
OpenCL Introduction

Scott Grauer-Gray

Readme for project updated

● OpenCL instructions should work now

● OpenACC instructions added

Simple Program A

● Initialize two arrays of size N

● Add values element-by-element

● Place output summations in another array

(of size N)

Simple Program A: C code
int main()
{

float inArrayA[N];
float inArrayB[N];
float outArrayC[N];

//function to set values in array in some manner
initializeArray(inArrayA);
initializeArray(inArrayB);

for (int i=0; i < N; i++)
{

outArrayC[i] = inArrayA[i] + inArrayB[i];
}

//function to do "stuff" with the output data
processOutputArray(outArrayC);

return 0;
}

Program Execution

● By default
○ Performed on CPU using single core

○ May be possible to use additional resources to speed

up program (specifically, more CPU cores or GPUs)

● Embarrassingly parallel problem
○ Loop iterations independent

○ No dependencies

○ Possible for each loop iteration to run simultaneously

Embarrassingly Parallel: Wikipedia

Acceleration Methods

● OpenMP (already presented)
○ Often used for multi-core CPUs

● MPI (already presented)
○ Often used for clusters with many nodes

● OpenCL (focus of this lecture)
○ Can be used for multi-core CPUs, GPUs, and other

accelerators

Advantages to OpenCL

● Can run on many architectures
○ Relatively easy to port between multicore CPUs /

GPUs / other accelerators

○ Supported by many vendors

■ NVIDIA and AMD GPUs

○ Vendors can add their own extensions

GPGPU

● GPGPU: General-purpose programming on

the GPU
○ Take advantage of GPU with hundreds of simple

cores

○ Typically use OpenCL or CUDA

○ Relatively new area of computing

○ Large speedup over CPU on certain applications

○ "Free" speedup with new architectures

GPGPU
Processing power of GPU vs CPU

CPU Vs. GPU

Most transistors on GPU for computation

GPU Architecture: NVIDIA Fermi
(2010)

History of GPGPU

● GPGPU existed before creation of CUDA /

OpenCL
○ Needed to use graphics API to take advantage of GPU

○ "Trick" GPU into thinking it was doing graphics instead of

general-purpose computing

○ Fragment shader somewhat analogous to CUDA /

OpenCL kernel

■ Major limitation: no scatter operation for output data

■ Still able to get speedup on some applications

History of GPGPU
Notable early GPGPU Work (1999):

● GPGPU on Voronoi diagrams

○ Voronoi diagram: way of dividing space into regions

■ Set of specified "seeds" in region

■ For each seed there is a region of all points closest to that seed

○ 1999 SIGGRAPH PAPER: "Fast computation of generalized Voronoi

diagrams using graphics hardware" by Hoff et. al.

○ Implementation in OpenGL

■ Before programmable shaders on GPU

■ Takes advantage of z-buffer and rasterization capabilities of GPU

○ Been cited 508 times (according to google scholar)

Notable early GPGPU Work (2006):

● Stereo Vision

○ "Belief propagation on the GPU for stereo vision" by A. Brunton, et. al.

○ Belief propagation: Global stereo vision algorithm

■ Iterative message computation/passing step takes most computation time

■ Performed on half of image pixels in parallel in each iteration

■ Embarrassingly parallel

○ Implementation in OpenGL (2006...pre-CUDA/OpenCL)

■ Use fragment shader to run message computation step in parallel

● Data is stored as textures on the GPU

■ Results claim a 2x speedup over CPU runtime

History of GPGPU

Motivations for early GPGPU work
● Potential speedup over CPU

● May be processing data on GPU

○ Better to process data on GPU than transfer the data to the CPU for

processing then back to the GPU for display

● Vendors not oblivious to interest in GPGPU

○ Added extensions to OpenGL to aid GPGPU

■ Addition of programmable vector/fragment shaders significant for

graphics and GPGPU

○ OpenGL went from only supporting 8-bit textures to supporting a wide variety

of data types, including 32-bit floats

○ Eventually developed ways for GPGPU without needing to use graphics API

History of GPGPU

History of GPGPU

● CUDA
○ Specifically for GPGPU

■ Removes "no scatter operation" limitation

○ Introduced in February 2007

○ Works on NVIDIA GPUs

● Close to Metal (CTM)
○ Introduced by ATI/AMD for their GPUs

○ ATI/AMD later switched to Stream SDK

○ AMD now focused on OpenCL

OpenCL

● Open Standard for parallel programming of
heterogeneous systems
○ Maintained by

● History of OpenCL
○ Initially developed by Apple
○ Became a collaboration between Apple, AMD, IBM,

Intel, and NVIDIA
○ Specification approved for public release in

December 2008
○ AMD, NVIDIA, and Apple released OpenCL

implementations in 2009

OpenCL: Apple

OpenCL: Apple

OpenCL
Steps for program:
1. Obtain OpenCL platform
2. Obtain device id for at least one device (accelerator)
3. Create context for device
4. Create accelerator program from source code
5. Build the program
6. Create kernel(s) from program functions
7. Create command queue for target device
8. Allocate device memory / move input data to device memory
9. Associate arguments to kernel with kernel object
10. Deploy kernel for device execution
11. Move output data to host memory
12. Release context/program/kernels/memory

OpenCL

Step 1
● Obtain platform

○ Platform id identifies vendor installation of OpenCL
■ clGetPlatformIDs(1, &platform, NULL);

○ Functions often used twice, first to get the number of
platforms and then for allocation

OpenCL

Step 2
● Obtain device id for at least one device

(accelerator)
○ Use platform to get ID for device

■ clGetDeviceIds(platform,
CL_DEVICE_TYPE_GPU, 1, &device, NULL);

■ device id is stored in "device" variable
○ Functions often used twice, first to get the number of

devices available and then for allocation

OpenCL

Step 3
● Create context for device

○ Context - abstract container attached to device
○ Contains program kernels, memory objects, etc
○ Holds command queue used for program execution

■ context = clCreateContext(NULL, 1,
&device, NULL, NULL, &err);

OpenCL

Step 4
● Create accelerator program from source

code
○ Recommended to have a .cl file that contains

kernels to run on accelerator
○ Read .cl file into a string on host
○ Create cl_program attached to context
○ program = clCreateProgramWithSource

(context, 1, (const char**)
&program_buffer, &program_size, &err);

OpenCL
Step 5
● Build the program

○ OpenCL accelerator code is compiled at run-time
■ Host code will compile even if there are errors in

accelerator code
■ Need to check for errors during run-time

compilation
■ clBuildProgram(program, 0,..)

■ Compilation error determined by error value
returned from clBuildProgram

■ Calling clGetProgramBuildInfo() with the program object and the
parameter CL_PROGRAM_BUILD_STATUS returns a string with the
compiler output

OpenCL

Step 6
● Create cl_kernel(s) from program functions

○ Use (now built) program as parameter to create
kernel

○ kernel = clCreateKernel(program,
"kernel_name", &err)

○ "kernel_name" is the name of the kernel function to
be run in parallel

OpenCL

Step 7
● Create command queue for kernel dispatch

○ Command queue is attached to specific device
■ Mechanism for request that action be performed

by device
■ Requests include memory transfer, begin

executing kernel, etc
○ Can support out-of-order execution and profiling
○ queue = clCreateCommandQueue(context,

device, 0, &err)

OpenCL

Step 8
● Allocate device memory / move input data to

device
○ memObject = clCreateBuffer (context, NULL, SIZE_N, NULL,

&err)

○ clEnqueueWriteBuffer(command_queue, memObject, ...,

TOTAL_SIZE, hostPointer, ...)

○ Memory objects can be buffers or images
■ Focus on buffers
■ Contiguous memory chunks on GPU (global memory)
■ Read/write capable

OpenCL

Step 9
● Associate arguments to kernel with kernel

object
○ cl_int clSetKernelArg (kernel,

arg_index, arg_size, *arg_value)
○ arg_index is index of argument in function signature

(0 if first argument into function, etc)
○ Argument value is pointer to memory object if input

parameter is array (buffer on GPU)
○ Argument value is pointer to primitive if input

parameter is primitive value (such as a char, int,
float, etc)

OpenCL
Step 10
● Deploy kernel for device execution

○ Using command_queue, kernel object, and global and
local (workgroup) sizes
■ global_size = TOTAL_NUM_THREADS;

■ local_size = WORKGROUP_SIZE;

● All threads in workgroup execute on same compute unit

● Access to fast local memory (shared within workgroup)

● Can synchronize between threads in workgroup

■ clEnqueueNDRangeKernel(command_queue,
kernel, 1, NULL, &global_size,
&local_size, 0, NULL, NULL);

OpenCL

Step 11
● Write output device data back to host

○ clEnqueueReadBuffer(command_queue,
memObject, blocking_read, offset,
TOTAL_SIZE, hostPointer, 0, NULL, NULL)

■ Notable parameters
● command_queue

● memObject

● buffer size

● target pointer on host

OpenCL

Step 12
● Release context/program/kernels/memory

○ clReleaseMemObject(memObject)

○ clReleaseKernel(kernel)

○ clReleaseProgram(program)

○ clReleaseContext(context)

OpenCL Kernel

Steps for OpenCL kernel
● Assuming embarrassingly parallel problem
● Each thread performs single loop iteration

○ Ideal on GPU

1. Retrieve ID corresponding to thread
2. Make sure ID is within computation bounds
3. Perform instruction(s) in loop body using thread ID

OpenCL

Step 1: Kernel
● Retrieve ID corresponding to thread

○ threadId = get_global_id (curr_dimension)
○ If parallelizing single loop, dimension will be 0

OpenCL

Step 2: Kernel
● Make sure ID is within computation bounds

○ Assume loop iterates from i=0 to N-1
○ if ((threadId >=0) && (threadId < N))

■ Perform computation

OpenCL

Step 3: Kernel
● Perform instruction(s) in loop body using thread ID

○ Using Simple Program A
■ outArrayC[threadId] = inArrayA[threadId] +

inArrayB[threadId];

OpenCL
OpenCL Kernel for Simple Program A
__kernel void addArrays(__global float* inArrayA, __global
float* inArrayB, __global float* outArrayC, int nVal)

{

int threadId = get_global_id (0);

if ((threadId >= 0) && (threadId < nVal))

{

outArrayC[threadId] = inArrayA[threadId] + inArray
[threadId];

}

}

● Note that input/output arrays in global memory space
● GPU arrays are memory objects on host
● "int nVal" parameter is a primitive type input

OpenCL Memory Spaces

__global
Memory in global address space (DRAM on GPU)

__constant
Special type of read-only memory (may be faster)

__local
Memory shared within work-group of kernels
May be on-chip and much faster than global

__private
Private per work-item (thread)

OpenCL Device

● Can be CPU, GPU, or other accelerator
● Contains global memory
● Number of compute units (cores on CPU, streaming

multiprocessors on GPU)
○ Each compute unit contains processing elements and (potentially fast)

local memory
○ All threads within a work-group execute on same compute unit

■ Allows synchronization and local memory sharing within work-group

Determining Best Workgroup Size

● Depends on device
● Likely higher on GPU than CPU

○ More processing elements per compute unit on GPU
● Intel recommends workgroup size of 64-128
● Often 128 is minimum to get good performance

on GPU
○ On NVIDIA Fermi, workgroup size must be at least 192

for full utilization of cores
○ If using a lot of registers or local memory, may be

necessary/optimal to use smaller workgroup sizes
○ Something to experiment with
○ Optimal workgroup size differs across applications

OpenCL
Steps for Host:
1. Obtain OpenCL platform
2. Obtain device id for at least one device (accelerator)
3. Create context for device
4. Create accelerator program from source code
5. Build the program
6. Create kernel object(s) from program functions
7. Create command queue for target device
8. Allocate device memory / move input data to device memory
9. Associate arguments to kernel with kernel object
10. Deploy kernel for device execution
11. Move output data to host memory
12. Release context/program/kernels/memory

OpenCL

Simple Program A demo
● Code will be posted
● Should be able to use as template for project 1

○ Need to adjust code for reading .cl file (step 4) and
timing (unless using Windows)

OpenCL Speedup on Simple
Program A
● GPU: 660M

○ 384 CUDA cores
○ Compared to single-core CPU
○ Speedup over 500x with array size of over 2 million

Analogy for OpenCL environment

● From Dr. Dobb's site: A Gentle Introduction
to OpenCL (by Matthew Sharpino)

● Card game analogy

Analogy for OpenCL environment

Host - card dealer
OpenCL devices - card players

Player receives cards from dealer <--> device receives kernels from host
OpenCL Kernels - cards

Dealer distributes cards to players <--> Host distributes kernels to devices

Analogy for OpenCL environment
OpenCL Program - deck of cards

Dealer selects cards from a deck <--> Host selects kernels from a program
Command Queue - player's hand

Each player receives cards as part of a hand <--> Each device receives
kernels through command queue
OpenCL Context - card table

Card table makes it possible for players to transfer cards to each other <-->
OpenCL Context allows devices to receive kernels and transfer data

OpenCL Illustration

OpenCL

● Entire OpenCL specification available at
http://www.khronos.org
○ Contains detailed information about each function

● Additional resources
○ Cavazos' slides from class last year (http://www.eecis.

udel.edu/~cavazos/cisc879-spring2012/)
○ NVIDIA SDK code samples (in CUDA 4.0-4.2)
○ AMD APP code samples
○ Other online OpenCL documentation

