
Cell/B.E. blades: Building
blocks for scalable,
real-time, interactive, and
digital media servers

A. K. Nanda
J. R. Moulic

R. E. Hanson
G. Goldrian
M. N. Day

B. D. D’Amora
S. Kesavarapu

The Cell Broadband Enginee (Cell/B.E.) processor, developed
jointly by Sony, Toshiba, and IBM primarily for next-generation
gaming consoles, packs a level of floating-point, vector, and integer
streaming performance in one chip that is an order of magnitude
greater than that of traditional commodity microprocessors.
Cell/B.E. blades are server and supercomputer building blocks that
use the Cell/B.E. processor, the high-volume IBM BladeCentert
server platform, high-speed commodity networks, and open-system
software. In this paper we present the design of the Cell/B.E. blades
and discuss several early application prototypes and results.

1. Introduction

The rapid deployment of high-speed Internet and

consumer broadband technologies, the creation and

popularity of rich media content, and the proliferation of

open-source infrastructure have enabled a new breed of

streaming and interactive digital media applications that

would not have been possible a few years ago. This new

breed of applications encompasses a wide range of areas

such as gaming, streaming media, medical imaging, video

surveillance, three-dimensional and real-time rendering,

collaborative engineering design, virtual worlds, military

simulation, seismic computing, and financial modeling.

These applications demand a large amount of numerically

intensive and streaming-oriented computing power that is

traditionally associated with expensive, high-end

supercomputers.

Fortunately, the raw numeric computational power of

high-volume processors, such as those designed for

gaming consoles, has been growing at a much faster rate

than that of traditional commodity processors and vector

processors. For example, the Cell Broadband Engine�

(Cell/B.E.) processor, designed by Sony, Toshiba, and

IBM [1, 2], offers more than 200 Gflops of single-

precision, floating-point performance in a single 3.2-GHz

chip. This computing capability is an order of magnitude

higher than what today’s comparable desktop processors

can achieve, such as the 32-bit Intel Architecture**

(IA-32) or the IBM PowerPC Architecture* core. The

availability of a supercomputing level of performance in

commodity processors intended for the entertainment

markets presents a platform opportunity with an

unprecedented level of cost performance for these

numerically intensive applications.

Cell/B.E. blades were developed by IBM for high-

performance, scale-out servers, and they are targeted

toward a variety of highly interactive digital media, real-

time, streaming, and supercomputing applications. The

generic Cell/B.E. blade architecture takes advantage of

four key high-volume and open-system technologies,

namely

� The IBM BladeCenter* platform.
� The Cell/B.E. processor.
� Open-system software, including the Linux**

operating system (OS).
� Commodity high-speed switches such as InfiniBand**

and Ethernet.

As shown in Figure 1, Cell/B.E. blades fit into the

IBM BladeCenter server platform [3], which also

accommodates a variety of blade designs based on

commodity IBM, Intel, and AMD processors. The

BladeCenter platform allows modular, scalable clustering

of these processor blades using high-speed commodity

interconnection networks such as InfiniBand or Ethernet.

Cell/B.E. blades add significant floating-point, vector,

and integer stream processing power to the traditional

processing capabilities of other blade types. Configuring a

�Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007 A. K. NANDA ET AL.

573

0018-8646/07/$5.00 ª 2007 IBM

BladeCenter chassis with a mix of different types of

processor blades, storage, and interconnect networks

allows the server hardware and software platform to

be optimized for a particular target application, based on

its need for different types of computation and

communication. For example, a Web server environment

could include a few Cell/B.E. blades to help accelerate

security functions while the remainder of the work would

need a large number of traditional blades. On the other

hand, a gaming server, a war simulation server, or a video

surveillance server could have hundreds or thousands of

Cell/B.E. blades to perform media-, physics-, and image-

intensive functions and only a few traditional blades to

provide support functions such as user account

management and database access. Figure 2 shows a

specific example of a parallel ‘‘render farm’’ for digital

content creation that could be used in a movie, game, or

broadcasting production studio.

In this paper we present the hardware and software

architecture and provide a few application examples using

the first generation of Cell/B.E. blades. Section 2

describes the Cell/B.E. blade hardware. Section 3

describes the Cell/B.E. blade software and various

programming models. Several application examples are

presented in Section 4, and the challenges and

opportunities of this new platform are provided in

Section 5. Finally, Section 6 concludes the paper.

2. Cell/B.E. blade hardware

Cell/B.E. processor

The Cell/B.E. processor is primarily targeted at digital

media and entertainment devices such as gaming consoles

and high-definition televisions. The processor

incorporates a traditional 64-bit PowerPC Architecture

core, extended through tight integration of multiple,

cooperative offload vector processors, or synergistic

processor elements (SPEs). Each SPE consists of a

128-bit-wide vector, single-instruction multiple-data

(SIMD) synergistic execution unit (SXU). Each SPE is

fed from a dedicated local store (LS) and is linked to an

on-chip coherent interconnection bus, called the element

interconnect bus (EIB), for communication and

cooperation with other on-chip elements or off-chip

resources. The first-generation Cell/B.E. processor

combines a dual-threaded, dual-issue 64-bit PowerPC

Architecture–compliant PowerPC processor element

(PPE) with eight SPEs. This unique on-chip vector

multiprocessor design, along with the very high memory

and input/output (I/O) bandwidths of the Cell/B.E.

processor, results in floating-point and integer streaming

performance that is an order of magnitude greater than

that of any other high-volume processor currently on the

market.

The PPE is optimized for design frequency and power

efficiency, by utilizing short pipeline depths, avoiding

long wiring runs, and limiting communication delays.

Hence, the design of the PPE is more simplified than that

Figure 1

System architecture using Cell/B.E. blades. (DB: database; SSL:

Secure Sockets Layer; XML: extensible markup language; IA-32:

32-bit Intel Architecture.)

BladeCenter

Storage

To the

Internet

Intel IA-32/IBM PowerPC/

AMD Opteron**

back-end blades

• Traditional DB access

• Web services

• Account management

Compute-intensive

Cell/B.E. blades

• Streaming functions

• Math and physics

 code, game code

• Vector code

• Graphics and media

 functions

Communication

(edge) Cell/B.E. blades

• SSL, XML, and

 other communication

 acceleration

• 3D Web browsing

• Function caching

• Load balancing

Figure 2

Example of a system configuration for digital content creation.

(NAS: network-attached storage; GbE: Gigabit Ethernet; IB:

InfiniBand; QS2x, HS2x, LS2x: IBM blade products based on

AMD, Intel, and Cell/B.E. processors, respectively.)

Animator/editor

workstations

Scalable network

backbone

NAS

Network server

Internet

QS2x/HS2x/LS2x-based system with NAS

H
S

2
x

Q
S

2
0
/Q

S
2
1

Q
S

2
0
/Q

S
2
1

Q
S

2
0
/Q

S
2
1

Q
S

2
0
/Q

S
2
1

L
S

2
x

Total storage

GbE/IB

GbE/IB

. . .

GbE/IB GbE/IB

A. K. NANDA ET AL. IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

574

of the more recent four-issue out-of-order processors. The

SPE implements a separate instruction set architecture

(floating point and integer) that is optimized for power

and performance on compute-intensive and media

applications with 128-bit-wide vector, SIMD SXUs. The

SPE operates on an LS memory (256 KB) that stores

instructions and data that are transferred between this

local memory and system memory by asynchronous,

coherent direct memory access (DMA) commands that

are executed by the memory flow control unit included in

each SPE. The LS organization introduces an additional

level of memory hierarchy beyond the registers that

provide local storage of data in most processor

architectures. This provides a mechanism to combat the

‘‘memory wall’’ [2], by allowing many memory

transactions to be performed simultaneously without

requiring the deep speculation that drives high degrees of

inefficiency on other processors.

IBM BladeCenter high-volume server platform

The first-generation IBM BladeCenter [3] is a modular

chassis that is capable of housing 14 current standard

blades; first-generation Cell/B.E. blades occupy two slots,

so a chassis can accommodate up to seven Cell/B.E.

blades. The BladeCenter chassis allows individual blades

to be physically mounted in one standard 19-inch

equipment rack and to share system resources such as

switching or interconnect, storage, networking or

communication fabrics, system management, power

distribution, and cooling of air-moving devices.

Blade servers are a relatively new technology that has

captured industry focus because of their modular design,

which can reduce cost with more efficient use of valuable

floor space, and their simplified management, which can

help speed up such tasks as deploying, reprovisioning,

updating, and troubleshooting hundreds of blade servers.

The standardization of the blade form factor in the

BladeCenter platform makes it an ideal candidate for

flexible, adaptable system configurations in which various

types of processor, storage, and interconnect or

communication blades can be plugged into a single

chassis.

Cell/B.E. blade

A first-generation Cell/B.E. blade is shown in Figure 3.

The two Cell/B.E. processors in a blade are configured as

a two-way, symmetric multiprocessor (SMP); each

processor runs with a clock frequency of 3.2 GHz and can

deliver peak single-precision, floating-point performance

of 217.6 Gflops. Memory is directly connected to each

of the two Cell/B.E. processor chips via high-speed

Rambus XDR** random access memory (RAM)

interfaces. Each Cell/B.E. chip is also connected to a

separate South Bridge1 chip that provides I/O

functionality. The bandwidth of each XDR RAM

interface is 25.6 GB/s, the bandwidth of the interface

Figure 3

First-generation Cell/B.E. blade.

Figure 4

Cell/B.E. blade functional block diagram. (RTC: real-time

clock; NVRAM: nonvolatile RAM; HDD: hard disk drive; GbE:

Gigabit Ethernet; PHY: circuit providing bridge between digital

and modulated parts of the interface; PCIe: PCI Express;

DRAM: dynamic random access memory.)

1 GbE 1 GbE

PCI

InfiniBand

In
fi

n
iB

an
d

DRAM

InfiniBand

daughter card

In
fi

n
iB

an
d

InfiniBand
In

fi
n
iB

an
d

DRAM

InfiniBand

daughter card
In

fi
n
iB

an
d

1 GbE

PHY

HDD

Flash,

RTC,

and

NVRAM

PCI

Rambus design:

XDR

512 MB

South Bridge

0

PCIe

Rambus design:

XDR

512 MB

South Bridge

1

PCIe

Cell/B.E.

processor

Cell/B.E.

processor

1 GbE

PHY

1Also known as the I/O controller hub (ICH), the South Bridge chip implements the
‘‘slower’’ capabilities of the motherboard.

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007 A. K. NANDA ET AL.

575

between the Cell/B.E. processors is 20 GB/s in each

direction, and the effective bandwidth of the South Bridge

I/O interface from each Cell/B.E. chip is ;1.0 GB/s in

each direction, as shown in Figure 4.

The South Bridge 0 chip provides a PCI Express**,2

(PCIe) channel, a PCI bus interface, an integrated drive

electronics (IDE) channel used for an onboard hard disk,

a Gigabit Ethernet3 (GbE) media access controller

(MAC), Universal Serial Bus (USB) 2.0 ports, a universal

asynchronous receiver/transmitter (UART), and an

external bus controller. Attached to the external bus are a

Flash erasable, programmable read-only memory

(EPROM) device (8 MB), 1 MB of battery-backed

nonvolatile RAM (NVRAM), and a battery-backed real-

time clock (RTC). On the South Bridge 1 chip, only the

PCIe channel and the GbEMAC are used. Optionally, up

to two InfiniBand daughter cards can be connected via

the PCIe ports. The Cell/B.E. blade also includes an IDE

hard disk (which provides a boot mechanism for the OS).

3. Cell/B.E. blade software

Software stack

The Cell/B.E. processor was designed with the

appropriate architectural characteristics for multi-OS

support, including the real-time game OS. However, the

system software foundation for the Cell/B.E. blade is the

PowerPC 64-bit Linux SMP–enabled kernel, with

appropriate extensions to utilize the SPEs. Patches

incorporating the extensions are integrated with a

standard Fedora** core4 build, and they provide the

application programmer with a familiar GNU C library

(GLibC) application programming interface to the dual-

processor, two-way simultaneous multithreading (SMT)

hardware features and OS utilities. The software stack, as

shown in Figure 5, has a full GNU compiler collection5

(GCC) development environment that includes compilers

and debuggers for the PPE and the SPE, a linker/loader,

and low-level profiling support. A set of Cell/B.E.

processor–optimized reference libraries is provided for

application developers to use as templates for creating

application-specific libraries. Also incorporated in the

Linux OS build are implementation-specific device drivers

for I/O support, including GbE, USB, Serial console,

PCI, PCIe, interrupt controllers, and other blade-level

hardware for testing, performance monitoring, reliability,

availability, and serviceability features that are exposed to

the IBM BladeCenter maintenance console. The OS

interfaces with the blade hardware via low-level firmware

and slim-line open firmware (SLOF).

Exploiting the SPEs

There are several models for exploiting the SPEs. The

SPEs can be abstracted as Linux OS devices and

manipulated by the programmer via standard file I/O

mechanisms. Figure 6 shows a high-level representation

of the file abstraction Cell/B.E. processor programming

model. In this model the programmer communicates with

Figure 5

Cell/B.E. blade software stack. (CBEA: Cell Broadband Engine

Architecture; PPC 64: 64-bit PowerPC.)

GNU C libraries

Firmware

Application

binary

interface

Application

programming

interface

Hardware

Applications

Slim-line open firmware

PPC 64/specific Linux tree

Cell/B.E.

Libraries/tools

PPC 64 + CBEA back end

Binary programming applications

Linux

Secondary boot loader

Low-level firmware

Device drivers Device drivers

Figure 6

File abstraction of Cell/B.E. programming model. (SPU: synergis-

tic processor unit.)

/SPU/

Myprog/

Otherapp/

Local_store

Mailbox

Registers

Local_store

Mailbox

Registers

2PCI Express is a computer system bus/expansion card interface format that replaces
the earlier PCI format.
3Gigabit Ethernet is a technology for transmitting Ethernet packets at a rate of 1 Gb/s.

4Fedora core (developed by Red Hat originally for Linux) is a general-purpose OS
containing only free and open-source software.
5GNU compiler collection is a set of free programming language compilers produced
by the GNU Project.

A. K. NANDA ET AL. IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

576

the SPEs and their components via standard file I/O

commands such as open/close, read/write, and I/O

control (ioctl).

Programmers can also exploit the SPEs through task-

based abstraction in user-space libraries. SPEprograms are

managed as either single or grouped thread primitives of

the on-chip PowerPC core (i.e., the PPE). For example,

library functions are provided to create, destroy, and

execute SPE threads. Additional library support exists for

synchronizing access to system memory areas shared by

both PPE and SPE programs. Primitives are provided for

‘‘mailbox,’’ DMA, and event management functions.

GNU tool chain elements include theGNUdebugger (gdb)

for the PPE and SPEs, as well as OProfile.6 Separate PPE

(standard GCC from ppc647 Linux OS distribution) and

SPE compilers are included in development tools, along

with an interface description language (IDL) compiler to

define interface between the PPE main program and tasks

or threads targeted for off-load execution onone ormore of

the SPEs. Figure 7 shows a typical build process for

Cell/B.E. processor executables using this model.

Cell/B.E. blade programming models

Single-source optimizing compiler with OpenMP

In addition to the open-source GCC compiler, a ‘‘single-

source’’ compiler prototype based on the IBM optimizing

compiler technology is also available to programmers for

ease of use and additional productivity and performance

[4]. This optimizing compiler is a parallelizing, ‘‘SIMD-

izing’’ compiler that generates code from a single C or

Fortran input source file, using multiple binaries to target

the PPE and SPE units. The goal is to generate highly

optimized code for the multiple levels of parallelism while

providing an abstraction of the underlying architectural

intricacies, thus allowing the user to develop applications

for a parallel architecture with a single shared memory

image.

At the core of the IBM Cell/B.E. compilation strategy

is the technique for abstracting the small local memories

of the SPE. An SPE can directly access its LS only,

requiring a DMA transfer whenever it reads or writes

locations in the shared system memory. This imposes a

nontrivial burden on the programmer, especially for large

programs accessing significant amounts of data. The

compiler-controlled software cache, memory hierarchy

optimizations, and code partitioning techniques assume

all data resides in shared system memory and enable

automatic transfer of code and data while preserving

coherence across all of the local SPE memories and

system memory. This infrastructure provides the

underpinning for enabling parallelism across the SPEs

using Open Multiprocessing (OpenMP**) pragmas.8

Message-passing interface (MPI) microtasks

Another mechanism to hide the LS management chores

from a Cell/B.E. processor programmer is provided

through an MPI ‘‘microtasking’’ prototype. This

mechanism allows a programmer to parallelize the

application program into a collection of microtasks, each

of which can fit in the LS. The microtasks provide

programmers with two advantages. First, they can use the

MPI, a widely used standard interface that can hide the

details of communication hardware from programmers.

Second, the mechanism optimizes the execution of

microtasks by converting message-passing programs into

ones for a streaming model, in which computation kernels

and messages between them stream through SPEs. The

Cell/B.E. processor can execute programs in this model

very efficiently because of its high-speed on-chip DMA

mechanism. For this conversion, the microtask system

employs a preprocessor that optimizes the scheduling of

computations and communications by exploiting explicit

communications in the MPI programming model.

The preprocessor first divides each microtask into a set

of basic tasks, which represent a unit of communications

that can proceed without interacting with other basic tasks

in the middle of the execution. The processor then creates

a precedence graph of basic tasks and statically schedules

them. A novel static scheduler exploits the high-speed

on-chip communication mechanism on the Cell/B.E.

Figure 7

Build process for Cell/B.E. executables.

Make scripts available to automate the build process

PPE module

SPE module

SPE module

SPE module

SPE module

Cell/B.E.

executable

SPE

source

(.c, .cpp)

PPE

source

(.c, .cpp)

SPE

compiler

PPE

compiler

SPE

objects

(.o)

PPE

objects

(.o)

Embed

SPE

utility

SPE

module

PPE

linker

6OProfile is a systemwide profiler for Linux.
7Ppc64 is an identifier frequently used when compiling source code to target
architecture for applications optimized for 64-bit PowerPC processors.

8OpenMP pragmas make up a compiler directive, communicating pragmatic
information.

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007 A. K. NANDA ET AL.

577

processor. Namely, the preprocessor identifies a set of

basic tasks that can be gang-scheduled and can directly

communicate among each other without going through

the off-chip system memory. Since the number of

microtasks is typically larger than the number of SPEs, a

context switch may occur during the execution of a

microtask. Initial experimental results have shown that

the runtime overhead resulting from context switches is

reasonably small.

4. Early experience with Cell/B.E. blade

applications

Several applications and application kernels have been

ported to Cell/B.E. blades and reported in the literature

[5–10]. In this paper we describe three specific examples.

Online game prototype using Cell/B.E. blades as a

remote server

This prototype is an example of an online game

application running on a Cell/B.E. processor–based

server. The game prototype was designed with an

emphasis on physics-based modeling of rigid-body

dynamics in collaboration with Episode, Inc.9 The

premise of this project is that next-generation online

games will rely heavily on server-based physical

simulations to add a dimension of behavioral realism not

available in the current generation of game platforms.

The game prototype leverages the SPEs to perform a

hybrid integration calculation required to compute rigid-

body displacements in a multibody game scene.

Game play

The story line for the game involves mechanical robots

attacking a city inhabited by humans who are forced to

defend themselves by using a variety of weapons to

disable the robots. A robot can be destroyed by directing

weapons fire at vulnerability points located near its arm,

leg, or joints, for example. Alternatively, humans can

destroy static structures causing a robot to lose balance

and fall or be hit by falling debris.

Making the articulation of robot and human joints

result in realistic-looking movement depended on solving

several technical challenges. First, collision detection was

needed to determine when moving bodies were

intersecting with other moving bodies as well as static

bodies such as walkways, buildings, and terrain. Collision

detection was implemented with a two-phase approach

using a broad phase to quickly eliminate bodies that

could not physically collide with each other during any

given frame update and a narrow phase to specifically

determine whether pairs of bodies would intersect with

each given frame update. The entire process is integer and

floating-point intensive. A large robot with many

articulating joints is described in [7]. Each pair of joints in

a robot is represented in a database of collision bodies.

Bodies that are static are referred to as ‘‘sleeping,’’

whereas moving bodies are referred to as ‘‘awake.’’

Client–server synchronization was another important

challenge. A round-trip communication between client and

server could not be tolerated for a short player response

time; because of network latency, it would be necessary to

compensate the client for the response from the player.

Game code performance

We profiled the server-side components to determine

qualitative and quantitative performance differences

between a 3.2-GHz Intel Pentium** 4 processor system

and a 2.4-GHz Cell/B.E. processor–based system.

One point to note is that performance profiling of the

Cell/B.E. processor was done on early hardware that was

not running at potential maximum clock speed and that

had only six (as opposed to eight) functioning synergistic

processor units (SPUs).

We used the ‘‘Ben25’’ benchmark [7] to measure

integration performance. It is a synthetic benchmark that

contains 25 ‘‘ben’’ robots, and it is designed to stress

integration.

Figure 8 shows the relative performance of Cell/B.E.

blades compared with a higher speed Pentium 4 processor

with streaming SIMD extensions (SSEs). A performance

advantage of 1.5 times is obtained for one SPE when

compared with a higher speed Pentium 4 with SSEs and

with early hardware. In a system simulating millions of

objects in a game or virtual world environment, the

Figure 8

P4/SSE vs. SPE integration code performance, normalized to

P4/SSE. (SSE: streaming SIMD extensions; SIMD: single-

instruction multiple-data; P4: Intel Pentium 4.)

P4/SSE 1 3 5
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Number of SPEs

N
o

rm
al

iz
ed

 p
er

fo
rm

an
ce

9Montreal, Quebec, Canada.

A. K. NANDA ET AL. IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

578

improved performance and cost savings from utilizing the

Cell/B.E. blades could be very significant.

Video surveillance server prototype

The IBM smart surveillance system [5] relies on a number

of visual analysis technologies to detect moving objects in

video and track those objects, making it a primary target

application for the Cell/B.E. blades. The smart

surveillance engine processes incoming video from a

camera and stores the viewable video index in the activity

database, as shown in Figure 9.

The video surveillance middleware provides support for

querying the database for various patterns, which makes it

useful for security personnel to either monitor the cameras

in real time or to retrieve the video offline. The smart

surveillance engine consists of two main algorithms: the

background subtraction (BGS) algorithm to detect objects

and the object tracker to track the detected objects. In

addition, the camera streams are stored in a database

using H.26410 encoding, which is a good match for the

stream processing capability of the Cell/B.E. processor.

The BGS module combines evidence from differences in

color, texture, and motion. Consisting of compute-

intensive image processing algorithms, the BGS can

benefit from media processing elements of various

processors. The primary challenge in porting the BGS

code to the Cell/B.E. processor was getting it to run on

multiple SPEs, because the code does not fit into the LS of

one SPE. After looking at the profile data and identifying

data-flow patterns, the code was partitioned into four

modules, with each module assigned to run on a dedicated

SPE. When processing a single camera input, all of these

SPEs run in sequence, with results flowing from one SPE

to the other. However, when processing input from

multiple cameras, these four SPEs run in parallel, with

each SPE processing a different camera input and at a

different stage of processing. Because the data file is too

large to store in the LS of the SPE, it is stored in system

memory, and the SPE brings in the data as needed before

processing it and transfers the results back to system

memory.

Preliminary algorithm-level performance estimates of

some of the surveillance kernels optimized for the

Cell/B.E. processor indicate a significant performance

improvement compared with traditional desktop

processors (Table 1). By utilizing the media processing

capabilities of the Cell/B.E. processor, these image

processing algorithms are able to process more camera

inputs than a comparable general-purpose desktop

processor. As a result, with the Cell/B.E. processor–based

blades, the number of servers required in a large

surveillance system with hundreds or thousands of

cameras can be significantly reduced, which in turn

decreases the total cost of ownership.

Cloth simulation prototype on Cell/B.E blades

Description

The goal for developing this application prototype (with

our partners Alias Systems11) was to test the premise that

the SPE of the Cell/B.E. processor could provide the

necessary acceleration for real-time, interactive

simulation of a soft-body material such as cloth. This

type of simulation is very compute intensive, requiring

many calculations per second to be performed on a large

set of data. Figure 10 shows eight simultaneous

simulations, with each being represented visually by a

cube with a piece of cloth folded or constrained at one or

more positions. The folding and falling behavior of the

pieces of cloth is in response to gravitational and collision

Figure 9

IBM smart surveillance engine.

Video

camera

input

Real-time alerts

to security

console

Smart

surveillance

engine

Viewable

video

index
Activity

database

Movement

pattern

analyzer

User

query

Search

results

Figure 10

Multiple cloth simulations using Cell/B.E. blade.

10H.264 is a compression algorithm in MPEG-4 (also known as Advanced Video
Coding [AVC]).

11Alias Systems is a producer of high-end, three-dimensional computer graphics
software, headquartered in Toronto, Ontario, Canada.

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007 A. K. NANDA ET AL.

579

forces simulated by the user as they interact with the

enclosing cube. The cloth simulation computations are

performed on one or more Cell/B.E blade prototypes

running the Linux OS and the results of those

computations are sent to an Apple Power Mac** G5

client for display.

Implementation on the Cell/B.E. processor

Porting to the Cell/B.E. processor required efficient use of

the nine processing cores and ten user threads of the

Cell/B.E. processor. First, we sought to establish an

effective data flow between the PPE and SPE by

implementing a single simulation on one SPE and

transferring the output data via a socket to the client

system, the Power Mac G5. Once this was accomplished,

in order to support additional simulations, the original

single-threaded code needed to be parallelized over the

eight SPEs. The primary challenge was getting as much

code executing on an SPE thread as possible. This

resulted in moving a significant amount of scalar code to

the SPE including branch code, which is typically not

optimal on an SPE but, with appropriate use of branch

hints, can be made to perform well. The remaining code

executing on the PPE was partitioned as two execution

threads, utilizing the SMT hardware support. One thread

was tasked with communicating with the client renderer,

accepting user events and transferring simulation output

vertices to the client. The other thread was used for

controlling SPE threads and converting user input into

force vectors, which could be transferred via DMA to the

appropriate SPE thread.

Performance results

The cloth simulation leverages the scalable parallel

processing capabilities of the Cell/B.E. processor by

simultaneously running eight instances of the simulation

per Cell/B.E. processor—one on each of the SPEs. Initial

performance on a prototype 2.4-GHz Cell/B.E. processor

is approximately five times as many simulation frames per

second as a 3.6-GHz Pentium 4 class processor, as shown

in Figure 11. At this early stage, not all potential

vectorizable code has been optimized for the Cell/B.E.

processor. The prototype executables were built using

IBM XL C compilers for the PPE and the SPE.

When multiple Cell/B.E. processors are available, as in

the Cell/B.E. blade prototype, the cloth solver can take

advantage of the additional modular processing power by

utilizing multiple Cell/B.E. blades networked in a

BladeCenter chassis. We have simulated up to 32 pieces

of cloth simultaneously on a two-blade prototype system.

The performance of cloth simulation is heavily dependent

on large matrix operations; hence, there is an opportunity

to utilize the SPE SIMD units when computing vertex

displacements as a result of changing force and

gravitational vectors.

5. Challenges and opportunities for
Cell/B.E. processor–based systems
The Cell/B.E. processor and systems using the Cell/B.E.

processor bring a new architecture to the computing field.

Although the PowerPC core in the Cell/B.E. processor

provides continuity and compatibility with legacy

PowerPC-based application code, the Cell/B.E. processor

introduces a new flexible, hybrid computing model

through the SPEs, which integrate elements of parallel,

Table 1 Performance of various surveillance engine modules on a Cell/B.E. processor compared with a general-purpose processor at the

same clock speed

Module % of execution

time that can be

vectorized

Potential increase in

performance (vs. general-purpose

processor at the same clock speed)

Smart surveillance engine with background subtraction algorithm 70% 83 to 163

Smart surveillance engine with object tracking 45% 83 to 163

H.264 encoder 55% 83 to 163

Figure 11

Cloth simulation performance. (VMX is a floating point and

integer SIMD instruction set.)

Number of SPEs

R
el

at
iv

e
p

er
fo

rm
an

ce

0

1

2

3

4

5

6

P4
(3.6 GHz

processor)

1 2 3 4 5 6 7 8

A. K. NANDA ET AL. IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

580

pipelined, and vector computing. These features bring

new challenges and new opportunities.

The foremost challenge for the Cell/B.E. platform is to

hide the new architectural features from the programmer

by using appropriate compiler and parallel programming

tools for ease of use and programmer productivity, and

for extracting performance from this highly parallel chip

architecture. Some of the efforts already underway are

described in Section 3. However, there is a long way to go

toward establishing a robust software ecosystem around

the Cell/B.E. processor before it can establish itself as a

widely used platform for a broad class of applications.

The programming model challenge also brings the

opportunity to seek innovative solutions to these difficult

tasks to architecture, compiler, and parallel programming

researchers.

The high volume of gaming consoles gives the Cell/B.E.

processor competitive commodity pricing; combined with

an order of magnitude greater streaming, floating-point,

and vector performance compared with other commodity

processors, this makes the Cell/B.E. processor a very

attractive platform. The Cell/B.E. blades extend this

volume economy and superior performance of the

Cell/B.E. processors into the area of affordable, scalable

servers and supercomputers using the high-volume

BladeCenter server platform and high-speed commodity

switches. Tying Cell/B.E. blades to Linux and open-

source software brings the additional advantage of mass

participation in building the ecosystem. These factors

highlight the opportunities around the Cell/B.E. blades

platform for government laboratories in the areas

including, but not restricted to, nuclear simulation,

security, video surveillance, and war simulation servers.

For the entertainment industry, it brings opportunities in

areas such as gaming, virtual worlds, broadcasting, and

movie creation. The communication industry would find a

good match with this platform in digital media processing,

encryption/decryption, compression/decompression, and

other compute-intensive applications. Like other

examples, the life sciences industry would find Cell/B.E.

blades useful in drug simulation and medical imaging, the

finance industry in financial modeling, the petroleum

industry in seismic modeling, and the design industry in

three-dimensional collaborative design.

6. Summary
In this paper, we present the hardware and software

design of Cell/B.E. blades, the building blocks for

affordable, scalable servers and supercomputers for

streaming, real-time, interactive, digital media, and

numerically intensive applications. We also discuss the

various programming models that a programmer can use

to efficiently utilize the architectural resources of the

Cell/B.E. processor. Three application prototypes on

Cell/B.E. blades are discussed. The results show a

significant performance advantage of the Cell/B.E. blades

over blades using IA-32 processors. We also discuss the

challenges and opportunities for Cell/B.E. processor–

based systems.

Acknowledgments
The authors gratefully acknowledge the contributions of

the STI Design Center team in Austin, Texas, the

Cell/B.E. blade design team in Germany, the team at

Episode, Inc., the Alias Systems team, the Cell/B.E.

compiler team, the PeopleVision team at IBM Research,

and other IBM teams around the world working on the

Cell/B.E. systems products.

*Trademark, service mark, or registered trademark of Interna-
tional Business Machines Corporation in the United States, other
countries, or both.

**Trademark, service mark, or registered trademark of Intel
Corporation, Linus Torvalds, InfiniBand Trade Association,
Advanced Micro Devices, Inc., Rambus, Inc., PCI-SIG, Red Hat,
Inc., OpenMP Architecture Review Board, Apple Computer, Inc.,
or Lenovo in the United States, other countries, or both.

�Cell Broadband Engine is a trademark of Sony Computer
Entertainment, Inc., in the United States, other countries, or both.

References
1. B. Flachs, S. Asano, S. H. Dhong, H. P. Hofstee, G. Gervais,

R. Kim, T. Le, et al., ‘‘The Microarchitecture of the Streaming
Processor for a Cell Processor,’’ Proceedings of the IEEE
International Solid-State Circuits Symposium, February 2005,
pp. 184–185.

2. J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R.
Maeurer, and D. Shippy, ‘‘Introduction to the Cell
Multiprocessor,’’ IBM J. Res. & Dev. 49, No. 4/5, 589–604
(2005).

3. IBM Corporation, IBM BladeCenter; see http://www.ibm.com/
servers/eserver/bladecenter/.

4. IBM Cell compiler project home page; see http://
domino.research.ibm.com/comm/research_projects.nsf/pages/
cellcompiler.index.html.

5. A. Hampapur, L. M. Brown, J. Connell, M. Lu, H. Merkl, S.
Pankanti, A. W. Senior, C.-F. Shu, and Y. L. Tian, ‘‘Multi-
scale Tracking for Smart Video Surveillance,’’ IEEE Trans.
Signal Processing 22, No. 2, 38–51 (March 2005).

6. RIDMS-1: First Workshop on Real Time and Interactive
Digital Media Supercomputing; see http://
domino.research.ibm.com/comm/research_people.nsf/pages/
ashwini.RIDMS1.html.

7. RIDMS-2: Second Workshop on Real Time and Interactive
Digital Media Supercomputing; see http://
domino.research.ibm.com/comm/research_projects.nsf/pages/
ridms2.index.html.

8. B. D’Amora, K. Magerlein, A. Binstock, A. Nanda, and B.
Yee, ‘‘High-Performance Server Systems and the Next
Generation of Online Games,’’ IBM Syst. J. 45, No. 1
(January 2006).

9. Y. Liu, H. Jones, S. Vaidya, M. Perrone, B. Tydlitát, and
A. K. Nanda, ‘‘Speech Recognition Systems on the Cell
Broadband Engine Processor,’’ IBM J. Res. & Dev. 51, No. 5,
583–591 (2007, this issue).

10. T. Chen, R. Raghavan, J. N. Dale, and E. Iwata, ‘‘Cell
Broadband Engine Architecture and its First
Implementation—A Performance View,’’ IBM J. Res. & Dev.
51, No. 5, 559–572 (2007, this issue).

Received December 6, 2007; accepted for publication

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007 A. K. NANDA ET AL.

581April 25, 2007; Internet publication August 11, 2007

Ashwini K. Nanda IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, NY 10598
(ashwini@us.ibm.com). As the Chief Architect of Quasar/Cell/B.E.
systems, Dr. Ashwini Nanda established and managed the Quasar
systems team in the IBM Systems and Technology group. He played
a lead role in establishing the Cell/Quasar systems technology,
product roadmap (including QS20, the first Cell/B.E. blade
product), and business to focus on the emerging compute-intensive,
streaming, real-time, and interactive applications. Prior to that,
Dr. Nanda led research and prototyping of Cell/B.E. processor–
based systems and their application at the IBM Thomas J. Watson
Research Center, in Yorktown Heights, New York. Earlier at IBM
Research, he established and managed the Scalable Server
Architecture group for several years. His key research contributions
include MemorIES (Memory Instrumentation and Emulation
System) and High Throughput Coherence Controllers. Dr. Nanda
was co-General Chair of the International Symposium on High
Performance Computer Architecture (HPCA-7), he served on the
editorial board of IEEE Transactions on Parallel and Distributed
Systems, and co-edited a special issue of the IEEE Computer
magazine. He holds tenU.S. patents and has publishedmore than 40
papers on computer systems architecture, design, and performance.

J. Randal Moulic IBM Systems and Technology Group,
Enterprise Systems Development, 2455 South Road, Poughkeepsie,
New York 12601 (rmoulic@us.ibm.com). Dr. Moulic is an IEEE
Fellow and Research Staff Member at the IBM Thomas J. Watson
Research Center. In 34 years of research and development work at
IBM, he has participated in the development of many high-
performance and personal computing systems, including the
RS/6000*/Scalable Parallel supercomputers, IntelliStation*, and
Cell/B.E. processor graphics workstations, ThinkPad**

‘‘TransNote’’ laptop, and QS20 Cell/B.E. processor server. He
founded, organized, and directed the Deep Blue* computer chess
project, initiating the first exhibition match events with World
Champions Gary Kasparov and Anotoly Karpov. He has authored
many technical papers, holds many patents, and is an Adjunct
Professor at Columbia and Polytechnic Universities.

Robert E. Hanson IBM Systems and Technology Group,
Enterprise Systems Development, 2455 South Road, Poughkeepsie,
New York 12601 (rejhan@us.ibm.com). In the past five years,
Mr. Hanson has established and led the cross-IBM team to develop
Cell/B.E. processor–based systems. He began this work as an
emerging technology opportunity within IBM Research and
subsequently moved to the Systems and Technology Group (STG)
as the leader of the Quasar Design Center to set up the new
product effort. This work has since resulted in the release of the
original QS20 Cell/B.E. blade and two versions of the Cell/B.E.
Software Development Kit, with several generations of the
Cell/B.E. systems product in the pipeline to address real-time and
digital media applications, as well as broader markets including
financial services, medical imaging, aerospace and defense, high-
performance computing, and several others. Prior to driving the
Cell/B.E. processor–based system work, Mr. Hanson had made
extensive contributions to the IBM systems business and
technology as the Director of Microprocessor Development. This
includes the first IBM CMOS-based zSeries* systems in the 1990s,
which brought significant performance enhancements and
surpassed the performance of previous-generation bipolar
machines by 2.5 times, as well as the first IBM microprocessor
capable of running at 1 GHz.

Gottfried Goldrian IBM Systems and Technology Group,
Development Laboratory, Schoenaicherstrasse 220, D-71032
Boeblingen, Germany (Goldrian@de.ibm.com). Mr. Goldrian
received his diploma in electrical engineering from the

Polytechnikum in Munich, Germany, in 1964. He worked for
Siemens before he joined IBM in 1967. His first job at IBM was in
the development of a digital recorder for computer problem
analysis. Since then, he has worked on many different development
projects in Boeblingen and San Jose, California. He was the lead
designer and architect in the development of printer electronics and
later in the development of zSeries I/O attachments. Mr. Goldrian
is now a Distinguished Engineer and the lead system architect for
all Cell/B.E. processor–based projects in Boeblingen.

Michael N. Day IBM Systems and Technology Group, STI
Design Center, 11400 Burnet Road, Austin, Texas 78758
(mnday@us.ibm.com). Mr. Day graduated with a B.S. degree in
electrical engineering–computer science from the University of
Texas at Austin in 1977. He joined IBM that same year as an
engineer designing and implementing hardware and software for a
large multi-user timesharing office product system including
workstation controllers, full page displays, speech digitization, and
filing systems. He then became the lead firmware and software
architect for the first battery-powered IBM laptop with advanced
power-management features. In 1987, he became a kernel
subsystem architect on the IBM Unix OS project called AIX*. Mr.
Day was elected to the IBM Academy of Technology in 1992, and
he went on to become chief architect of AIX V4, delivering SMP
support and kernel-based threads. He was one of the first engineers
to be appointed IBM Distinguished Engineer in 1997. A year later,
he led a real-time broadband video streaming project, introducing
the MediaStreamer* product based on AIX. He then went on to
drive the design and implementation of AIX on IA-64, and then
moved to the STI project in 2001 as Chief System Software
Architect, defining the programming features of the Cell/B.E.
processor, enabling Linux and software tool chains to support
various programming models for the Cell/B.E. processor. He also
leads a team of programmers developing application libraries, test
suites, workloads, and demonstration programs for the Cell/B.E.
processor.

Bruce D. D’Amora IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (damora@us.ibm.com). Mr. D’Amora is a Senior Technical
Staff Member and Digital Media Solutions Architect in the
Emerging Systems Software group at the IBM T. J. Watson
Research Center. He is currently focusing on the design of
Cell/B.E.-based platforms to accelerate applications used for
creating digital animation and visual effects. Mr. D’Amora has
presented numerous talks over the last several years focusing on
the uses and programmability of the Cell/B.E. for accelerating the
creation of digital content. He was previously the Chief Software
Architect for the 3D graphics development group at IBM Austin,
where he led the OpenGL development efforts from 1991 to 2000.
He holds B.S. degrees in microbiology and applied mathematics
from the University of Colorado, as well as an M.S. degree in
computer science from the National Technological University.

Sreeni Kesavarapu IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (sulu@us.ibm.com). Mr. Kesavarapu is a Senior
Software Engineer currently leading the development of the digital
video surveillance solution on the Cell/B.E. and working as a Lead
Consultant in the Cell/B.E. ecosystem and solutions development
in the Systems and Technology Group. He has previously
contributed to a number of products in mobile and digital media
systems, including MPEG and DVD playback software for various
ThinkPads and the development of ThinkPad Transnote from
concept to product. He received an M.S. degree in computer
science from Polytechnic University and a B.Tech. degree in
computer science and engineering from Andhra University.

A. K. NANDA ET AL. IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

582

