OpenCL Introduction

Scott Grauer-Gray

Readme for project updated

e OpenCL instructions should work now

e OpenACC instructions added

Simple Program A

e |[nitialize two arrays of size N
e Add values element-by-element

e Place output summations in another array
(of size N)

Simple Program A: C code

int main()

{
float inArrayA[N];
float inArrayB[N];
float outArrayC[N];

/[function to set values in array in some manner
initializeArray(inArrayA);
initializeArray(inArrayB);

for (int i=0; i < N; i++)

{
outArrayCl[i] = inArrayA[i] + inArrayBi];

/[function to do "stuff" with the output data
processOutputArray(outArrayC);

return O;

Program Execution

By default

o Performed on CPU using single core
o May be possible to use additional resources to speed

up program (specifically, more CPU cores or GPUSs)

Embarrassingly parallel problem

o Loop iterations independent
o No dependencies

o Possible for each loop iteration to run simultaneously

Embarrassingly Parallel: Wikipedia

Embarrassingly parallel

From Wikipedia, the free encyclopedia

This article includes a list of references, but its sources remain unclear because it has insufficient inline citations. Please help
= to improve this article by introducing more precise citations. (May 2008)

In parallel computing, an embarrassingly parallel workload (or embarrassingly parallel problem) is one for which little or no effort is required to separate the problem into a number of
parallel tasks. This is often the case where there exists no dependency (or communication) between those parallel tasks.!!]

Embarrassingly parallel problems tend to require little or no communication of results between tasks, and are thus different from distributed computing problems that require
communication between tasks, especially communication of intermediate results. They are easy to perform on server farms which do not have any of the special infrastructure used in a
true supercomputer cluster. They are thus well suited to large, internet based distributed platforms such as BOINC.

A common example of an embarrassingly parallel problem lies within graphics processing units (GPUs) for the task of 3D projection, where each pixel on the screen may be rendered
independently.

Contents [show]

Examples [edit

Some examples of embarrassingly parallel problems include:

¢ Distributed relational database queries using distributed set processing &
» Serving static files on a webserver to multiple users at once.
e The Mandelbrot set and other fractal calculations, where each point can be calculated independently.
e Rendering of computer graphics. In ray tracing, each pixel may be rendered independently. In computer animation, each frame may be rendered independently (see parallel
rendering).[dubious — discuss]
e Brute-force searches in cryptography. A notable real-world example is distributed.net.
« BLAST searches in bioinformatics for multiple queries (but not for individual large queries) [
e Large scale face recognition that involves comparing thousands of arbitrary acquired faces (e.g. a security or surveillance video via closed-circuit television) with similarly large number

of nreviously stored faces (e @ a "raaues aallen ar similar wateh list 5]

Acceleration Methods

e OpenMP (already presented)

o Often used for multi-core CPUs
e MPI (already presented)

o Often used for clusters with many nodes
e OpenCL (focus of this lecture)

o Can be used for multi-core CPUs, GPUs, and other

accelerators

Advantages to OpenCL

e Can run on many architectures

o Relatively easy to port between multicore CPUs /
GPUs / other accelerators

o Supported by many vendors
m NVIDIA and AMD GPUs

o Vendors can add their own extensions

GPGPU

e GPGPU: General-purpose programming on
the GPU

o Take advantage of GPU with hundreds of simple
cores

o Typically use OpenCL or CUDA

o Relatively new area of computing

o Large speedup over CPU on certain applications

o "Free" speedup with new architectures

GPGPU

Processing power of GPU vs CPU

Theoretical
GFLOP/s
3250

3000
NVIDIA GPU Single Predision

2750 g NVIDIA GPU Double Predsion
2500 =—g==|ntel CPU Single Preasion
==t |ntel CPU Double Precsion

2250
2000
1750
1500
1250
1000

750

500

250 Tesla C1060

Woodcrest

0
Sep_@pntium 4

Jun-04 Mar-0

Harpertown D\gc?)t‘sner €

Tesla C2050 Sandy Bridge

Aug-12

CPU Vs. GPU

Most transistors on GPU for computation

Control

NVIDIA Fermi

GPU Architecture

DRAM

i |

S

m
[
o
]
&l
=
==
L

DRAM DRAM DRARM

HilEREEE R GEHEENEENE RN NS

FEEREN AN AW AN e

L] E [81yl]]

YHO

L2 Cache

LEES TS A FELELFLE |

-

SIPAEuU] 150H —_ud d_"u_u

History of GPGPU

e GPGPU existed before creation of CUDA /
OpenCL

O

O

Needed to use graphics API to take advantage of GPU
"Trick" GPU into thinking it was doing graphics instead of
general-purpose computing

Fragment shader somewhat analogous to CUDA /
OpenCL kernel

m Major limitation: no scatter operation for output data

m Still able to get speedup on some applications

History of GPGPU
Notable early GPGPU Work (1999):

® GPGPU on Voronoi diagrams

O Voronoi diagram: way of dividing space into regions

B Set of specified "seeds" in region
B For each seed there is a region of all points closest to that seed

O 1999 SIGGRAPH PAPER: "Fast computation of generalized Voronoi
diagrams using graphics hardware" by Hoff et. al.

O Implementation in OpenGL
B Before programmable shaders on GPU
B Takes advantage of z-buffer and rasterization capabilities of GPU

O Been cited 508 times (according to google scholar)

History of GPGPU

Notable early GPGPU Work (2006):

® Stereo Vision

O "Belief propagation on the GPU for stereo vision" by A. Brunton, et. al.

O Belief propagation: Global stereo vision algorithm
B lterative message computation/passing step takes most computation time
B Performed on half of image pixels in parallel in each iteration
B Embarrassingly parallel

O Implementation in OpenGL (2006...pre-CUDA/OpenCL)

B Use fragment shader to run message computation step in parallel
e Data is stored as textures on the GPU

B Results claim a 2x speedup over CPU runtime

History of GPGPU

Motivations for early GPGPU work

e Potential speedup over CPU
e May be processing data on GPU
o Better to process data on GPU than transfer the data to the CPU for
processing then back to the GPU for display
e Vendors not oblivious to interest in GPGPU
o Added extensions to OpenGL to aid GPGPU
m Addition of programmable vector/fragment shaders significant for
graphics and GPGPU
o OpenGL went from only supporting 8-bit textures to supporting a wide variety
of data types, including 32-bit floats
o Eventually developed ways for GPGPU without needing to use graphics API

History of GPGPU

e CUDA o
o Specifically for GPGPU

m Removes "no scatter operation” limitation

o Introduced in February 2007
o Works on NVIDIA GPUs

e Close to Metal (CTM)

o Introduced by ATI/AMD for their GPUs
o ATI/AMD later switched to Stream SDK
o AMD now focused on OpenCL

OpenCL T

e Open Standard for parallel programming of

heterogeneous systems
o Maintainedby KHRC ON O S.

GROUP
CONNECTING SOFTWARE TO SILICON

e History of OpenCL

o |nitially developed by Apple

o Became a collaboration between Apple, AMD, IBM,
Intel, and NVIDIA

o Specification approved for public release in
December 2008

o AMD, NVIDIA, and Apple released OpenCL
iImplementations in 2009

OpenCL: Apple

’
' Developer Technologies Resources Programs Support Member Center Q

Overview

F)eveloper Tools OS X
Core Technologies

OS X incorporates advanced core technologies that improve

0OS X

What’s New in Mountain Lion

o performance throughout the system. As a developer, you can use
Features in Lion

these advanced technologies in your app to make it faster, more

Core Technologies > .
responsive, and able to take advantage of the latest Mac hardware.

@
Sraighlles sl s, Grand Central Dispatch 64-Bit Throughout OpenCL
A better way to do multicore The next big step Taking the graphics

Read more ¥ Read more ¥ processor beyond graphics
Features Read more ¥

Accessibility
Audio and Video

Cocoa

Data Management

Networking and Internet

OpenCL

Harnessing the Power of the GPU for Your Application

OpenCL dramatically accelerates your application by giving you the ability to access the
amazing parallel computing power of the GPU. OpenCL also opens up a new range of
computationally complex algorithms for use in your application. Possibilities include: Using
OpenCL to bring sophisticated financial modeling techniques to accounting applications,
performing cutting-edge analysis on large media files, and incorporating accurate physics and

Al simulation into entertainment software.

Optimization Is Automatic

OpenCL uses runtime compilation to optimize for the
kind of graphics processor in the Mac - automatically
adjusting itself to the available processing power.
OpenCL also rigorously defines numerical precision
and accuracy, providing for consistent results across a
wide-variety of GPU hardware.

Just Change the Code You Need

OpenCL stands for Open Computing Language. It uses
an approachable C99-based language and a flexible
API for managing parallel computation. To accelerate
your application, simply use Xcode to rewrite the most
performance-intensive parts of your code for OpenCL.
The vast majority of your application’s code can be
left unchanged.

The OpenCL architecture

OpenCL a

OpencCL

Steps for program:
. Obtain OpenCL platform

. Obtain device id for at least one device (accelerator)
. Create context for device

. Create accelerator program from source code

. Build the program

. Create kernel(s) from program functions

. Create command queue for target device

. Allocate device memory / move input data to device memory
9. Associate arguments to kernel with kernel object

10. Deploy kernel for device execution

11. Move output data to host memory

12. Release context/program/kernels/memory

0O NO OV A~ WOWDN -

OpenCL *a

OpencCL

Step 1
e Obtain platform
O Platform id identifies vendor installation of OpenCL
B clGetPlatformIDs (1, é&platform, NULL);

O Functions often used twice, first to get the number of
platforms and then for allocation

OpenCL "

OpencCL

Step 2

e (Obtain device id for at least one device
(accelerator)
O Use platform to get ID for device

B clGetDevicelds (platform,
CL DEVICE TYPE GPU, 1, s&device, NULL);

B device id is stored in "device" variable

O Functions often used twice, first to get the number of
devices available and then for allocation

OpenCL *a

OpencCL

Step 3
e (Create context for device

O

O

O

Context - abstract container attached to device
Contains program kernels, memory objects, etc
Holds command queue used for program execution

B context = clCreateContext (NULL, 1,
&§device, NULL, NULL, &err):;

OpenCL %

OpencCL

Step 4
e Create accelerator program from source
code

O Recommended to have a .cl file that contains
kernels to run on accelerator

O Read .cl file into a string on host
O Create cl_program attached to context

O program = clCreateProgramWithSource
(context, 1, (const char*~*)
&program buffer, &program size, &err);

OpenCL

Step 5

OpencCL

e Build the program

O OpenCL accelerator code is compiled at run-time

Host code will compile even if there are errors in
accelerator code

Need to check for errors during run-time
compilation

clBuildProgram (program, 0,..)

Compilation error determined by error value
returned from clBuildProgram

Calling clGetProgramBuildInfo() with the program object and the

parameter CL_ PROGRAM_ BUILD STATUS returns a string with the
compiler output

OpenCL "

OpencCL

Step 6
e Create cl kernel(s) from program functions

O Use (now built) program as parameter to create
kernel

O kernel = clCreateKernel (program,
"kernel name", &err)

O "kernel _name" is the name of the kernel function to
be run in parallel

OpenCL a

OpencCL

Step 7
e Create command queue for kernel dispatch
O Command queue is attached to specific device
B Mechanism for request that action be performed
by device
B Requests include memory transfer, begin
executing kernel, etc
Can support out-of-order execution and profiling

queue = clCreateCommandQueue (context,

device, 0, &err)

OpenCL %

OpencCL

Step 8

e Allocate device memory / move input data to
device

O

O

memObject = clCreateBuffer (context, NULL, SIZE N, NULL,

&err)

clEnqueueWriteBuffer (command queue, memObject, ...
TOTAL SIZE, hostPointer, ...)

Memory objects can be buffers or images
B Focus on buffers

B Contiguous memory chunks on GPU (global memory)
B Read/write capable

OpenCL #Va

OpencCL

Step 9
e Associate arguments to kernel with kernel
object

O

O

cl int clSetKernelArg (kernel,
arg_index, arg size, *arg value)
arg_index is index of argument in function signature
(O if first argument into function, etc)

Argument value is pointer to memory object if input
parameter is array (buffer on GPU)

Argument value is pointer to primitive if input

parameter is primitive value (such as a char, int,
float, etc)

OpenCL

OpencCL

Step 10
e Deploy kernel for device execution

O Using command_queue, kernel object, and global and
local (workgroup) sizes

B global size = TOTAL NUM THREADS;

B local size = WORKGROUP SIZE;
® All threads in workgroup execute on same compute unit
® Access to fast local memory (shared within workgroup)
@® Can synchronize between threads in workgroup

B clkEnqueueNDRangeKernel (command queue,
kernel, 1, NULL, é&global size,
&local size, 0, NULL, NULL);

OpenCL %

OpencCL

Step 11
e \Write output device data back to host

O clEnqueueReadBuffer (command queue,
memObject, blocking read, offset,
TOTAL_SIZE, hostPointer, 0, NULL, NULL)

B Notable parameters
® command_queue
® memObject
® Dbuffer size
o

target pointer on host

OpenCL *a

OpenCL

Step 12
e Release context/program/kernels/memory

O

O
O
O

clReleaseMemObject (memObject)
clReleaseKernel (kernel)
clReleaseProgram (program)

clReleaseContext (context)

OpenCL Kernel

Steps for OpenCL kernel

e Assuming embarrassingly parallel problem

e Each thread performs single loop iteration
o l|deal on GPU

1. Retrieve ID corresponding to thread
2. Make sure ID is within computation bounds
3. Perform instruction(s) in loop body using thread ID

OpenCL #Va

OpencCL

Step 1: Kernel

e Retrieve ID corresponding to thread
O threadld = get_global_id (curr_dimension)

O If parallelizing single loop, dimension will be O

OpenCL *a

OpencCL

Step 2: Kernel
® Make sure ID is within computation bounds
O Assume loop iterates from i=0 to N-1
O 1if ((threadId >=0) && (threadId < N))
B Perform computation

OpenCL

Step 3: Kernel

5~
‘Q‘ Y

OpencCL

® Perform instruction(s) in loop body using thread ID

O Using Simple Program A

B outArrayC[threadld] = inArrayA[threadld] +

iInArrayB[threadld];

OpenCL *a

OpencCL

OpenCL Kernel for Simple Program A

__kernel void addArrays(_ global float* inArrayA, global
float* inArrayB, _ global float* outArrayC, int nVal)

{
int threadlId = get global id (0);
if ((threadIlId >= 0) && (threadlId < nVal))
{

outArrayC[threadId] = inArrayA[threadId] + inArray
[threadId];

}
}

e Note that input/output arrays in global memory space
e GPU arrays are memory objects on host
e "Int nVal” parameter is a primitive type input

OpenCL Memory Spaces

__global
Memory in global address space (DRAM on GPU)

__constant
Special type of read-only memory (may be faster)

__local
Memory shared within work-group of kernels
May be on-chip and much faster than global

__private
Private per work-item (thread)

OpenCL Device

e Can be CPU, GPU, or other accelerator

Contains global memory

e Number of compute units (cores on CPU, streaming
multiprocessors on GPU)

O Each compute unit contains processing elements and (potentially fast)
local memory

O All threads within a work-group execute on same compute unit
B Allows synchronization and local memory sharing within work-group

Processing
Element

. “ a H Host

Compute: Unit

Compute Device

Determining Best Workgroup Size

e Depends on device
e Likely higher on GPU than CPU

o More processing elements per compute unit on GPU
Intel recommends workgroup size of 64-128

e Often 128 is minimum to get good performance
on GPU

o On NVIDIA Fermi, workgroup size must be at least 192
for full utilization of cores

o If using a lot of registers or local memory, may be
necessary/optimal to use smaller workgroup sizes

o Something to experiment with

o Optimal workgroup size differs across applications

OpenCL %

OpencCL

Steps for Host:

. Obtain OpenCL platform
. Obtain device id for at least one device (accelerator)

. Create context for device

. Create accelerator program from source code

. Build the program

. Create kernel object(s) from program functions

. Create command queue for target device

. Allocate device memory / move input data to device memory
9. Associate arguments to kernel with kernel object

10. Deploy kernel for device execution

11. Move output data to host memory

12. Release context/program/kernels/memory

0O NO OV A~ WOWDN -

OpenCL

Simple Program A demo

e Code will be posted

e Should be able to use as template for project 1

o Need to adjust code for reading .cl file (step 4) and
timing (unless using Windows)

OpenCL Speedup on Simple
Program A

e GPU: 660M
o 384 CUDA cores
o Compared to single-core CPU
o Speedup over 500x with array size of over 2 million

OpenCL Speedup

GPU (OpenCL) Speedup (over CPU)

Analogy for OpenCL environment

e From Dr. Dobb's site: A Gentle Introduction
to OpenCL (by Matthew Sharpino)
e Card game analogy

ock of Carcs

Analogy for OpenCL environment

Host - card dealer
OpenCL devices - card players

Player receives cards from dealer <--> device receives kernels from host
OpenCL Kernels - cards

Dealer distributes cards to players <--> Host distributes kernels to devices

Analogy for OpenCL environment

OpenCL Program - deck of cards
Dealer selects cards from a deck <--> Host selects kernels from a program
Command Queue - player's hand

Each player receives cards as part of a hand <--> Each device receives
kernels through command queue

OpenCL Context - card table

Card table makes it possible for players to transfer cards to each other <-->
OpenCL Context allows devices to receive kernels and transfer data

OpenCL lllustration

OpenCL @

v ¥

»

Context

b ¢ ¢

¢
Programs Kernels Memo ects Command Queues
4 4 $

e T | g ot J [=72 I

d I(global const float * dp_mul
p—:l‘t‘:b(gal consim float 'tl’: N CPU program binary arg[0] value In Out of

global float *c) _ Order Order
{

i 1] val
intid = get_global id(0); o :&,’:“n — argl1] value Queue Queue

)cl"'dl = afid] * bfid);

arg[2] value

GPU

Compile code

© Copyright Khronos Group, 2009 - Page 15

OpenCL

e Entire OpenCL specification available at

http://www.khronos.org
o Contains detailed information about each function

e Additional resources

o Cavazos' slides from class last year (http://www.eecis.
udel.edu/~cavazos/cisc879-spring2012/)

NVIDIA SDK code samples (in CUDA 4.0-4.2)
o AMD APP code samples
o Other online OpenCL documentation

