X10: A High-Productivity Approach to
Programming Multi-Core Systems

x10.sf.net

Vivek Sarkar
vsar kar @us.ibm.com
Senior Manager, Programming Technologies
IBM T.J. Watson Research Center

This work has been supported in part by the
Defense Advanced Research Projects Agency
PRCS (DARPA) under contract No. NBCH30390004.

X10 Core Team
Rajkishore Barik 1.

Acknowledgments
S

Chris Donawa
Allan Kielstra
Nate Nystrom

Igor Peshansky 2.

Christoph von Praun

Vijay Saraswat 3.

Vivek Sarkar
Tong Wen

X10 Tools

Emeritus 5

Philippe Charles
Robert Fuhrer
Stan Sutton

Kemal Ebcioglu
Christian Grothoff

X10 Publications

"X10: An Object-Oriented Approach to Non-Uniform Cluster
Computing", P. Charles, C. Donawa, K. Ebcioglu, C.
Grothoff, A. Kielstra, C. von Praun, V. Saraswat, V. Sarkar.
OOPSLA conference, October 2005.

"Concurrent Clustered Programming", V. Saraswat, R.
Jagadeesan. CONCUR conference, August 2005.

"An Experiment in Measuring the Productivity of Three
Parallel Programming Languages”, K. Ebcioglu, V. Sarkar,
T. EI-Ghazawi, J. Urbanic. P-PHEC workshop, February
2006.

"Experiences with an SMP Implementation for X10 based on
the Java Concurrency Utilities”, R. Barik, V. Cave, C.
Donawa, A. Kielstra, |. Peshansky, V. Sarkar, PMUP
workshop, September 2006.

“May-Happen-in-Parallel Analysis of X10 programs”, S.
Agarwal, R. Barik, V. Sarkar, R. Shyamasundar, PPoPP
2007 conference, March 2007 (to appear).

“‘Deadlock-Free Scheduling of X10 Computations with
Bounded Resources”, S.Agarwal, R.Barik, D.Bonachea,
V.Sarkar, R.Shyamasundar, K.Yelick, SPAA 2007
conference, June 2007 (to appear).

X10 tutorials

X10: An Object-Oriented App

PACT 2006, OOPSLA 2006, PPoPP 2007

Programming Technologies Research at IBM

Goal: Focus our research on core technologies for
development, deployment, and execution of programs
and related software assets

Focus Research Areas and Current Projects:

7\' * Programming Models and Programming Language Design
- Collage, DALI/XJ, X10

’ - Development Tools

- CSQ (includes SAFE, Security Analysis, Scripting Analysis),
Parallel Tools, SAFARI

g

* Deployment, Execution, Optimization
— Dynamic Optimization, Jikes RVM, Metronome, PDS/Mirage,

™

X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

PERCS Programming Model, Tools and Compilers

(Productive Easy-to-use Reliable Computer System)
s

ECIipse Java™source code C/C++ source code Fortran source code
X10 source code (w/threads & conc utils) (w/ MPI, OpenMP, UPC) (w/ MPI, OpenMP)
platform |
Productivity Rational l
Measurements PurifyPlus v C/C++ v
- X10 Java Development Fortran
Refactoring for Rational Development Development Toolkit Development
Concurrency Team Toolkit Toolkit + MPI & QpenMP Toolkit
extensions
Performance Platform l l 7 l
Explorer
Remote X10 Java C/C++ Compiler Fortran
Parallel Tools System Compiler Compiler w/ UPC Compiler
Platform (PTP) Explorer extensions
Text in blue v v v ‘L
identifies X10 Java C/C++ Fortran
PERCS Components components components components
contributions Fast extern
in Phase Il \s_/ interface l l

X10 runtime (&>

Java runtime

»| C/C++ runtime

++ Fortran runtime

HPC Toolkit + pSigma + Performance Tuning Automation

Dynamic Compilation + Continuous Program Optimization

— — — 7 —

Outline

Software challenges for multi-core systems
X10 Programming Model and Language

X10 Productivity Analysis

X10 Implementation

Conclusions

X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

| |

[T}

™

Future Multi-Core Systems: a new Era of

Mainstream Parallel Processing
S

The Challenge:
Parallelism scaling replaces frequency scaling as foundation for
Increased performance = Profound impact on future software

Homogeneous Heterogeneous Multi-Core Cluster
Multi-core Multi-core

Int PU

Int PU Int PU Int PU

Cache
Cache
Cache
Cache

Crypto Crypto Crypto Crypto
On Chip

SPE
S FRU FPU [Sm [FPU [[Fm
68icycid
| EIB (up to 96B/cycle) |
PPE

@
c

S

1/0 Interface

Crypto| |Crypto] |Crypto] |Crypto

Memory Interface

Int PU Int PU Int PU Int PU

lexIO™

sssssssssssssssssssssssssssss
ot yele
3 '

Cache
Cache
Cache
Cache

DR™

Qur response:
Use X10 as a new language for parallel hardware that builds on
existing tools, compilers, runtimes, virtual machines and libraries

A% g —_———= =
7, = = ===

p 6 X10: An Object-Oriented Approach to Non-Uniform Cluster Computing TR L,

Current state of the art in Automatic
Parallelization and Explicit Parallelism

« Automatic parallelization technologies have been successful
In SIMDization, Instruction scheduling, Data privatization, ...

... but whole-program automatic parallelization still eludes us

« Explicit parallel programming models have either focused on
uniform shared-memory parallelism or message-passing
parallelism, neither of which is appropriate for multi-core
processors with a non-uniform shared memory model

— Threaded models like OpenMP and Java have a uniform
view of memory

— Bulk-synchronous MPI model is SPMD (one process per
node) with infrequent coarse-grained barriers and
collective/two-sided communications

- PGAS model (CAF, UPC, Titanium) is SPMD (one process
per node) with coarse-grained barriers and fine-grained
ng one-sided communications

4 NALVU. ANl Vyjecl Turiernieu Approucrt 10 NUN=vmorm siuwielr vomnpuling

Cell Programming Model
Heterogeneous Multi-Core Parallelism

SPE
SPU SPU SPU SPU SPU SPU SPU SPU
sxu_||IfL_sxu][IL_sxu_{jI{lL_sxu_JfifiL_sxu JfL_sxu JfiIl_sxu_[||[I[_sxu |
1 1 1 T 1 1 T T
v v v v v v v v
LS LS LS LS LS LS LS LS
l6B/CyC|e \/4 \/4 v v v v v v

EIB (up to 96B/cycle)

A A AA

BBE 16B/cycle 16B/cycle 16B/cycle (2x)

PPU

8 X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

Disconnect between Uniform Memory Access

model and Heterogeneous Multi-Core Parallelism
s,

DMA Commands
Put - Transfer from Local Store to EA space
Puts - Transfer and Start SPU execution C P
Putr - Put Result - (Arch. Scarf into L2) Ommand arameterS
Putl - Put using DMA List in Local Store ILsA - Local Store Address (32 bit)
Putrl - Put Result using DMA List in LS (Arch) EA - Effective Address (32 or 64 bit)
Get - Transfer from EA Space to Local Store TS - Transfer Size (16 bytes to 16K bytes)
Gets - Transfer and Start SPU execution LS - DMA List Size (8 bytes to 16 K bytes)
Getl - Get using DMA List in Local Store TG - Tag Group(5 bit)
Sndsig - Send Signal to SPU CL - Cache Management / Bandwidth Class

Command Modifiers: <f,b>

f: Embedded Tag Specific Fence

Command will not start until all previous commands

in same tag group have completed

|[b: Embedded Tag Specific Barrier

Command and all subsiquent commands in same

tag group will not start until previous commands in same
tag group have completed

SL1 Cache Management Commands

sdcrt - Data cache region touch (DMA Get hint)

sdcrtst - Data cache region touch for store (DMA Put hint)
sdcrz - Data cache region zero

sdcrs - Data cache region store

sdcrf - Data cache region flush

9 X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

Synchronization Commands

What'’s Involved In
Programming for Cell?

= Partition application into PPE and SPE portions
Map application data onto Local Store for SPE parts

this typically requires both temporal and spatial concerns for data that
needs to be streamed in and out of Local Store

Code SPE functions to exploit SIMD processing capabilities

vector float a,b,c,d;
a=(vector float){2.3,6.0,0.0,5.1};

d = spu_madd(a,b,c); // d=a*b+c

Orchestrate the data streaming using MFC commands

vector float a[8];
spu_mfcdma32(a,p,128,tagnum,READ);
spu_mfcstat(ALL);

Parallelize across multiple SPEs and 2 threads on the PPE

~
p i

10 X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

What'’s Involved In
Programming for Cell? (contd.)

SIMDize if at all possible
— reorder data, array-of-structures vs structure-of-arrays
— either use intrinsics, or allow the compiler to do it automatically
- Align SIMD data on 16 byte boundaries — go to any lengths !

Try to have data in Local Store before it is needed
— DMA latency is in the hundreds of cycles
— SPEs are single threaded processors

Its better to do DMA from the SPE side
— more channels / less trouble synchronizing

Try to reduce the amount of “branchy” code

Using an SPE to run Scalar code is OK
— its really another — application specific - processor

P g mm——
. = E il R, S—

p 11 X10: An Object-Oriented Approach to Non-Uniform Cluster Computing ——— = ' =°

Outline

« Software challenges for multi-core systems
« X10 Programming Model and Language
e X10 Productivity Analysis

« X10 Implementation

« Conclusions

@3 12 X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

L2
/,..’ 3

-

| |
A
T
I

X10 Approach

» Unified abstractions of asynchrony and concurrency for use in
— Multi-core SMP Parallelism
— Messaging and Cluster Parallelism

* Productivity
- High Level Language designed for portability and safety
— X10 Development Toolkit for Eclipse

« Performance
- Extend VM+JIT model for high performance

- Performance transparency — don’t lock out the performance expert!

» expert programmer should have controls to tune optimizations and tailor
distributions & communications to actual deployment

» Build on sequential subset of Java language
- Retain core values of Java --- productivity, ubiquity, maturity, security
- Target adoption by mainstream developers with Java/C/C++ skills

(A2
& ;

-

S TEES

@S 13 X10: An Object-Oriented Approach to Non-Uniform Cluster Computing ——— — ' =—°

X10 Programming Model

-

snououyauls
AfeaoT

-

P.

object i
Outbound Inbound
Activities Activities
= Globally
Asynchronous
Y *Activities \ <:
Place 0

* Dynamic parallelism with a Partitioned Global Address Space

---—» Remote
object

Partitoned

- v,

Place (MaxPlaces-1)

Storage classes:

Activity-local

Partitioned
global

Immutable

* Places encapsulate binding of activities and globally addressable data

« All concurrency is expressed as asynchronous activities — subsumes
threads, structured parallelism, messaging, DMA transfers (beyond SPMD)

» Atomic sections enforce mutual exclusion of co-located data
* No place-remote accesses permitted in atomic section

» Immutable data offers opportunity for single-assignment parallelism

S
@S 14

Deadlock safety: any X10 program written with async, atomic,
finish, foreach, ateach, and clocks can never deadlock

X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

X10 Language

async [(Place)] [clocked(c...)] Stm * Region
- Run Stm asynchronously at Place — Collection of index points, e.g.
finish Stm region r =[1:N,1:M];

- Execute s, wait for all asyncs to terminate ¢ Distribution
(generalizes join) - Mapping from region to places, e.g.

foreach (point P : Reg) Stm . dist d = block(r);

- Run Stm asynchronously for each point in

next

region — suspend till all clocks that the current
ateach (point P : Dist) Stm activity is registered with can advance
- Run Stm asynchronously for each pointin — Clocks are a generalization of barriers and
dist, in its place. MPI communicators
atomic Stm « future [(Place)] [clocked(c...)] Expr
- Execute Stm atomically - Compute Expr asynchronously at Place
new T « F.force()
- Allocate object at this place (here) - Block until future F has been computed
new T[d] / new T value [d] « extern
- Array of base type T and distribution d - Lightweight interface to native code

4

g Deadlock safety: any X10 program written with above constructs excluding
future can never deadlock
» Can be extended to restricted cases of using future

15

"Illl"
il
il
Iy

|
T
I

X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

X10 Arrays, Regions, Distributions

ArrayExpr: Region:
new ArrayType (Formal) { Stm } Expr @ Expr --1-Dregion
Distribution Expr - Lifting [Range, ..., Range] -- Multidimensional Region
ArrayExpr [Region] - Section Region && Region -- Intersection
ArrayExpr | Distribution -- Restriction Region || Region -- Union
ArrayExpr || ArrayExpr -~ Union Region — Region -- Set difference
ArrayExpr.overlay(ArrayExpr) -- Update BuiltinRegion
ArrayExpr. scan([fun [, ArgList])
ArrayExpr. reduce([fun [, ArgList]) Dist:
ArrayExpr.lift([fun [, ArgList]) Region -> Place -- Constant distribution
Distribution | Place -- Restriction
ArrayType: Distribution | Region -- Restriction
Type [Kind] [] Distribution || Distribution -- Union
Type [Kind] [region(N)] Distribution — Distribution -- Set difference

Type [Kind] [Region | Distribution.overlay (Distribution)

Type [Kind] [Distribution | BuiltinDistribution

Language supports type safety, memory safety, place safety, clock safety.

. X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

X10 Language Constructs:

Examples
s
1) finish { // Intra-place parallelism
final int x = ..., y = ...;
async a.foo(x); // Initiate two activities at sane
async b.bar(y); // place as parent activity
} I/ WAt for both activities to conplete

2) finish { // Inter-place parallelism
final int x = ..., y = ...;
async (a) a.foo(x); // Execute at a’'s pl ace
async (b) b.bar(y); // Execute at b’s pl ace

}

3) // Inplicit and explicit versions of renote fetch-and-add
a) a.x += b.y ;
b) async (b) {final int v = b.y; async (a) atomc a.x +=v; }

V4 =

p 17 X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

™

X10 Dynamic Activity Invocation Tree

/| X10 pseudo code
main(){ // inmplicit finish
Activity A0 (Part 1);
async {Al; async A2;}
try {
finish {
Activity A0 (Part 2);
async A3;
async A4;
}
catch (.) { ...}
Activity A0 (Part 3);
}

% exception o
p e 18 X10: An Object-Oriented Approach to Non-Uniform Cluster Computing ===7=.

X10 Language Constructs:

Examples (contd.)

4) future<int> F = future(a) { a.baz() }; // returns imedi ately

int i = F.force(); // block until return value is obtained

5) // Ais alocal 1-D array, Bis a distributed 2-D array
int[.] A=newint[[O0:N1]];
int[.] B = newint[dist.blockRows([O0:M1,0:N1])];

[/l serial pointw se for |oop
for (point[j] : [1:N-1]) AJ] = f(A[J-1]);

/[l intra-place pointwi se parallel |oop
foreach (point[j] : Aregion) Aj] = 9(Aj]);

[l inter-place pointw se parallel |oop
ateach (point[i,j] : B.distribution) B[i,j] = h(B[i,]]);

V4 =

p 19 X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

“un"
il
il
Iy

Explicit vs. Implicit Syntax for Places

s
« Explicit syntax — target place specified explicitly for remote activity
« async(a){a.z=expr; a.foo(x); ...}

 BadPlaceException thrown if operation is performed on remote
reference

 Implicit syntax — freely access global address space, and let compiler
insert the target places

« {az=expr;...}
« =» {finalint T = expr; finish async(a) a.z=T, ... }

. More convenient to write code, but harder to control and debug
performance

« X10 approach
— Allow combination of implicit and explicit syntax

— Extend type system with dependent types to statically identify local
operations

A%
"2 ;

-

S TERE

@S 20 X10: An Object-Oriented Approach to Non-Uniform Cluster Computing ——— = ' =°

Explicit language concurrency greatly simplifies threading related constructs

nnabl e [JGFM di st. bl ock([0: nRunsMC- 1])
Mont eCar | oBe

re work

nch. nt hr eads

hread(i, nRun

s[i]);

finish ateach di stribution

ad 0
ead(0, nRunsv

nch. nt hr eads
(I'nterrupted

cl ass AppDenoThread inpl enents Runnabl e {
[/ initialization code

int ilow, iupper, slice;

slice = (nRunsMC+JG-Mont eCar | oBench. nt hr eads- 1)
/| JGFMont eCar | oBench. nt hr eads;

ilow = id*slice;

iupper = Math. m n((id+1)*slice, nRunsMO);

AppDeno.
AppDeno.

Source: http://www.epcc.ed.ac.uk/javagrande/javag.html - The Java Grande Forum Benchmark Suite

X10 Deployment

X10 language defines
mapping from X10 objects <
& activities to X10 places

X10 deployment defines
mapping from virtual X10
places to physical
processing elements

Homogeneous
Multi-core

<

~

-
~

\4
v

_

Heterogeneous
Accelerators

Clusters

it

]

i

lﬂj

i\

ek
PERCS 2

o

!

!

VT T

SPE
EsoliCse]
[T | T
|4 1
PPE

!

I
(up 10 96B/c:

CIEEICE
G o o e o
i i i i i
B (up to 96B/cycle)
P

[Cswe]
=

P

aaaaaaaa

PPU

IXU

mmmmmmmmm

X10 Deployment on an SMP

Example: [BM Powerd, Powerd

To other modules

b GXbus 4 GXbus 4 GXbus 4 GXbus
L2 |1 1.2 1.2 Vi
sall s lisd
ML) TN] ML | {
| | ¥y | ! L
i 1) W S [2L
1 [T [T L
L3 controller §f L3 controller ¥} L3 controller §{ L3 controller
directory directory directory directory
g {.3 L3 L3
Memory Memory Memory Memory
< > < > « > 44—
Place O Place 1 Place 2 Place 3

ek
p 23

e

X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

Basic Approach --
partition X10 heap into
multiple place-local heaps

Each X10 object is
allocated in a designated
place

Each X10 activity is
created (and pinned) at a
designated place

Allow an X10 activity to
synchronously access
data at remote places
outside of atomic sections
(implicit syntax)

Thus, places serve as
affinity hints for intra-SMP
locality

Possible X10 Deployment for

Cell gunder discussionz

Placel Place2 Place3 Place4 Place5 Place6 Place7 Place8

SPU SPU SPU SPU SPU SPU SPU SPU

[sxu |[flL_sxu_JjifiL_sxu_JifIL_sxu Jfiitl_sxu 1fiiiL_sxu JjiiiL_sxu J|ji_sxu_]
¥ : : ¥ ¥ ¥ : ¥
LS LS LS LS LS LS LS LS

16B/cyclg

A\ 4 A\ 4 v A4 A v A

EIB (up to 96B/cycle)

A y AA

16B/cycle
PPE 16B/cycle 16B/cycle (2x)

PPU

P

PXU

! ycle

L Place 0 <

S

p @3 24 X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

Basic Approach:

- map 9 places on to PPE + eight
SPEs

- Use finish & async’s as high-level
representation of DMAs

Opportunities:
— Exploit dynamic compilation
and code specialization
Challenges:
- Weak PPE
- SIMDization is critical

- Lack of hardware support for
coherence

— Limited memory on SPE's

- Limited performance of code
with frequent conditional or
indirect branches

— Different ISA's for PPE and
SPE.

Outline

« Software challenges for multi-core systems
« X10 Programming Model and Language

« X10 Productivity Analysis

 X10 Implementation

« Conclusions

@3 25 X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

L2
/,..’ 3

-

| |
A
T
I

X10 Productivity Analysis

Scenario: parallelization of serial X10/Java code

Two sets of results

1. Code size comparison of serial, multi-threaded, and distributed versions
of Java Grande benchmarks in Java and X10

« Details in OOPSLA paper, “X10: An Object-Oriented Approach to
Non-Uniform Cluster Computing”, (Section 5)

2. Human productivity study comparing time to first correct parallel version
for C+MPI, UPC, and X10

« Summary in P-PHEC 2006 workshop paper, "An Experiment in
Measuring the Productivity of Three Parallel Programming
Languages.

« Acknowledgments for productivity study

« Pittsburgh Supercomputing Center: Nick Nystrom, John
Urbanic, Deborah Weisser

. °* |BM Research Social Computing Group: Catalina Danis,
Christine Halverson, Wendy Kellogg

L
4

Iy
& o "
p _.-/::"'

@g 26 X10: An Object-Oriented Approach to Non-Uniform Cluster Computing ——— = ' =°

Code Size Comparison: Java
Grande Benchmarks

Language | Code size Serial Multithreaded Distributed
metric version version version
Java Classes/SLOC 50/3254 64/4028 50/3973
+ threads SLOC ratio 1.24 1.22
+ MPI SSC 2592 3212 3133
SSC ratio 1.24 1.21
stmts changed 1108 781
Change ratio 0.43 0.30
X10 Classes/SLOC 49/3107 49/3212 49/3243
SLOC ratio 1.03 1.04
SSC 2594 2649
SSC ratio 1.04 1.07
stmts changed 363 510
Change ratio 0.15 0.21

X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

Benchmark SLOC

O Sequential Java M Java w/ Threads B Java w/ MPI
O Sequential X10 W 1-place X10 B N-place X10

1400

1200

1000 -

800

600

400 -

200

0,

1200

B Fortran/C+MP| B X10

1000

800

600 -

400

200

Human Productivity Study
(Comparison of MPI, UPC, X10)

« Goals

— Contrast productivity of X10, UPC, and MPI for a statistically significant
subject sample on a programming task relevant to HPCS Mission Partners

— Validate the PERCS Productivity Methodology to obtain quantitative results
that, given specific populations and computational domains, will be of
immediate and direct relevance to HPCS.

« Overview
- 4.5 days: May 23-27, 2005 at the Pittsburgh Supercomputing Center (PSC)
— Pool of 27 comparable student subjects

— Programming task: Parallelizing the alignment portion of Smith-Waterman
algorithm (SSCA#1)

— 3 language programming model combinations (X10, UPC, or C + MPI)

— Equal environment as near as possible (e.g. pick of 3 editors, simple println
stmts for debugging)

— Provided expert training and support for each language

p 29 X10: An Object-Oriented Approach to Non-Uniform Cluster Computing i b G

Data Summary

S
Instrumented Raw Events for Full Experiment

* 180,524 source, source diff, compiler,
batch, shell, web, and window events
were recorded for the 27 subjects.

« Each event contains detailed
information for subsequent contextual
and temporal analysis

« Example: compiler component

experiment and subject IDs
timestamp

compiler name

command line

number of errors and warnings
compiler output

links to source and batch records

user_id|source src_diff compiler batch shell web window| total
M1 132 353 179, 168 1,305 9,775 2,450| 14,362
M2 155 366 151 463 1,975 346 2,259| 5,715
M3 237 465 330 107 1,386 2,736 2,483| 7,744
M4 69 134 81 30 432 3,801 1,664| 6,211
M5 119 271 139 24 608 299 1,458| 2,918
M6 327 313 287 79 1,235 366 2,658| 5,265
M7 409 1,067 427 77 1,920 1,300 3,691 8,891
M8 258 766 342 73 1,355 3,250 2,504 8,548
M9 116 247 160 59 875 913 1,224| 3,594
Ul 129 145 254 138 1,485 20 416 2,587
u2 224 525 256 240 1,669 733 2,222| 5,869
U3 236 449 268 427 8,053 1,014 4,204| 14,651
u4 316 420 162 298 1,301 580 1,478| 4,555
U5 82 63 20 24 274 486 653| 1,602
u6 297 388 179 227 1,479 389 1,691| 4,650
u7 207 661 419 104/ 1,625 7,396 1,550/ 11,962
us 244 500 238 303 7,529 645 1,563| 11,022
U9 422 847 402 342 2,492 1,793 2,268| 8,566
X1 767 354 645 0 2,104 987 2,056| 6,913
X2 162 228 404 0 1,109 30 687 2,620
X3 766 329 432 0 1,421 91 1,419| 4,458
X4 236 420 455 0 1,341 1,007 3,518 6,977
X5 680 251 669 0 1,809 844 1,753| 6,006
X6 291 348 663 0 1,809 1,446 1,661 6,218
X7 238 484 595 0 1,731 307 1,396| 4,751
X8 405 452 582 0 1,727 888 2,465/ 6,519
X9 217 319 887 0 2,634 1,025 2,268 7,350
total 7,741 11,165 9,626 3,183 52,683 42,467 53,659 180&24

X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

Data Summary (contd.)

M Executing « Each thin vertical bar depicts
¥ Cleaning . .
Parallelizing 5 minutes of development time,
i Debugging colored by the distribution of
Authoring . ey gl .
e activities within the interval.
documentation
N * Development milestones bound
) End task intervals for statistical analysis:
> First correct . begln/end task
parallel output .
« Bogin development * begin/end development
b End development « first correct parallel output

p‘%’f \

MPI | UPC | X10
obtained correct 4 4 8
parallel output
did not obtain correct
5 3 1
parallel output
dropped out 0 2 0

X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

Average Development Time by Language

Absolute Time

600
[Oexecuting
550 ¢ Ocleaning
r Oparallelizing
u O debugging
= 500 F Oauthoring
= : O accessing
=450 F documentation
o [
c [
© [
2> 400 |
3 [
h [
..l_ L
S 350 ¢
[=)] [
£ i
T 300
=
S :
> 250 Ff
7] [
E L
S 200
= r
£ [
~— 150 |
© [
E :
* 100 ¢
50 |
O L 1
MPI uPC X10
Language

X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

100%

percentage of total time (excluding off-task and idle)

0%

50% -

Percentage of Total

MPI

UpPC
Language

X10

Comparing average development
times between languages, several
observations are clear:

Average development time for subjects
using X10 was significantly lower than
that for subjects using UPC and MPI.

The relative time debugging was
approximately the same for all
languages.

X10 programmers spent relatively more
time executing code and relatively less
time authoring and tidying code.

Subjects using MPI spent more time
accessing documentation (tutorials
were online; more documentation is
available).

A batch environment was used in this
study --- use of an interactive
environment like Eclipse will probably
have a significant.impact on

development time results ==== =

Outline

« Software challenges for multi-core systems
« X10 Programming Model and Language

e X10 Productivity Analysis

« X10 Implementation

« Conclusions

@S 33 X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

L2
/,..’ 3

-

| |
A
T
I

X10 Implementation Status

s
Open source project on sourceforge (x10.sf.net)

 Reference X10 implementation on a single SMP
— CVS repository hosted on
— Nightly regression tests (~ 600 unit tests)
— X10 application set starting to grow
— Basis for Optimized SMP Implementation

« X10 Development Toolkit (X10DT)
— Eclipse tools with basic X10 language support
— X10-specific refactorings in progress
« Extract Async
* Introduce atomic sections

— Built on meta-tooling framework (SAFARI)
Efforts under way this year:

X10 Libraries for C/C++ users on cluster of SMP nodes

C/C++ code generation from X10

Static Analysis and Ahead-Of-Time Optimization
— Concurrency analysis
— Optimization of BadPlaceException checks and redundant async/finish ops

A — Use of static analysis to enhance X10-specific refactorings

X10 Eclipse Development Toolkit

Java

File Edit MNavigate Search Project Run Window Help

5 -E o [3-0 -0 [#E6- | @[3 - ES 45ebug |

12 Package Explorer 3% " Herarchy| — O |[[l RandomAccess.xct0 | LU SMP.x10 | [streamx1d [l ane] = (8= outine 52 . =0

- 2| BE - } s || 88 neB3_0_X10

(42 %10.demo.sc06 ® meop

54 src /*a_res=a_res-A{a_arg)*/ & MGOP(int)
i HPCC_Simple_X10 I @ wvoid computeResidual (MPE
2 Randomiccess.x 10 = final void computeResidual(final LevelData RES, final LevelData a_arg){ - /8. Voud copiteR eddis(NRE
-4 seam.x10 final LevelData RES = RES; ° ““‘j C“’“P“ERES'S“E:(NP'
8 nPE3_0_x10 = finish ateach(point [i]:RES_.getPlaces()){ /*at each place.*/ @ “"‘d E""‘D“z:“'d“al—g“
2 CGDriver.x10 final double [.] res=RES_.gethArray(i): t : :::d sr:::;(NPT:; l;ah;
-4 CGSolver.xi0 final double [.] arg=a_arg.getArray(i); i Ly Smuum(NPES_D_xw
i@ LevelData,x10 /*apply A on the inner region+*/ @ void Smooth Uverl_ap;ed'
@ LU_SMP.x10 region R=RES_.getInnerRegion(i); //remowed final & Smnnﬂwioverlapped{
@ LW0verlap.x10 //foreach(point p:R){ // 23 addition+3 multiplication e i aDDIyOD_P(NPBS 0.x
: :gg?:;;m - for(point p:R){ - @ void applyOpP{NPE3_0_X
2 SparséMat - double do,d1,dz,d3; @ void ApplyOpP(NPE 0 X
@ Timeracd0 5 do0=arglp]: - @ void ApplyOpP_Overlappe

- e //d1=0; for(int j=0;j<Util.DIFF1,length;j++) dl+=arg[p+Usil.DIFF1[5]]; =@ finish
£ 2 VEE.tnr %10 d2=0; for(int j=0;]j<Util.DIFF2.length;j++) d2+=arg[p+Util.DIFF2[j]]: -~ @ ateach {point [i] :
% NPE3_0_X10,BMInCut d3=0; for(int j=0;j<Util.DIFF3.length;j++) d3+=arg[p+Util.DIFF3([j]]; - @ for (pointpp :

& ECLIPSE_HOME plugins 10, runtime _L res[p]-=(Rc[0]*d0+Rc[2] *d2+Ac[3] *d3) ; =@ finish
i if (PERF On && (!PERF CommCnly)&&PERF InLoop) x10.lang.perf.addLocalOps((long) - @ ateach (point [i] :

B JRE System Library [ire1.5.0_09] g, g, o

}

¥
if (EXCHANGE RAfter) finish RES_.exchange():

if (PERF_On && (!PERF CommOnly)&&(!PERF_InLoop))
//if (PERF On && (!PERF CommOnly)&&(!PERF InLoop)) x10.lang.perf.addLocalOps ({long) (26

thlems!]avadn:‘ Dedlaration | B console 52 s

¥]
Fhu resve wegtokis arodiis - & m_problemDomain [ﬂ
= fin;l vaia computegesidual (final LevelData a_res, f & m levels
- if (OVERLAPPED) : :—;
ComputeResidual Overlapped(a_res, & % mihempLD
= Sl) & MGOP(nt)
; ComputeResidual (a res, a.argl.a arg - & computeResidual(NPB3_0_X10.LevelData, NPB3_0_X10.LevelDa
&
& ComputeResidual(NPB3_0_X 10.LevelData, NPB3_0_X10.LevelDs
= final woid ComputeResidual (final LevelData & res, f - & ComputeResidual_Overlapped 1{NPB3_0_X10.LevelData, NPB3_(
if (!EXCHANGE After) finish a arg2.exchange - & ComputeResidual_Overlapped(NPB3_0_X10.LevelData, NPE3_0_
= finish ateach(point [1]:a_res.getPlaces()){ A smooth(NPB3_0_X10.LevelData, NPB3_0_X10.LevelData, boolez
final double [.] res=a_res.getArray - & Smooth(MPB3_0_X10.LevelData, NPB3_0_X10.LevelData, boole:
R] s M B, T L :m e e e - & Smooth_Overlapped 1{NPE3_0_X10.LevelData, MPE3_0_X10.Lev
A Smooth_Overlapped{(NPB3_0_X 10.LevelData, NPB3_0_X]_D.LEVEM

il I [l

x10.lang.perf.addlocalOps ((long) (26%E

(vl

4900000 OO

[#- @ for (pointpp:
@ void ApplyOpP_Cverlappe
=@ finish
®- & async
wvoid applyOpQ{NPB3_0_X
wvoid applyOpQ{NPB3_0_X
void ApplyOpQ{HPE3_0_X.
void ApplyOpQ_Overlappe
wvoid ApplyOpQ_Overlappe
double MGSalve(NPE3_0_:
void MGQ)
double residualMorm{)
wvoid main{java.lang.String
member field dedarations

(£ [2]

i IENIEEE -

<terminated: stream [X10 Application] C:\Program Files

STREAM version $Revision: 5.6 §

This system uses 8bytes per DOUBLE PRECISION word.

Array size = 200000

A

3] 1l 2l

\Writable Smart Insert 118:10

g 35 X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

Current Status: Multi-core SMP
Implementation for X10

D -
N L T T T T ToToTIToToTIILTLTI '
i’ ! Code !
= X10 DOMO ! Generation ! X10
L Grammar Static ' Templates ! Front
. 1
1o Analyzer ! !
;! = , ! End
co i i
: ! i Annotated Target ;
%10 o AST i AST Java I
—_—1p - ; ; : . .
source . X10 Parser Analysis passes +———-| Java code emittet > Java compiler !
1 . I 1
: ! Common components w/ SAFARI i i
L L L L L L L T T T T T T T T D D D D D e e e e e e e e imimi e oo o 2 1
X10 classfiles
Place Atomic sections do (Java classfiles with
Ready Executing L not have blocking special annotations for
b d P oo semantics att
'clltr:]ti\?iltjir(‘es Activities Activities X10 analysis info)
Outbound
|::> % % % |::> activities +
e mrmememimimim i mm Y- \
— | Acwies Aeites P8 el I Xlo
Activit | . . .
com Sioced [stack, place ocal P i ' Runtime
pleted Activiti mutable data, or global I U I P N !
Activities ctivities immutable data X pri = 1
(1 % % % (aosi—} |y | i |
Outbound e 1 ; ; !
repies [Fuwre}—1 | epies” v Place0 Place 1 a0 ibraries |,
1| Java Concurrency Utilities (JCU) STM library '
1 1
r_. L S S S S _ _|
' | & |High Performance JRE | | Portable Standard |; Java
Fortran, L E (IBMJ9 VM Java5Runtime |i Runtime
C/C++ ‘—IP E + Testarossa JIT Environment [
DLL’s i c Compiler (Runs on !
|2 modified for X10 multiple !
;| W on PPC/AIX) Platforms) !
. 1
e — — —
e L _:
- — —
—T——

X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

System Configuration used for
Performance Results

Hardware
- STREAM (C/OpenMP & X10), RandomAccess (C/OpenMP & X10), FFT (X10)
* 64-core POWERS+, p595+, 2.3 GHz, 512 GB (r28n01.pbm.ihost.com)
- FFT (Cilk version)
* 16-core POWERS+, p570, 1.9 GHz
— All runs performed with page size = 4KB and SMT turned off
Operating System
- AIXVv5.3
Compiler
— Xlc v7.0.0.5 w/ -O3 option (also gsmp=omp for OpenMP compilation)
X10
— Dynamic compilation options: -J-Xjit:count=0,optLevel=veryHot
— X10 activities use serial libraries written in C and linked with X10 runtime
— Data size limitation: current X10 runtime is limited to a max heap size of 2GB
All results reported are for runs that passed validation

— Caveat: these results should not be treated as official benchmark
measurements of the above systems

X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

.||l}

Performance Results for STREAM

Array size = 226 elements
Combined memory for 3 arrays = 1.5GB

O Triad

% 0O Add
© O Scale
@ Copy

C-1 X101 C-2 X10-2 C-4 X10-4 C-8 X10-8 C-16 X10-16 C-32 X10-32 C-64 X10-64
#threads / places
—————
eS 38 X10: An Object-Oriented Approach to Non-Uniform Cluster Computing ——— — ' —°

GUPS

Performance Results for RandomAccess

6.0E-02
5.0E-02
4.0E-02
3.0E-02
2.0E-02
1.0E-02

0.0E+00

8339

Array size = 1.8GB

2 4 8 16 32

#threads/places

X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

@ OpenMP/C
| Hybrid X10

o
iiiiHn

Performance Results for FFT
(w/ memoized sine/cosine twiddle factors)

ution time in Secon

Exec

N = 224 (SQRTN = 212)

2 4 8 16

of threads / places

X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

B Cilk (1.9 GHz)
0 X10 (2.3GHz)

il

"j I
-1ilill
il
-]

P.

Studying the Java vs. C performance gap

(1.1GHz Power4 system, xlc v7.0.0.1 xlc)
S

Scimark2 MFlops

Experimental SciMark2 Results

700
600
500
400
300
200

100

SOR M Carlo Sparse

Mmul

Composite FFT

O Default Java 5.

@mJava 5.0 +

Compiler flags
O xlc -O5

0

LUFact

és

Details on “Compiler flags”

*Force higher optimization level on first execution of methods
*Enable generation of Fused Multiply-Add machine instructions

*Simulate X10 Static Analyzer’s ability to remove most null- and bounds-

checks by removing all such checks from selected methods.

*Also remove extra code and register allocation restrictions related to

memory management (GC) in selected methods

41 X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

Some Challenges in Optimization
of X10 programs

———
 Improving Single Activity Performance

« Analysis and optimization of explicitly parallel programs
— Proposed approach: use Parallel Program Graph (PPG) representation

 Analysis and optimization of remote data accesses

— Proposed approach: perform data access aggregation and elimination using
heap-based SSA framework

« Optimized implementation of Atomic Sections
— Simple cases that can be supported by hardware
— Analyzable atomic sections
— General case

 Load-balancing
— Dynamic, adaptive migration of places across nodes in deployment

« Efficient invocation of components in other languages
- C, Fortran

« Garbage collection across multiple places

@S 42 X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

PA%E
/,.., 2

-

Outline

« Software challenges for multi-core systems
« X10 Programming Model and Language

e X10 Productivity Analysis

« X10 Implementation

e Conclusions

@S 43 X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

L2
/,..’ 3

-

| |
A
T
I

Related Work

« Single Program Multiple Data (SPMD) languages with Partition Global
Address Space (PGAS)

— Unified Parallel C, Co-Array Fortran, Titanium
— X10 generalizes PGAS to a “threaded-PGAS” model (beyond SPMD)

» Hierarchical fork-join parallelism
— Cilk (ultra-lightweight threads, work-stealing scheduling, ...)
— X10 generalizes Cilk by adding places, distributions, futures, ...

« X10 has similarities with other languages in DARPA HPCS program ---
Chapel (Cray) and Fortress (Sun) --- but there are also key differences

— Chapel allows object migration and data redistribution, which could
makes it harder to use for scalable parallelism (compared to X10)

— Fortress has a major focus on new type system and user-viewable
program representations (single-threaded advances that are
complementary to X10)

[24
/1 & -

HES T=ES

44 X10: An Object-Oriented Approach to Non-Uniform Cluster Computing ——— — ' ' =°

Relating optimizations for past programming

paradigms to X10 optimizations
S

Programming Activities Storage classes Important optimizations

paradigm

Message- Single activity per Place local Message aggregation, optimization of

passing e.g., place barriers & reductions

MPI

Data parallel Single global Partitioned global SPMDization, synchronization &

e.g., HPF program communication optimizations

PGAS e.g., Single activity per Partitioned global, place local | Localization, SPMDization,

Titanium, UPC place synchronization & communication
optimizations

DSM e.g., Multiple Partitioned global, activity Data layout optimizations, page locality

TreadMarks local optimizations

NUMA Single activity per Partitioned global, activity Data distribution, synchronization &

place

local

communication optimizations

Co-processor
e.g., STI Cell

Single activity per
place

Partitioned-global, place-local

Data communication, consistency, &
synchronization optimizations

Futures / active | Multiple Place-local, activity local Message aggregation, synchronization
messages optimization
Full X10 Multiple activities in | Partitioned-global, place-local, | All of the above

multiple places

activity-local

X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

_L.—,:?;’--

- ¢
A 46 X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

Summary: Advantages of X10

Programming Model

Any program written with atomic, async, finish, foreach, ateach, and
clock parallel constructs will never deadlock

— future-force needs disciplined usage to guarantee absence of
deadlock e.g., force should be performed by activity that created
future (or an ancestor of that activity)

Inter-node and intra-node parallelism integrated in a single model

Remote activity invocation subsumes one-sided data transfer, remote
atomic operations, active messages, . . .

Finish subsumes point-to-point and team synchronization

All remote data accesses are performed as activities =» rules for
ordering of remote accesses follows simply from concurrency model

Can be easily mapped to multiple levels of parallel hardware (SIMD,
SMT, coprocessors, cache prefetch, SMP, clusters, ...)

Conclusions and Future Work

« X10 programming model provides core concurrency and distribution
constructs for new era of mainstream parallel processing

« Two primary opportunities for X10 adoption:
— DARPA High Programming Language Systems
— Mainstream language for multi-core

« We’d welcome collaboration on X10
— Applications to evaluate X10 in different domains

— X10 subprojects for different hardware platforms
» Multi-core, Clusters, Co-processors, Grid

— Participation in productivity experiments
— Participation in X10 open source project on SourceForge (x10.sf.net)

(A2
"2 ;

=

S TERE

@3 47 X10: An Object-Oriented Approach to Non-Uniform Cluster Computing =——— — =°

BACKUP SLIDES START HERE

p% 48 X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

i

- ||lI
d

Need to look holistically at entire Software Stack for
Multi-Core Enablement

—Appiication |

Application fameworks and libraries e.g., ESSL,
graphics libraries, imaging libraries, security libraries

" Bonainapeciic ™

Domain-specific programming models that encapsulate
concurrency e.g., Map-Reduce (Google Sawzall), Pub-
Sub (JMS), Stream Processing Engines (Distillery)

prog models & langs

Middleware

Middleware in support of domain-specific
programming models & frameworks e.g., J2EE
containers, relational databases, Async Beans

Tools for improved functional/performance quality of
concurrent software

FOCUS OF
THIS TALK

Infrastructure languages that simplify concurrency
for programming for C/C++/Java/C# programmers
e.g., MS Concur, IBM X10, OpenMP

nroq languages

VMs, Lang Runtime

Dynamic code specialization, speculative parallelism, assist

threads, SIMDization, code partitioning

Speculative parallelism, assist threads, SIMDization,
code partitioning

Static Compilers

System Libraries

Libraries that encapsulate concurrency e.g., Java
Concurrency Utilities, Transactional Memory, Cell libs, Tl
OMAP

OS and Hypervisors

Dynamic scalable management of heterogeneous
resources per core (frequency, power)

X10 Eclipse Debugging Toolkit

Fle Edt Mavigate Search Project Run Window Help

| e IF-0-Q- @ oo -

| $50ebug &llava

I g

*

3R R 5| BT = O)[(60= variables 5 Breakpoints |

.;$EEV=IE\

2

= (5] LU_SMP [x10 Application]
=I-&@ x10.lang.Runtime at localhost: 1108
@ Thread [main] (Running)

o Thread [pool-0-thread

Main Activity] (Suspended (exception ArithmeticException))

LU_SMP.x10 line: 135

LU_SMP.x10 line: 112
InvocationStrateaysAsyncInFinishStragegy. invokeX 10Task(Activity) lne: 34
LU_SMPgMain{Activity).run() ne: 185

ThreadPoolExecutorsiorker runTaskRumnable) line: not available
ThreadPoolExecutorSWorker.run() line: not avaiable

PoolRunner (Thread).run{) line: not available

@ Thread [pool-0-thread-1: NPE3_0_X10.LU_SMP.lu{LU_SMP.java: 138)] (Running)
@ Thread [pool-0-thread-2: NPB3_0_X 10.LU_SMP.lu(LU_SMP.java: 138)] (Running)
@ Thread [pool-1-thread-0] Running)

@ Thread [pool-1-thread-1] Running)

»® Thread [pool-1-thread-2] (Running)

8 Thread Inool-2-theead-01 Ruoning).

© a_A=DoubleArray_c (id=51)
a_L=DoubleArray_c (id=64)
a_U=DoubleArray_c (id=55)
a_p=IntArray_c (id=66)

A= MultiDimRegion (d=71)

n=10

N= ContiguousRange (id=75)
MLess1= ContiguousRange (id=79)
NCurrent= GenericArray ¢ (id=80)
A=DoubleArray_c (id=85)

r=10

maxIdi= 1

PPPPROOOOOE

"IQ RandomAccess.x10 [LU_SMP.x10 B2 [stream.x10 | [xl MeoP.x10

double r; int maxIdx:
= for (point [k]:NLessl){

fipal int m—maxIdx;

= if (r!=0)
1
int foo= m/0:
// Swap pivot row
= if (m!=k){
= finish foreach

(=

(point
double temp=Alk,31:
Alk,J]=RIm3]7

Alm, jl=temp:

// Find index of largest slsment below diagonal in the k-th column

r=RA[k, k]: maxIds=k:
= for (point [i]: NCurrent[k]){
= if (Math.abs (A[i,k])>Math.abs(z)){
r=A[i,k]; maxIdx=i:
H
}

// Skip elimination if column is zero

[31: N}

= O|| g% outine &2 L =g
[»] -H3 NPB3_0 X10
= Lu_smp

B

& void lu(x10.lang. DoubleReferenceArray, x10.lang.De
& void main{java.lang.String)
G2 new double [R] ...

)

@ for (i
@ for(i..)
7 ® for;...)
@ for (point [i] : for {point [[]:p) System.out.print("
@ forf;..)

[+ = member field declarations

B console 52 . Tasks

LU_SMP [X10 Applicatiori]

rogram Fies\Javaljre 1.5.0_09\binljavaw.exe (Nov 13, 2006 3:05:15 PM)

01.01.01.01.01.01.01.01.0 1.0

b o

0.0 -2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.01.03.01.01.01.01.01.01.0 1.0
0.0 0.0 0.0 -4.0 0.0 0.0 0.0 0.0 0.0 0.0
1.0 1.0 1.0 1.0 5.0 1.0 1.0 1.0 1.0 1.0
0.0 0.0 0.0 0.0 0.0 -6.0 0.0 0.0 0.0 0.0
1.01.01.01.01.01.0 7.0 1.0 1.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 -28.0 0.0 0.0
1.01.01.01.01.0 1.0 1.0 1.0 9.0 1.0

50

X10: An Object-Oriented Approach to Non-Uniform

Cluster Computing

STREAM

OpenMP / C version
#pragma onp parallel for
for (j=0; j<N j++) {

b[j] = scalar*c[j];

Hybrid X10 + Serial C version
finish ateach(point p : dist.factory.unique()) {
final region nyR = (D | here).region;
scal e(b, scal ar,c, nyR rank(0).low(), nyR rank(0). hi gh() +1);

|
il
Iy

@3 51 X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

“I!
@

-

STREAM

OpenMP / C versio

Traversing array region
can be error-prone

#pragma onp parallel for

for (j=0; j<N: j++) {ﬁ

Implicitly assumes Uniform
Memory Access model
(no distributed arrays)

b[j] = scalar*c[j]

SLOC counts are comparable

Multi-place version designed to run
Hybrid X10 + Serial C version / unchanged on an SMP or a cluster

finish ateach(point p : dist.factory.unique()) {

final region nyR = (D | her
scal e(b, scal ar, c, nyR rank(

e).region;
.low(), nyR rank(0). high()+1);

Restrict operator simplifies

scale() is a sequential C function

computation of local region

V4 =

@S 52 X10: An Object-Oriented Approach to Non-Uniform Cluster Computing —— = ' =°

RandomAccess

OpenMP / C version

#defi ne NUPDATE (4 * Tabl eSi ze)
for (i=0; i<NUPDATE/ 128; i++) {
#pragma onp parallel for
for (j=0; j<128; j++) {
ran[j] = (ran[j] << 1) "~ ((s64Int) ran[j] < 0 ? POLY : 0);
Table[ran[j] & (TableSize-1)] *=ran[j];

Hybrid X10 + Serial C version
finish ateach(point p : dist.factory.unique()) {
final region myR = (D | here).region;
for (int i=0; i<(4 * TableSize)/W i++) {
I nner Loop(Tabl e, Tabl eSi ze, ran, nyR rank(0).l ow(), nyR rank(0). hi gh() +1);
}

o
p&l@S 53 X10: An Object-Oriented Approach to Non-Uniform Cluster Computing

e

.|||

RandomAccess

OpenMP / C version

#defi ne NUPDATE (4 * Tabl eSi ze)
for (i=0; i<NUPDATE/ 128; i++) {
Hor adma o arallel for Inner parallel loop is a source of
prag P inefficiency in OpenMP version
for (j=0; j<128; j++) {
ran[j] = (ran[j] << 1) ™ ((s64Int) ran[j] < 0 ? POLY : 0);
Table[ran[j] & (TableSize-1)] *=ran[j];

}

Multi-place version designed to run
SLOC counts are comparable / unchanged on an SMP or a cluster
Hybrid X10 + Serial C version

finish ateach(point p : dist.factory.unique()) {

final region myR = (D | here).region;
for (int i=0; i<(4 * TableSize)/W i++) {
R rank(0).low(), myR rank(0). high()+1);

i nner Loop(Tabl e, Tabl eSi ze, r an,

} AN

innerLoop() is a Restrict operator simplifies

o! sequential C function computation of local region __
pﬁ@g 54 X10: An Object-Oriented Approach to Non-Uniform Cluster Computing ——— — —°

FFT: Transpose example

Cilk / C version (Recursive version)

#define SUB(A, i, j) (A[(i)*SQRTN+(j)]
cilk void transpose(fftw conmplex *A, int n)
{
if (n>1) {
int n2 = n/2;

Implicit sync at function
spawn transpose(A, n

boundary
spawn transpose B(A, n2, n2), n-n2);
spawn trans e_and_swap(A, 0, n2, n2, n);
} else {
1 transpose is a NOP */
}
Hybrid X10 + Serial C version (Non-recursive version)
int nBlocks = SQRTN /_bSize; “finish” operator is used to wait for
int p =0 termination of all subactivities (async’s)
finish for (int r = 0; r < nBlocks; ++r) {
for (int ¢ =r; ¢ < nBlocks; ++c) { // Triangular |oop
final int topLefta r = (bSize * r);
final int topLefta c = (bSize * ¢);
final int topLeftb r = (bSize * ¢);
final int topLeftb ¢ = (bSize * r);
async (place.factory. place(p++))
o transpose_and_swap(A, topLefta_r, topLefta c, topLeftb r, topLeftb_c, bSize);
pé) T transpose_and_swap() is a
) sequential C function

®

