Lecture 2
A General Discussion on Parallelism

John Cavazos
Dept of Computer & Information Sciences
University of Delaware

www.cis.udel.edu/~cavazos/cisc879
Lecture 2: Overview

- Flynn’s Taxonomy of Architectures
- Types of Parallelism
- Parallel Programming Models
- Commercial Multicore Architectures
Flynn’s Taxonomy of Arch.

- SISD - Single Instruction/Single Data
- SIMD - Single Instruction/Multiple Data
- MISD - Multiple Instruction/Single Data
- MIMD - Multiple Instruction/Multiple Data
Single Instruction/Single Data

The typical machine you’re used to (before multicores).

CISC 879 : Advanced Parallel Programming
Processors that execute same instruction on multiple pieces of data.

CISC 879 : Advanced Parallel Programming
Single Instruction/Multiple Data

- Each core executes same instruction simultaneously
- Vector-style of programming
- Natural for graphics and scientific computing
- Good choice for massively multicore
SIMD very often requires compiler intervention.

Slide Source: ars technica, Peakstream article

CISC 879 : Advanced Parallel Programming
Multiple Instruction/Single Data

Only Theoretical Machine. None ever implemented.

CISC 879 : Advanced Parallel Programming
Many mainstream multicore processors fall into this category.
Multiple Instruction/Multiple Data

- Each core works independently, simultaneously executing different instructions on different data.
- Unique upper levels of cache and may have lower level of shared cache.
- Cores can have SIMD-extensions.
- Programmed with a variety of models (OpenMP, MPI, pthreads, etc.)
Lecture 2: Overview

- Flynn’s Taxonomy of Architecture
- Types of Parallelism
- Parallel Programming Models
- Commercial Multicore Architectures
Types of Parallelism

Instructions:

Pipelining

Data-Level Parallelism (DLP)

Thread-Level Parallelism (TLP)

Instruction-Level Parallelism (ILP)

CISC 879 : Advanced Parallel Programming

Slide Source: S. Amarasinghe, MIT 6189 IAP 2007
Pipelining

IF: Instruction fetch
EX: Execution
ID: Instruction decode
WB: Write back

Cycles

<table>
<thead>
<tr>
<th>Instruction #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction i</td>
<td>IF</td>
<td>ID</td>
<td>EX</td>
<td>WB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instruction i+1</td>
<td>IF</td>
<td>ID</td>
<td>EX</td>
<td>WB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instruction i+2</td>
<td>IF</td>
<td>ID</td>
<td>EX</td>
<td>WB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instruction i+3</td>
<td>IF</td>
<td>ID</td>
<td>EX</td>
<td>WB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instruction i+4</td>
<td>IF</td>
<td>ID</td>
<td>EX</td>
<td>WB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Corresponds to SISD architecture.

Slide Source: S. Amarasinghe, MIT 6189 IAP 2007
Instruction-Level Parallelism

Dual instruction issue superscalar model. Again, corresponds to SISD architecture.

Slide Source: S. Amarasinghe, MIT 6189 IAP 2007
Data-Level Parallelism

Data Stream or Array Elements

What architecture model from Flynn’s Taxonomy does this correspond to?

Slide Source: Arch. of a Real-time Ray-Tracer, Intel
Data-Level Parallelism

Data Stream or Array Elements

Corresponds to SIMD architecture.

Slide Source: Arch. of a Real-time Ray-Tracer, Intel
One operation (e.g., +) produces multiple results. \(X \), \(Y \), and result are arrays.
Program partitioned into four threads.

Four threads each executed on separate cores.

What architecture from Flynn’s Taxonomy does this correspond to?

Multicore with 6 cores.

CISC 879 : Advanced Parallel Programming

Slide Source: SciDAC Review, Threadstorm pic.
Thread-Level Parallelism

Program partitioned into four threads.

Four threads each executed on separate cores.

Corresponds to MIMD architecture.

Multicore with 6 cores.

CISC 879 : Advanced Parallel Programming
Lecture 2: Overview

- Flynn’s Taxonomy of Architecture
- Types of Parallelism
- Parallel Programming Models
- Commercial Multicore Architectures
Multicore Programming Models

- Message Passing Interface (MPI)
- OpenMP
- Threads
 - Pthreads
 - Cell threads
- Parallel Libraries
 - Intel’s Thread Building Blocks (TBB)
 - Microsoft’s Task Parallel Library
 - SWARM (GTech)
 - Charm++ (UIUC)
 - STAPL (Texas A&M)
GPU Programming Models

- **CUDA (Nvidia)**
 - C/C++ extensions
- **Brook+ (AMD/ATI)**
 - AMD-enhanced implementation of Brook
- **Brook (Stanford)**
 - Language extensions
- **RapidMind platform**
 - Library and language extensions
 - Works on multicores
 - Commercialization of Sh (Waterloo)
Lecture 2: Overview

- Flynn’s Taxonomy of Architecture
- Types of Parallelism
- Parallel Programming Models
- Commercial Multicore Architectures
Generalized Multicore

L1 Cache - L1 Cache - L1 Cache - L1 Cache

L2 Cache - L2 Cache

L3 Cache

CISC 879: Advanced Parallel Programming
Cell B.E. Architecture

CISC 879 : Advanced Parallel Programming
Commercial Multicores

<table>
<thead>
<tr>
<th>Name</th>
<th>Clovertwn</th>
<th>Opteron</th>
<th>Cell</th>
<th>Niagara 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chips*Cores</td>
<td>2*4 = 8</td>
<td>2*2 = 4</td>
<td>1*8 = 8</td>
<td>1*8 = 8</td>
</tr>
<tr>
<td>Architecture</td>
<td>4-/3-issue, SSE3, OOO, caches</td>
<td>2-VLIW, SIMD, RAM</td>
<td>1-issue, MT, cache</td>
<td></td>
</tr>
<tr>
<td>Clock Rate</td>
<td>2.3 GHz</td>
<td>2.2 GHz</td>
<td>3.2 GHz</td>
<td>1.4 GHz</td>
</tr>
<tr>
<td>Peak MemBW</td>
<td>21 GB/s</td>
<td>21 GB/s</td>
<td>26 GB/s</td>
<td>41 GB/s</td>
</tr>
<tr>
<td>Peak GFLOPS</td>
<td>74.6 GF</td>
<td>17.6 GF</td>
<td>14.6 GF</td>
<td>11.2 GF</td>
</tr>
</tbody>
</table>

Slide Source: Dave Patterson, Manycore and Multicore Computing Workshop, 2007