization

e New architecture may be a couple years

away...

o Want performance improvement now!

o Solution: optimize on current architecture
m Even small speedup can be significant



GPU Optimization

e Challenging problem

o Particular GPU optimizations may help one program
and decrease performance in another

o Best optimization configuration differs across
architectures



NVIDIA GPU Architecture

e CUDA cores grouped into

multiprocessors

o On C1060, there are 8
cores/multiprocessor

o Multiprocessor contains a
limited number of registers

o Multiprocessor contains fast
shared memory (local
memory in OpenCL)




GPU Program Execution Model

e GPU threads grouped into a
grid of thread blocks

e Thread block dimensions
defined by user

e C1060 GPU allows up to 8
active thread blocks /
multiprocessor

e Each active thread block
needs to use separate
registers/shared memory on
multiprocessor
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GPU Program Execution Model

GPU threads (within thread block)
execute in groups of 32 on same
multiprocessor

o Each set of 32 threads is called

Grid
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a warp R o
All threads in a warp execute
same instructions simultaneously & ey

Different warps are executed
iIndependently by scheduler unless
there is explicit synchronization
call

Possible for one warp to run until it
needs to wait for data, then
another warp runs on same



Multiprocessor occupancy

e Defined as number of warps running
concurrently on multiprocessor divided by max

warps that can run concurrently

m Max warps differs across architectures
m On C1060: max of 32 concurrent warps
m On Kepler K20: max of 64 concurrent warps



Multiprocessor Occupancy

e Can be limited by register and shared memory

usage
m Registers and shared memory are shared among all
active warps on multiprocessor
m Higher register/shared memory usage in each thread
limits number of simultaneous warps



Multiprocessor Occupancy

e Higher occupancy is often a
goal in GPU optimization
e Greater occupancy can hide
iInstruction latency
o Read-after-write register
latency
o Latency in reading data from
global memory
o While threads in one warp
waiting for data, another
warp can run on
multiprocessor
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Register Dependency

® Read-after-write register dependency

® Instruction’s result can be read ~24 cycles later
® Scenarios:  CUDA: PTX:

y +5; add.f32 $f3, $f1, $f2
x + 3; add.f32 $f5, $f3, $f4

s_data[0] += 3; Id.shared.f32 $f3, [$r31+0]
add.f32 $f3, $13, $f4

® 1 completely hide the latency:

® Run at least 192 threads (6 warps) per multiprocessor
® At least 25% occupancy (1.0/1.1), 18.75% (1.2/1.3)
® Threads do not have to belong to the same thread block

© NVIDIA Corporation 2009




Multiprocessor Occupancy

e However, maximizing Device From
occupancy does not
always result in best
performance

e Increased multiprocessor
occupancy can be at
expense of faster
register/shared memory
accesses

Docs




Multiprocessor Occupancy Factors

e Thread block dimensions

e Register usage per thread
e Shared memory usage per
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CUDA Occupancy Calculator

Provided by NVIDIA to compute occupancy of CUDA kernel
User enters GPU compute capability and resource usage
Occupancy calculator computes occupancy

Shows impact of...

o Adjusting thread block size

o Adjusting register usage

o Adjusting shared memory usage

Can be used as a tool to tweak CUDA program to improve
multiprocessor occupancy



CUDA Occupancy Calculator

Available at http://developer.download.nvidia.com/compute/cuda/CUDA Occupancy calculator.xls

ICUDA GPU Occupancy Calculator

Just follow steps 1, 2, and 3 below! (or click here for help)

1.) Select Compute Capability (click): D e

2.) Enter your resource usage:

Threads Per Block 256 (Help)
Registers Per Thread 16
Shared Memory Per Block (bytes) 4096

(Don't edit anything below this line)

3.) GPU Occupancy Data is displayed here and in the graphs:

Active Threads per Multiprocessor 1024 Hel
Active Warps per Multiprocessor 32

Active Thread Blocks per Multiprocessor 4
Occupancy of each Multiprocessor 100%
Physical Limits for GPU Compute Capability: 1.3

Threads per Warp 32

Warps per Multiprocessor 32
Threads per Multiprocessor 1024

Thread Blocks per Multiprocessor 8

Total # of 32-bit registers per Multiprocessor 16384


http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

CUDA Occupancy Calculator

Available at http://developer.download.nvidia.com/compute/cuda/CUDA Occupancy calculator.xls

Click Here for detailed instructions on how to use this occupancy calculator.
For more information on NVIDIA CUDA, visit http://developer.nvidia.com/cuda

Your chosen resource usage is indicated by the red triangle on the graphs. The
other data points represent the range of possible block sizes, register counts,
and shared memory allocation.
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http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

CUDA Occupancy Considerations

e All things equal, same program with higher
occupancy should run faster

e However, may be necessary to sacrifice register

/ shared memory usage to increase occupancy

o May increase necessary memory transfers from global
memory

o May slow program more than reduced occupancy



Other Optimization Considerations

Thread block dimensions

Global memory load/store pattern
Register usage

Local memory usage

Branches within kernel

Shared memory

Constant memory

Texture memory



Thread Block Dimensions

e CUDA threads grouped together in thread block

structure

o Run on same multiprocessor

o Have access to common pool of fast shared memory

o Can synchronize between threads in same thread block

e On C1060, maximum of 8 active thread blocks /
multiprocessor

e Max thread block size on C1060 is 512



Optimizing Thread Block Dims (C1060)

e On multiprocessor

o Up to 1024 threads can execute concurrently
o Up to 8 thread blocks can be active

e To allow full occupancy, thread block size
must be at least 128 and a factor of 1024
e Should use thread block size of at least 128~

* - unless shared memory requirement forces
lower block size



Optimizing Thread Block Dimensions

e Use multiple of warp size (32)
o Otherwise will be partially full warp --> wasted resources

e Different thread block dimensions work best for
different programs

e EXxperiment and see what works best
o Common thread block sizes: 128, 192, 256, 384, 512
o If 2D thread block, common dimensions are 32X4, 32X6,
32X8, 32X12, 32X18



Global memory load/store pattern

® Global memory latency is over 400 clock cycles
® Minimize accesses as much as possible
® Best to arrange accesses in coalesced manner

addresses from a warp

Wb W

0 32 64 96 128 160 192 224 256 288 320 352 384




Global memory Ild/st pattern (C1060)

Memory accesses in chunks of 32, 64, and 128 bytes

e Global memory accesses are per half-warp (16 threads)

If data perfectly aligned and thread memory accesses

contiguous, data for threads in half-warp retrieved in one

chunk

If data accesses not in same array chunk, need additional

memory accesses

o Anywhere between 1-16 memory accesses necessary to
retrieve data from global memory



Global Memory Accesses by
Architecture

Aligned and sequential

Addresses: 96

128 160 192 224

256 288

—————

T

Threads:
Compute capability: 1.0and 1.1 1.2and 1.3 2.0
Memory transactions: Uncached Cached

1x 64B at 128
1x 64B at 192

1x 64B at 128
1x 64B at 192

1x128B at 128




Global Memory Accesses by
Architecture

Aligned and non-sequential

Addresses: 96 12 256 288

—I——|$|

Xt

Threads: 0
Compute capability: 1.0and 1.1 1.2and 1.3 2.0
Memory transactions: Uncached Cached

8x 32Bat128 | 1x 64Bat128 | 1x128B at 128
8x 32Bat160 | 1 x 64B at 192
8 x 32B at 192
8 x 32B at 224




Global Memory Accesses by
Architecture

Misaligned and sequential

Addresses: 96 12 8 160 192 2. _ZTG_
o/‘/‘/‘/‘/‘/‘/‘////////Z[/‘/‘/‘/‘/‘/‘/‘//‘///‘/{{

Threads:
Compute capability: 1.0and 1.1 1.2and 1.3 2.0
Memory transactions: Uncached Cached

7x 32Bat128 |1 x128Bat128 | 1x128B at 128
8x 32Bat160 | 1x 64Bat 192 | 1 x 128B at 256
8x 32Bat192 | 1 x 32B at 256
8 x 32B at 224
1x 32B at 256




Register Usage

e Registers allow quick access to data on GPU
e Limited number of registers on each GPU multiprocessor
o (C1060: 16,384 registers per multiprocessor
e Limited number of registers / thread allowed
o (C1060: up to 127 registers allowed per thread
o Fermi/ Kepler GK104: up to 63 registers allowed per
thread
o Kepler GK110: up to 255 registers allowed per thread



Register Usage

Greater register usage limits number of concurrent threads /
multiprocessor
o Decreases multiprocessor occupancy
o Optimization trade-off
m Quicker access to data but lower occupancy
Can limit register use per thread w/ compiler flag
o —maxrregcount=N flag to NVCC
o Limiting register use may increase occupancy
o (Can cause spillover to local memory



Local Memory Usage

e |Local memory on CUDA

o Data in local memory not
explicitly defined
m No reason to
intentionally place data
In local memory
o Corresponds to register
spillover and array defined
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Thread (0, 0) Thread (1, 0)

Block (1,0)

Thread (0, 0) Thread (1, 0)

in thread that is accessed  [Hest” JSual | IEA | | |

In non-unrolled loop
o Stored in slow global
memory space




Local Memory Usage

Grid
e Local memory on CUDA — ok 0
o Best to avoid as much as — T
possible -
m May be able to place | Il | |
data in registers or s | et I
shared memory
m Not as "bad" on

Fermi/Kepler due to L1
and L2 cache




Branches Within Kernel

e GPU architecture dedicates most transistors

to computation

o Not much focus on branch prediction / recovery

o (C1060: If divergence in warp, all threads need to
step through both branches

o Thread divergence in warp can hurt performance

o If branching within thread, want all threads in warp to
branch in same direction if possible
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Branches Within Kernel

o Example branch within kernel w/ divergence
In 32-thread warp

O All threads in first warp (corresponding to threads 0-31) need to
step through both branches

__global__ void foo(int* data)
{
iIf (threadldx.x < 24){
data[threadldx.x] = 5; }
else { data[threadldx.x] = 7; }



Shared Memory

Can be as fast as registers for data access
o Can be used as user-managed cache

Shared between all threads within a thread block
o Can be used for communication between threads

e C1060: 16KB shared memory/multiprocessor

Can be limiting factor for multiprocessor
occupancy



Shared Memory

e Can be statically declared in CUDA kernel

o Specified using  shared  keyword

o Space for entire thread block given in declaration

o Example shows shared memory array of size
4*THREAD BLOCK_ SIZE



Shared Memory Example

__global  void sharedMemDemo(float* data)
{
//declare space for shared memory array on GPU

__shared___ int sharedMemArray
[4*THREAD BLOCK SIZE];

/lwrite thread index to shared memory array at
thread index (no inter-warp conflict since using shared
memory...)

sharedMemArray[threadldx.x] = threadldx.x;



Constant Memory

e Potentially faster for read- -
only data BT Rr—
o Best when all threads in warp Bl BN B =
are reading same data oot b | it e

simultaneously . . . .

o Allows for single memory read =% | | | |

with data then broadcast to ] ] |
remaining threads in half-warp =

o Constant memory also cached
m Cached constant memory
can be as fast as registers




Constant Memory

e Can allocate up to 64KB of constant memory
o Constant memory cache is 8KB

e Constant memory is transferred to GPU from
host using cudaMemcpyToSymbol
command
//declare constant memory
__constant__ float cst_ptr[size];

llcopy data from host to constant memory
cudaMemcpyToSymbol(cst_ptr,host_ptr,data_size);



Texture Memory

e Also for read-only data
e Uses texture cache on GPU
e Optimized for data with 2D

locality

Can bind linear array or 1D,
2D, or 3D CUDA array to
texture

CUDA array supports linear,
bilinear, and trilinear hardware
Interpolations
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Texture Memory Example

e Declare texture to be bound to "float" array
o texture<float, 1, cudaReadModeElementType>
gpuTexture;

e Bind array in global memory to texture:

e Values bound to texture retrieved in kernel using tex1Dfetch
(gpuTexture, indexVal)



Texture Memory Example

e Bind array in global memory to texture:

//declare array in global memory on GPU and allocate space

float* gpuGlobMemArray; cudaMalloc(&gpuGlobMemArray, arraySize);

llcopy data from host to GPU

cudaMemcpy(gpuGlobMemArray, hostArray, arraySize, cudaMemcpyHostToDevice);
//bind texture to array

cudaBindTexture(0, gpuTexture, gpuGlobMemArray, arraySize);



Performance Measurement

e May need to retrieve run-time characteristics

to find possible bottlenecks

o Often can't determine bottleneck from just inspecting
code

o Solution: use profiler!

o NVIDIA provides command-line and GUI profiler to
retrieve run-time measurements



CUDA Profiler Measurements (C1060)

Info that can be obtained from CUDA Profiler:

GPU kernel runtime

Multiprocessor occupancy

Register use per thread

Local memory loads/stores

Number of divergent branches

Number and type of loads from global memory



Using CUDA Profiler

e Profiler automatically installed with CUDA

e Need to set CUDA PROFILE (or
COMPUTE_PROFILE) environment variable
to 1 to enable profiler

e Then run program with profiler enabled

e Profiling output in cuda_profile 0.log

e Default settings give runtime of all GPU

Kernels and occupancy

o Can be used for kernel timing




Using CUDA Profiler

e Need to set flags for more advanced metrics

O

O O O O O

Create text file profileMetrics.dat

Place specific metrics to measure in file

Set CUDA PROFILE_CONFIG to profileMetrics.dat

Set CUDA_PROFILE to 1

Run program with profiling enabled with given metrics

Output in cuda_profile_0.log gives specified run-time

metrics

m Output GPU kernel runtime may be slower when
profiling with certain metrics



Using CUDA Profiler

Run-time metrics on C1060 (not complete list)

gld_32b: 32-byte global memory load transactions
gld_64b: 64-byte global memory load transactions
gld_128b: 128-byte global memory load transactions
gld_request: Global memory loads

gst 32b: 32-byte global memory store transactions
gst 64b: 64-byte global memory store transactions
gst _128b: 128-byte global memory store transactions
gst_request: Global memory stores

Will be more memory transactions if memory accesses
non-coalesced than if coalesced



Using CUDA Profiler

¢ Run-time metrics on C1060 (not complete
list)
local_load: Local memory loads
local_store: Local memory stores
branch: Branches taken by threads executing a kernel
divergent_branch: Divergent branches taken by threads
executing a kernel
instructions: Instructions executed
warp_serialize: Number of thread warps that serialize on

address conflicts to either shared or constant memory
cta_launched: Number of threads blocks executed



Using CUDA Profiler

¢ Run-time metrics on C1060
o Can only measure up to 4 metrics at once
o To measure more than 4 metrics, need to adjust
profileMetrics.dat file and re-run program



Sample Output Using Profiler

e Running MonteCarlo in CUDA SDK
e Results with no flags set:

# CUDA_PROFILE_LOG_VERSION 2.0

# CUDA_DEVICE 0 Tesla C1060

# TIMESTAMPFACTOR fffff68f58f9e5c8

method,gputime,cputime,occupancy

method=[ memset32_aligned1D ] gputime=[ 4.288 ] cputime=[ 25.000 ] occupancy=[ 1.000 ]
method=[ memset32_aligned1D ] gputime=[ 2.400 ] cputime=[ 9.000 ] occupancy=[ 1.000 ]

method=[ _Z16inverseCNDKernelPfS_j ] gputime=[ 30.816 ] cputime=[ 8.000 ] occupancy=[
1.000 ]

method=[ memcpyHtoD ] gputime=[ 5.696 ] cputime=[ 9.000 ]

method=[ _Z27MonteCarloOneBlockPerOptionPfi ] gputime=[ 3209.408 ] cputime=[ 13.000 ]
occupancy=[ 0.750 ]

method=[ memcpyDtoH ] gputime=[ 5.440 ] cputime=[ 3232.000 ]



Sample Output Using Profiler

e Running MonteCarlo in CUDA SDK
e Results with gld_32b, gst 32b, gld 64b, and
gst 64b flags set:

# CUDA_PROFILE_LOG_VERSION 2.0

# CUDA_DEVICE 0 Tesla C1060

# TIMESTAMPFACTOR fffff68fe15¢c7d58
method,gputime,cputime,occupancy,gld_32b,gst_32b,gld_64b,gst_64b

method=[ memset32_aligned1D ] gputime=[ 4.256 ] cputime=[ 48.000 ] occupancy=[ 1.000 ]
gld_32b=[ 0] gst_32b=[ 0] gld_64b=[ 0 ] gst_64b=[ 56 ]

method=[ memset32_aligned1D ] gputime=[ 3.936 ] cputime=[ 27.000 ] occupancy=[ 1.000 ]
gld_32b=[ 0] gst_32b=[ 0] gld_64b=[ 0 ] gst_64b=[ 32 ]

method=[ _Z16inverseCNDKernelPfS_j ] gputime=[ 31.264 ] cputime=[ 58.000 ] occupancy=[
1.000 ] gld_32b=[ 0 ] gst_32b=[ 0] gld_64b=[ 0 ] gst_64b=[ 1664 ]

method=[ memcpyHtoD ] gputime=[ 5.952 ] cputime=[ 8.000 ]

method=[ _Z27MonteCarloOneBlockPerOptionPfi ] gputime=[ 3645.568 ] cputime=[ 3673.000 ]
occupancy=[ 0.750 ] gld_32b=[ 0 ] gst_32b=[ 52 ] gld_64b=[ 425984 ] gst_64b=[ 0 ]

method=[ memcpyDtoH ] gputime=[ 5.632 ] cputime=[ 33.000 ]



Sample Output Using Profiler

e Running MonteCarlo in CUDA SDK
e Results with local load, local store, branch,
and divergent_branch flags set:

# CUDA_PROFILE_LOG_VERSION 2.0

# CUDA_DEVICE 0 Tesla C1060

# TIMESTAMPFACTOR fffff68f1cf27808
method,gputime,cputime,occupancy,local_load,local_store,branch,divergent_branch

method=[ memset32_aligned1D ] gputime=[ 3.168 ] cputime=[ 41.000 ] occupancy=[ 1.000 ]
local_load=[ 0 ] local_store=[ 0 ] branch=[ 12 ] divergent_branch=[ 0 ]

method=[ memset32_aligned1D ] gputime=[ 3.072 ] cputime=[ 23.000 ] occupancy=[ 1.000 ]
local_load=[ 0 ] local_store=[ 0 ] branch=[ 8 ] divergent_branch=[ 0 ]

method=[ _Z16inverseCNDKernelPfS_j ] gputime=[ 30.432 ] cputime=[ 55.000 ] occupancy=[ 1.000 ]
local_load=[ 0 ] local_store=[ 0 ] branch=[ 2728 ] divergent_branch=[ 0 ]

method=[ memcpyHtoD ] gputime=[ 5.952 ] cputime=[ 8.000 ]

method=[ _Z27MonteCarloOneBlockPerOptionPfi ] gputime=[ 3626.016 ] cputime=[ 3654.000 ]
occupancy=[ 0.750 ] local_load=[ 0 ] local_store=[ 0 ] branch=[ 75528 ] divergent_branch=[ 9 ]

method=[ memcpyDtoH ] gputime=[ 5.792 ] cputime=[ 32.000 ]



Using CUDA Profiler

e Profiler more complicated on Fermi/Kepler

O
O

O

More/different flags

Including measurements of L1 and L2 cache hit rate

Rules of which metrics can be measured concurrently

not given (likely because too complicated)

m Output will specify if particular metric can't be
measured due to conflict

GUI Visual profiler allows user to set metrics to measure

and runs program multiple times to retrieve data

GUI profiler automatically analyzes data / outputs

possible bottlenecks



CUDA Visual Profiler

' NVIDIA Visual Profiler . . n .« » . L L . . - Lo
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Conclusions

e Many factors in GPU optimizations

e Optimization may help one program and hurt
another program

e Necessary to experiment among possible
optimizations

e Use CUDA profiler to retrieve run-time
measurements than can help with
optimization



