
GPU Profiling and 
Optimization

Scott Grauer-Gray



Benefits of GPU Programming

● "Free" speedup with new architectures
○ More cores in new architecture
○ Improved features such as L1 and L2 cache
○ Increased shared/local memory space



Benefits of GPU Programming

● GPU program performance likely to improve 
on new architecture w/ no program 
adjustment
○ Used to be the case for single-threaded programs on 

CPUs
○ No longer true there since they moved to multi-core 

design



GPU Programs Across Generations



GPU Optimization

● New architecture may be a couple years 
away...
○ Want performance improvement now!
○ Solution: optimize on current architecture 

■ Even small speedup can be significant



GPU Optimization

● Challenging problem
○ Particular GPU optimizations may help one program 

and decrease performance in another
○ Best optimization configuration differs across 

architectures



NVIDIA GPU Architecture

● CUDA cores grouped into 
multiprocessors
○ On C1060, there are 8 

cores/multiprocessor
○ Multiprocessor contains a 

limited number of registers
○ Multiprocessor contains fast 

shared memory (local 
memory in OpenCL)



GPU Program Execution Model
● GPU threads grouped into a 

grid of thread blocks 
● Thread block dimensions 

defined by user
● C1060 GPU allows up to 8 

active thread blocks / 
multiprocessor

● Each active thread block 
needs to use separate 
registers/shared memory on 
multiprocessor



GPU Program Execution Model
● GPU threads (within thread block) 

execute in groups of 32 on same 
multiprocessor
○ Each set of 32 threads is called 

a warp
● All threads in a warp execute 

same instructions simultaneously
● Different warps are executed 

independently by scheduler unless 
there is explicit synchronization 
call

● Possible for one warp to run until it 
needs to wait for data, then 
another warp runs on same 
multiprocessor



Multiprocessor occupancy

● Defined as number of warps running 
concurrently on multiprocessor divided by max 
warps that can run concurrently

■ Max warps differs across architectures
■ On C1060: max of 32 concurrent warps
■ On Kepler K20: max of 64 concurrent warps



Multiprocessor Occupancy

● Can be limited by register and shared memory 
usage

■ Registers and shared memory are shared among all 
active warps on multiprocessor

■ Higher register/shared memory usage in each thread 
limits number of simultaneous warps



Multiprocessor Occupancy

● Higher occupancy is often a 
goal in GPU optimization

● Greater occupancy can hide 
instruction latency
○ Read-after-write register 

latency
○ Latency in reading data from 

global memory
○ While threads in one warp 

waiting for data, another 
warp can run on 
multiprocessor





Multiprocessor Occupancy

● However, maximizing 
occupancy does not 
always result in best 
performance

● Increased multiprocessor 
occupancy can be at 
expense of faster 
register/shared memory 
accesses



Multiprocessor Occupancy Factors

● Thread block dimensions
● Register usage per thread
● Shared memory usage per 

thread block
● Target GPU architecture



CUDA Occupancy Calculator

● Provided by NVIDIA to compute occupancy of CUDA kernel
● User enters GPU compute capability and resource usage
● Occupancy calculator computes occupancy
● Shows impact of...

○ Adjusting thread block size
○ Adjusting register usage
○ Adjusting shared memory usage 

● Can be used as a tool to tweak CUDA program to improve 
multiprocessor occupancy



CUDA Occupancy Calculator

Available at  http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls


CUDA Occupancy Calculator
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CUDA Occupancy Considerations

● All things equal, same program with higher 
occupancy should run faster

● However, may be necessary to sacrifice register 
/ shared memory usage to increase occupancy
○ May increase necessary memory transfers from global 

memory
○ May slow program more than reduced occupancy



Other Optimization Considerations

● Thread block dimensions
● Global memory load/store pattern
● Register usage
● Local memory usage
● Branches within kernel
● Shared memory
● Constant memory
● Texture memory



Thread Block Dimensions

● CUDA threads grouped together in thread block 
structure
○ Run on same multiprocessor
○ Have access to common pool of fast shared memory
○ Can synchronize between threads in same thread block

● On C1060, maximum of 8 active thread blocks / 
multiprocessor

● Max thread block size on C1060 is 512



Optimizing Thread Block Dims (C1060)

● On multiprocessor
○ Up to 1024 threads can execute concurrently
○ Up to 8 thread blocks can be active

● To allow full occupancy, thread block size 
must be at least 128 and a factor of 1024

● Should use thread block size of at least 128*

* - unless shared memory requirement forces 
lower block size



Optimizing Thread Block Dimensions

● Use multiple of warp size (32)
○ Otherwise will be partially full warp --> wasted resources

● Different thread block dimensions work best for 
different programs

● Experiment and see what works best
○ Common thread block sizes: 128, 192, 256, 384, 512
○ If 2D thread block, common dimensions are 32X4, 32X6, 

32X8, 32X12, 32X18



Global memory load/store pattern
● Global memory latency is over 400 clock cycles
● Minimize accesses as much as possible
● Best to arrange accesses in coalesced manner



Global memory ld/st pattern (C1060)
● Memory accesses in chunks of 32, 64, and 128 bytes
● Global memory accesses are per half-warp (16 threads)
● If data perfectly aligned and thread memory accesses 

contiguous, data for threads in half-warp retrieved in one 
chunk

● If data accesses not in same array chunk, need additional 
memory accesses
○ Anywhere between 1-16 memory accesses necessary to 

retrieve data from global memory



Global Memory Accesses by 
Architecture



Global Memory Accesses by 
Architecture



Global Memory Accesses by 
Architecture



Register Usage
● Registers allow quick access to data on GPU
● Limited number of registers on each GPU multiprocessor

○ C1060: 16,384 registers per multiprocessor
● Limited number of registers / thread allowed

○ C1060: up to 127 registers allowed per thread
○ Fermi / Kepler GK104: up to 63 registers allowed per 

thread
○ Kepler GK110: up to 255 registers allowed per thread



Register Usage
● Greater register usage limits number of concurrent threads / 

multiprocessor 
○ Decreases multiprocessor occupancy
○ Optimization trade-off 

■ Quicker access to data but lower occupancy
● Can limit register use per thread w/ compiler flag

○ –maxrregcount=N flag to NVCC
○ Limiting register use may increase occupancy
○ Can cause spillover to local memory



Local Memory Usage

● Local memory on CUDA 
○ Data in local memory not 

explicitly defined
■ No reason to 

intentionally place data 
in local memory

○ Corresponds to register 
spillover and array defined 
in thread that is accessed 
in non-unrolled loop

○ Stored in slow global 
memory space



Local Memory Usage

● Local memory on CUDA 
○ Best to avoid as much as 

possible
■ May be able to place 

data in registers or 
shared memory

■ Not as "bad" on 
Fermi/Kepler due to L1 
and L2 cache



Branches Within Kernel

● GPU architecture dedicates most transistors 
to computation
○ Not much focus on branch prediction / recovery
○ C1060: If divergence in warp, all threads need to 

step through both branches
○ Thread divergence in warp can hurt performance
○ If branching within thread, want all threads in warp to 

branch in same direction if possible



Branches Within Kernel

● Example branch within kernel w/ divergence 
in 32-thread warp
○ All threads in first warp (corresponding to threads 0-31) need to 

step through both branches

__global__ void foo(int* data)
{

if (threadIdx.x < 24){
data[threadIdx.x] = 5; }

else { data[threadIdx.x] = 7; }
}



Shared Memory

● Can be as fast as registers for data access
○ Can be used as user-managed cache

● Shared between all threads within a thread block
○ Can be used for communication between threads

● C1060: 16KB shared memory/multiprocessor
● Can be limiting factor for multiprocessor 

occupancy



Shared Memory

● Can be statically declared in CUDA kernel
○ Specified using __shared__ keyword
○ Space for entire thread block given in declaration
○ Example shows shared memory array of size 

4*THREAD_BLOCK_SIZE 



Shared Memory Example
__global__ void sharedMemDemo(float* data) 
{

//declare space for shared memory array on GPU
__shared__ int sharedMemArray

[4*THREAD_BLOCK_SIZE];

//write thread index to shared memory array at 
thread index (no inter-warp conflict since using shared 
memory...)

sharedMemArray[threadIdx.x] = threadIdx.x;
..............................................

}



Constant Memory

● Potentially faster for read-
only data
○ Best when all threads in warp 

are reading same data 
simultaneously

○ Allows for single memory read 
with data then broadcast to 
remaining threads in half-warp

○ Constant memory also cached
■ Cached constant memory 

can be as fast as registers



Constant Memory

● Can allocate up to 64KB of constant memory
○ Constant memory cache is 8KB

● Constant memory is transferred to GPU from 
host using cudaMemcpyToSymbol 
command

//declare constant memory
__constant__ float cst_ptr[size]; 
//copy data from host to constant memory 
cudaMemcpyToSymbol(cst_ptr,host_ptr,data_size); 



Texture Memory

● Also for read-only data
● Uses texture cache on GPU
● Optimized for data with 2D 

locality

● Can bind linear array or 1D, 
2D, or 3D CUDA array to 
texture

● CUDA array supports linear, 
bilinear, and trilinear hardware 
interpolations



Texture Memory Example

● Declare texture to be bound to "float" array
○ texture<float, 1, cudaReadModeElementType> 

gpuTexture;

● Bind array in global memory to texture:

● Values bound to texture retrieved in kernel using tex1Dfetch
(gpuTexture, indexVal)



Texture Memory Example

● Bind array in global memory to texture:
//declare array in global memory on GPU and allocate space
float* gpuGlobMemArray;  cudaMalloc(&gpuGlobMemArray, arraySize);
//copy data from host to GPU
cudaMemcpy(gpuGlobMemArray, hostArray, arraySize, cudaMemcpyHostToDevice);
//bind texture to array
cudaBindTexture(0, gpuTexture, gpuGlobMemArray, arraySize);



Performance Measurement

● May need to retrieve run-time characteristics 
to find possible bottlenecks
○ Often can't determine bottleneck from just inspecting 

code
○ Solution: use profiler!
○ NVIDIA provides command-line and GUI profiler to 

retrieve run-time measurements



CUDA Profiler Measurements (C1060)

Info that can be obtained from CUDA Profiler:
● GPU kernel runtime
● Multiprocessor occupancy
● Register use per thread
● Local memory loads/stores
● Number of divergent branches
● Number and type of loads from global memory



Using CUDA Profiler

● Profiler automatically installed with CUDA
● Need to set CUDA_PROFILE (or 

COMPUTE_PROFILE) environment variable 
to 1 to enable profiler

● Then run program with profiler enabled
● Profiling output in cuda_profile_0.log
● Default settings give runtime of all GPU 

kernels and occupancy
○ Can be used for kernel timing



Using CUDA Profiler

● Need to set flags for more advanced metrics
○ Create text file profileMetrics.dat
○ Place specific metrics to measure in file
○ Set CUDA_PROFILE_CONFIG to profileMetrics.dat
○ Set CUDA_PROFILE to 1
○ Run program with profiling enabled with given metrics
○ Output in cuda_profile_0.log gives specified run-time 

metrics
■ Output GPU kernel runtime may be slower when 

profiling with certain metrics 



Using CUDA Profiler

● Run-time metrics on C1060 (not complete list)
gld_32b: 32-byte global memory load transactions
gld_64b: 64-byte global memory load transactions
gld_128b: 128-byte global memory load transactions
gld_request: Global memory loads
gst_32b: 32-byte global memory store transactions
gst_64b: 64-byte global memory store transactions
gst_128b: 128-byte global memory store transactions
gst_request: Global memory stores

● Will be more memory transactions if memory accesses 
non-coalesced than if coalesced



Using CUDA Profiler

● Run-time metrics on C1060 (not complete 
list)
local_load: Local memory loads
local_store: Local memory stores
branch: Branches taken by threads executing a kernel
divergent_branch: Divergent branches taken by threads 
executing a kernel
instructions: Instructions executed
warp_serialize: Number of thread warps that serialize on 
address conflicts to either shared or constant memory
cta_launched: Number of threads blocks executed



Using CUDA Profiler

● Run-time metrics on C1060
○ Can only measure up to 4 metrics at once
○ To measure more than 4 metrics, need to adjust 

profileMetrics.dat file and re-run program



Sample Output Using Profiler

● Running MonteCarlo in CUDA SDK
● Results with no flags set:

# CUDA_PROFILE_LOG_VERSION 2.0
# CUDA_DEVICE 0 Tesla C1060
# TIMESTAMPFACTOR fffff68f58f9e5c8
method,gputime,cputime,occupancy
method=[ memset32_aligned1D ] gputime=[ 4.288 ] cputime=[ 25.000 ] occupancy=[ 1.000 ]
method=[ memset32_aligned1D ] gputime=[ 2.400 ] cputime=[ 9.000 ] occupancy=[ 1.000 ]
method=[ _Z16inverseCNDKernelPfS_j ] gputime=[ 30.816 ] cputime=[ 8.000 ] occupancy=[ 
1.000 ]
method=[ memcpyHtoD ] gputime=[ 5.696 ] cputime=[ 9.000 ]
method=[ _Z27MonteCarloOneBlockPerOptionPfi ] gputime=[ 3209.408 ] cputime=[ 13.000 ] 
occupancy=[ 0.750 ]
method=[ memcpyDtoH ] gputime=[ 5.440 ] cputime=[ 3232.000 ]



Sample Output Using Profiler

● Running MonteCarlo in CUDA SDK
● Results with gld_32b, gst_32b, gld_64b, and 

gst_64b flags set:
# CUDA_PROFILE_LOG_VERSION 2.0
# CUDA_DEVICE 0 Tesla C1060
# TIMESTAMPFACTOR fffff68fe15c7d58
method,gputime,cputime,occupancy,gld_32b,gst_32b,gld_64b,gst_64b
method=[ memset32_aligned1D ] gputime=[ 4.256 ] cputime=[ 48.000 ] occupancy=[ 1.000 ] 
gld_32b=[ 0 ] gst_32b=[ 0 ] gld_64b=[ 0 ] gst_64b=[ 56 ]
method=[ memset32_aligned1D ] gputime=[ 3.936 ] cputime=[ 27.000 ] occupancy=[ 1.000 ] 
gld_32b=[ 0 ] gst_32b=[ 0 ] gld_64b=[ 0 ] gst_64b=[ 32 ]
method=[ _Z16inverseCNDKernelPfS_j ] gputime=[ 31.264 ] cputime=[ 58.000 ] occupancy=[ 
1.000 ] gld_32b=[ 0 ] gst_32b=[ 0 ] gld_64b=[ 0 ] gst_64b=[ 1664 ]
method=[ memcpyHtoD ] gputime=[ 5.952 ] cputime=[ 8.000 ]
method=[ _Z27MonteCarloOneBlockPerOptionPfi ] gputime=[ 3645.568 ] cputime=[ 3673.000 ] 
occupancy=[ 0.750 ] gld_32b=[ 0 ] gst_32b=[ 52 ] gld_64b=[ 425984 ] gst_64b=[ 0 ]
method=[ memcpyDtoH ] gputime=[ 5.632 ] cputime=[ 33.000 ]



Sample Output Using Profiler

● Running MonteCarlo in CUDA SDK
● Results with local_load, local_store, branch, 

and divergent_branch flags set:
# CUDA_PROFILE_LOG_VERSION 2.0
# CUDA_DEVICE 0 Tesla C1060
# TIMESTAMPFACTOR fffff68f1cf27808
method,gputime,cputime,occupancy,local_load,local_store,branch,divergent_branch
method=[ memset32_aligned1D ] gputime=[ 3.168 ] cputime=[ 41.000 ] occupancy=[ 1.000 ] 
local_load=[ 0 ] local_store=[ 0 ] branch=[ 12 ] divergent_branch=[ 0 ]
method=[ memset32_aligned1D ] gputime=[ 3.072 ] cputime=[ 23.000 ] occupancy=[ 1.000 ] 
local_load=[ 0 ] local_store=[ 0 ] branch=[ 8 ] divergent_branch=[ 0 ]
method=[ _Z16inverseCNDKernelPfS_j ] gputime=[ 30.432 ] cputime=[ 55.000 ] occupancy=[ 1.000 ] 
local_load=[ 0 ] local_store=[ 0 ] branch=[ 2728 ] divergent_branch=[ 0 ]
method=[ memcpyHtoD ] gputime=[ 5.952 ] cputime=[ 8.000 ]
method=[ _Z27MonteCarloOneBlockPerOptionPfi ] gputime=[ 3626.016 ] cputime=[ 3654.000 ] 
occupancy=[ 0.750 ] local_load=[ 0 ] local_store=[ 0 ] branch=[ 75528 ] divergent_branch=[ 9 ]
method=[ memcpyDtoH ] gputime=[ 5.792 ] cputime=[ 32.000 ]



Using CUDA Profiler

● Profiler more complicated on Fermi/Kepler
○ More/different flags
○ Including measurements of L1 and L2 cache hit rate
○ Rules of which metrics can be measured concurrently 

not given (likely because too complicated)
■ Output will specify if particular metric can't be 

measured due to conflict
○ GUI Visual profiler allows user to set metrics to measure 

and runs program multiple times to retrieve data
○ GUI profiler automatically analyzes data / outputs 

possible bottlenecks



CUDA Visual Profiler



Conclusions

● Many factors in GPU optimizations
● Optimization may help one program and hurt 

another program
● Necessary to experiment among possible 

optimizations
● Use CUDA profiler to retrieve run-time 

measurements than can help with 
optimization


