Delayed Side-effects Ease
Multi-core Programming

Anton Lokhmotov*, Alan Mycroft', and Andrew Richards

L Computer Laboratory, University of Cambridge
15 JJ Thomson Avenue, Cambridge, CB3 OFD, UK
{ant on. | okhnot ov, al an. nycroft }@l . cam ac. uk
2 Codeplay Software Ltd, 45 York Place, Edinburgh, EH1 3HP, UK
andr ew@odepl ay. com

Abstract. Computer systems are increasingly parallel and heterogeneous, while
programs are still largely written in sequential languages. The obvi@gestion
that the compiler should automatically distribute a sequential programsaitres
system usually fails in practice because of the complexity of dependeabesies
in the presence of aliasing.

We introduce the sieve language construct which facilitates dependealysia
by using the programmer’s knowledge about data dependencesales mode
more amenable to automatic parallelisation.

The behaviour of sieve programs is deterministic, hence predictablespedt-
able. Commercial implementations by Codeplay shows that sieve pregram
be efficiently mapped onto a range of systems. This suggests that tbecsiev
struct can be used for building reliable, portable and efficient softfeaineulti-
core systems.

1 Introduction

The evolution of high-performance single-core process@sncreasing architectural
complexity and clock frequency has apparently come to an @ndnulti-core proces-
sors are becoming mainstream in the market. For exampkd,drpects [1] that by the
end of 2007 most processors it ships will be multi-core.

Homogeneous, shared memory multi-core processors, hovegeebut a part of the
multi-core advent. Another growing trend is to supplemeigteaeral-purpose “host”
processor with a special-purpose co-processor, whichpgally located on a sepa-
rate plug-in board and connected to large on-board memaapltics accelerators have
been available since the 1990s and are increasingly usest@®cessors for general-
purpose computation. AGEIA's PhysX processor [2] is an kreator for the highly
specialized simulation of physical environment. Yet arotbxample is ClearSpeed’s
SIMD array processor [3] targeted at intensive double-gien floating-point compu-
tations. These accelerators containing tens to hundreotse$ can be dubbed deca- and
hecto-core to distinguish them from the currently offere@ld and quad-core general-
purpose processors.

* This author gratefully acknowledges the financial support by the TNIKER&mbridge Kapitza
Scholarship Scheme and Overseas Research Students AwardseSchem

Computer systems composed of multi-core processors caasbaifid efficient in
theory but are hard to program in practice. The programmenoigronted with low-
level parallel programming, architectural differencesimen system components, and
managing data movement across non-uniform memory spacesetigoes all at once.
Writing parallel programs is hard (as people tend to thinkugadjally) but testing is
even harder (as non-deterministic execution can manifesf in evasive software er-
rors).

Ideally, the programmer wants to write a high-level progiiara familiar sequential
language and leave the compiler to manage the complexihedtrget hardware. How-
ever, modern mainstream programming languages, pantiguhject-oriented ones,
derive from the C/C++ model in which objects are manipulaigdeference, e.g. by
using pointers. While such languages allow for efficient iempéntation on traditional
single-core computersjiasing complicates dependence analysis necessary for sophis-
ticated program transformations including paralleligati

In this paper we consider an original approach to automatialfelisation employed
in Codeplay’s Sieve C++ system [4]. In C99, the programmardeclare a pointer with
ar est ri ct qualifier to specify that the data pointed to by the pointemnd be pointed
to by any other pointer. In Sieve C++, the programmer makesamger statement
about code enclosed inside a special block: no memory mtatfined outside of the
block is written to and then read from within the block (welvailso say thathe block
generates no true dependences on such memory locations). This guarantee makes code
more amenable to auto-parallelisation. Also, the blocgelastructure maps well to a
natural programming style for emerging heterogeneousftghical systems.

We describe the basieve concept in Section 2 and emphasise its importance in
Section 3. Section 4 provides experimental evidence. Wflbnnention a few recent
approaches to parallel programming that are similar to teeessystem in Section 5
and conclude in Section 6.

2 Sieve Concept

We describe the basic sieve concept as an extension to & @4figuage. The extension
is both syntactic and semantic. Essentially, the prograneneloses a code fragment
inside asieve block—by placing it inside a new lexical scope prefixed with thesve
keyword. As a semantic consequence, all side-effects andidined outside the sieve
block, aredelayed until the end of the block.

The name “sieve” has been proposed by Codeplay [4]. We canaitanalogy with
a French press, or caféte. A code fragment inside a sieve block @ cylindrical jug
with a plunger) is a mix of operations that either have dedagiele-effectsdf. coffee
grounds) or notdf. boiling water). By depressing the plunger, equipped witheaes
or mesh, we collect the side-effects (grounds) at the botibthe block (jug), leaving
operations without side-effectsf(drinkable coffee) that can be freely re-orderefi (
thoroughly enjoyed).

2.1 Preliminaries

We say that a variable sound in a given lexical scope if it is defined within this scope;
a variable idreein a given lexical scope if it occurs in this scope but is definatside
of this scope.

2.2 Syntax

The programmer opens a new lexical scope and prefixes it Wélsiteve keyword
denoting a sieve block:

sieve { int b; ... } /] sieve block
We will call code enclosed in a sieve blocksieve code.

2.3 Semantics

Lindley presented the formal semantics of a core imperdéimguage extended with
sieves in [5]. We illustrate the sieve semantics by drawingaalogy with calling a
function havingcall-by-value-delay-result parameter passing mechanism, which we de-
tail below.

In C-like languages, entrance to a new lexical scope can & a& equivalent to
calling a function (whose body is the scope), arrangingttheparameters to this func-
tion are the free variables of the scope and passing thesefénence. For example, in
the following:

int main() {

int a;
{ ... =a... a=...1}

}
the enclosed code fragment accessing the varebbn be abstracted as calling a func-
tion:

void f(int *ap) { ... = *ap ... *ap = ... }

int main() {

int a;
f(&a);

}

By passinga by reference we ensure that all modificationsatare immediately vis-
ible in the program. Note that reads and writesatare treated equally by replacing
occurrences of with = ap.

Thesi eve keyword changes the semantics of a lexical scope to meaaltmabd-
ifications to free variables adelayed until the end of the scope, whereas all modifica-
tions to bound variables remaimmediate. In accordance with this semantics, we will
also refer to free and bound variables as, respectivelgydel and immediate.

Using the function call analogy, we say that:

int main() {

int a;
sieve{ ... =a ... a=...1}

is equivalent to:
void f(int xap) {
const int ar = *ap;
int aw = *ap;
{ Il sieve block entry

=ar ... aw = ...
} I/ sieve block exit
*apZaW,
}
int main() {
int a;
f(&a);
}

Note the different treatment of reads and writes. On entthédfunction the parameter
(passed by reference) is copied into local variabhleandaw. All reads of the parameter
are replaced with reads af , and all writes to the parameter are replaced with writes
to aw. On exit from the functionawis copied out to the parameter.

We coin the terntall-by-value-delay-result (CBVDR) for this, as the translation is
similar to traditionalcall-by-value-result (used, for example, fdrn- out parameters in
Ada), wherear andaw are coalesced into a single variable.

2.4 Understanding the Changein Semantics

The theory of data dependence [6] helps in understandingtm@gieve block semantics
departs from that of a standard lexical scope. In the presehdata dependences, the
behaviour of sieve code is affected as follows:

1. If a write to a free variable is followed by a read oftitue dependence), delaying
the writeviolates the dependence.

2. If aread of a free variable is followed by a write to d@infi-dependence), delaying
the writepreserves the dependence.

3. If a write to a free variable is followed by another writeit¢output dependence),
delaying the writepreserves the dependendé the order of writesis preserved.

Since true dependences are violated, it is up to the progertorensure that sieve
code generates no true dependences on delayed data (#8dfydvdesired equivalence
with the conventional semantics). This is hardly reswigthowever, as instead of writ-
ing into and subsequently reading from a delayed variahke programmer can write
into and read from a temporary immediate variable, updatiegdelayed variable on
exit from the block.

Anti-dependences present no problem.

Preserving output dependences can be achieved by replesng write to a de-
layed variable with a push @fddress-value pair onto a FIFO queue, and applying all
queued writes in order on exit from the sieve block. We wifereo such a queue as
side-effect queue.

Note that the programmer’s implicit claim that sieve codaeyates no true de-
pendences on delayed data, can be verified at run-time (adifas debugging) by

additionally recording executed reads in the queue andkamgthat no read from a
memory address is preceded by a write to the same address.
2.5 lllustrative Example

Consider the following example:
int main() {

int a = 0;

si eve {
int b =0;
a=a+1 b=Db+ 1, print(a, b); // prints 0,1
a=a+1 b=>b+ 1, print(a, b); // prints 0,2

}
print(a); // prints 1

}

The first twopr i nt statements behave as expected as writes to the free vaaiable
are delayed until the end of the sieve block, but the resuthefthird may come as a
surprise. This result, however, is easy to explain usingdB&¥DR analogy, since the
sieve block is equivalent to:

void f(int xap) {

const int ar = *ap;
int aw = xap;

{
int b =0;
aw = ar + 1, b =b + 1; print(ar, b); // prints 0,1
aw=ar + 1, b=b + 1; print(ar, b); // prints 0,2
}
*ap = aw, // *ap = 1, since aw == 1
}
int main() {
int a = 0;
f(&); /1 passing ap, where *ap ==
print(a); // prints 1
}

The immediate variabler is never modified (by construction), hence both assignments
to awinside the sieve block write. After the sieve block, the immediate variabhe is
copied into the delayed variabde

This behaviour seems counter-intuitive because the sigde ciolates the require-
ment of the previous section by generating a true dependenttee delayed variabke
(the compiler can reasonably warn the programmer).

If the programmer wants to use the updated valug, dfe needs to write:
int main() {

int a = 0;

sieve {
int b =0, c = a;
c=c+1 b=Db+ 1, print(c, b); // prints 1,1
c=c+1 b=Db+ 1, print(c, b); // prints 2,2
a = c;

}

print(a); // prints 2
}

As this code generates no true dependences on delayedlesaritide conventional
semantics is preserved.

2.6 Function Calls

A common imperative programming style is to use functionstfeir side-effects.

When calling a function inside a sieve block, the programnaer gpecify whether to
execute the function call immediately and have its sideetf delayed (this is natural
for functions returning a result) or delay the call itselttilthe end of the block (this

can be useful for I/O).

3 Importance of the Sieve Construct

3.1 Delayed Side-effects Facilitate Dependence Analysis

Effectively exploiting parallel hardware (whether exangt synchronously or asyn-
chronously, in shared or distributed memory environmeftgrorequires the compiler
to re-order computations from the order specified by the ranogner. However, indirect
reads and writes, which are endemic in languages like C/@netdifficult to re-order,
asalias analysis is undecidable in theory, and even state-of-the-art implaations
often give insufficient information for programs written imainstream programming
languages.
Consider a typical multi-channnel audio processing exampl

for (int i = 0; i < NCHANNELS; i++) process_channel (i);

Often, the programmer “knows” that each channel is indepehdf the others and
hence hopes that the code will be parallelised. In practhis, hope is usually mis-
placed, as somewherepnocess_channel () there will be indirect memory accesses
causing the compiler to preserve the specified (sequentiabution order.

The kernel of the problem is that the programmer writes cégatt concise sequen-
tial code but has no language-oriented mechanism to exgiresteep knowledge that
sequenced commands can actually be re-ordered.

The sieve construct provides the programmer a way to corciutteaty with the
compiler:

“I solemnly swear that sieve code generates no true depeedem delayed
data. Please preserve false dependences on delayed datairigining the
side-effect queue.”

As a result of this treaty, the compiler assumes that siede can generate depen-
dences only on immediate data. This reduces the complekitiependence analysis
and thereby makes the code fragment more amenable to figeditn.

3.2 Programming Hierarchical Heterogeneous Systems

In modern heterogeneous computer systems, each processbace its own memory
space mitigating a potential bottleneck when several psms require access to shared
memory. For example, a general-purpose processor comtherte (reasonably large)
memory can be supplemented with a co-processor (for sjmsiatompute-intensive
tasks, such as graphics, physics or mathematics) haviogvitdocal memory.

When programming such systems, it is often desirable tofgacsede and data for
the off-loaded computation from host's main memory to coeggissor’s local memory,
perform the computation with the co-processor accessiryg itmlocal memory, and
then transfer the results back to main memory.

The sieve construct provides a high-level abstraction isf pnogramming model.
Assume that code outside of any sieve blocks is to be exeautehke host processor.
Think of a sieve block as containing code to be executed ordhgrocessor and im-
mediate data to be (statically) allocated in the co-pramessocal memory. Think of
delayed data (either statically or dynamically allocat@slyesiding in main memory.

Conceptually (recall CBVDR), delayed data is passed toweditock by reference,
read on entry to the block, and written to on exit. The actogllementation can be
system and program specific.

Suppose the co-processor can only access data in local mdrearequires DMA
transfers to access data in main memory. The compiler repla@in memory accesses
in sieve code with calls to a run-time system.

The run-time system maintains the side-effect queue fotewrio main memory;
furthermore, it can optimise reads from main memory by pafieg and servicing
them from local memory.

Run-time operation can be guided by a system descripti@tifsing, for example,
latency and bandwidth of DMA requests) and pragma anneotsitibhe annotations give
a benevolenhint to the compiler at what might be the most efficient implemgoteof
a particular sieve block (perhaps, suggested by profiling).

For example, for a system composed of a multi-core genenglgse processor and
a co-processor, the programmer can hint the compiler thatbetter to parallelise a
particular sieve block across multiple cores than off-logdt to the co-processor. As
another example, if sieve code reads an array allocated iim mamory, the program-
mer can hint whether array accessesdamse (hence it is worth prefetching the array
using a contiguous DMA transfer) gparse (array elements can be read on demand).
The programmer can also specifyhen the side-effect queue is to be committed to
main memory. After dispatching code and data to the co-msme the host proces-
sor can continue execution until off-loaded computaticsules are needed, apply the
queued side-effects, and resume execution.

T T
I Vatrix multiply
I \mage noise reduction
77| [Cyclic redundancy check 7
I Mandelbrot
o || I Julia]

T FFT

Speedup (w.r.t. no sieve)

|
l|
|
l|
l|
|
l|
|
l|
|
{|
l|
|
ll
!
l|
{|
l|
ll
|
l|
|
l|
{|
l|
ll
|
l|
i |
l| l|
l| l|
i i
1 2 3 4 5 6 7 8
Active cores

Fig. 1. Experimental results on Dell PowerEdge SC1430.

3.3 Auto-parallelising Sieve Blocks

The sieve construct relieves the compiler from complexriptecedural dependence
analysis on delayed data. The compiler, however, still a¢e@dnalyse dependences on
immediate data, and again the programmer can assist in this.

The programmer is discouraged from accessing immediatagdoviaimmediate
pointers, as this can hinder dependence analysis and defeat the vgrgse of the
sieve construct.

Scalar variables are a frequent source of data dependesjc&ap important classes
of scalar variables that give rise to loop-carried dependsrare iterators (used to con-
trol loops) and accumulators (used as the target of reductjmerations). The auto-
parallelising compiler needs to know the exact behaviowsuah variablese.g. that a
loop iterator is modified only within the loop header or thaieduction operation is as-
sociative. By defining and using special classes for accatouand iterator variables,
the programmer can pass his knowledge about such variabthe tompiler.

4 Experimental Evaluation

Sieve C++ is an extension to C++ by Codeplay [4], which supspibie sieve construct
and several refinements, including the support of iteraor @cumulator classes. As
of May 2007, Sieve C++ backends exist for: homogeneous foatt x86 systems, x86
supplemented with an AGEIA PhysX board [2], and the IBM/Sdoghiba Cell BE
processor.

3 Immediate and global pointers are incompatible, as they may refer to dist@mory spaces.

The Codeplay Sieve system consists of a Sieve C++ compittaann-time sys-
tem. The compiler partitions code inside a sieve block imggments which can be
executed in parallel. The run-time system is invoked onyetatia sieve block with the
independent fragments, which the system distributes amauigple cores. In partic-
ular, a parallel loop can be strip-mined and speculativecated by parallel threads.
The threads build their own side-effect queues and retlemtto the run-time system
which then commits the side-effects in order.

In Fig. 1 we present resuft®btained on a Dell PowerEdge SC1430 system, with
two 1.6GHz quad-core Intel Xeon E5310 processors and 2GB Reskhing under
Windows XP. The execution time is normalised with respethooriginal C++ code.

The matrix multiplication is performed for squaré0 x 750 matrices. The noise
reduction program applies a median filter td12 x 512 image, using &0 x 20 neigh-
bourhood per pixel. The cyclic redundancy check is perfatoe a random 1M (1M
= 22Y) word message. The Julia program ray trace®2d x 1024 3D slice of a 4D
quaternion Julia set. The Mandelbrot program calculatgg®a x 4500 fragment of the
Mandelbrot set. The FFT program performs a 16M-point FastiEo Transform.

The Sieve C++ programs suffer up to a 10% overhead on a siogé, dut show
a performance improvement on multiple cores. The Julia yamoghas a nearly linear
speed up. The FFT program, however, shows little improvem&®r attribute this to
cache-line locking because of the program’s irregular nryraocess pattern.

5 Related Work

Recent approaches to shared memory parallel programmahggie Software Transac-
tional Memory (STM) [7] and Intel Threading Building Block$BB) [8].

In the STM [7] approach, the programmer places a fragmentodednside an
atomic block, which behaves similar to a database transaction: trapnsasiie-effects
are not visible until the transaction commits. Unlike codeaisieve block, code in an
atomic block can immediately read new values of modified ¥i@&ables. Unlike code
in an atomic block, code in a sieve block always “commits”side-effects without
retrying.

Intel TBB [8] is a C++ runtime library that simplifies multithaded application
development. Unlike Sieve C++, the TBB is a template librang works with ex-
isting compilers. Using TBB, however, implies parallel gramming, not sequential
programming and auto-parallelisation by the compiler.

RapidMind [9] offers a high-level software developmentfden for programming
HPC algorithms to run on GPU hardware and the Cell BE. As withdieve system,
the same source code can be compiled to a range of systenagydintthe programmer
explicitly manages parallelism and data movement.

4 We thank Colin Riley and Alastair Donaldson for providing performancerég.

5 Conceivably, the cost of maintaining the side-effect queue can ketdfir some programs
by (stable) sorting the queue hgdress and thus improving spatial locality of writes; besides,
writes to the same address (in practice, these should be suspicioumbbentgection 2.5) can
be optimised by writing only the last queued value.

6 Conclusion

This paper has introduced the sieve concept—a novel langraggruct which facili-
tates dependence analysis by using the programmer’s kdge/gbout dependences in
his code and makes code more amenable to automatic paaiieti. Essentially, the
sieve construct plays théle of a treaty-point between what is easy for the programmer
to guarantee and what the compiler is capable of refactoring

Observable behaviour of sieve programs is determiniséock predictable and re-
peatable. Codeplay’s Sieve C++ implementation has dematadtthat sieve programs
can be efficiently mapped onto a range of systems. All thigesis that the sieve con-
struct can be used for building reliable, portable and effitisoftware for multi-core
systems.

Since the sieve construct is a high-level abstraction atfopmance is implementa-
tion dependent. Future work will concentrate on advancedémentation and optimi-
sation techniques for performance and scalability of sfpregrams.

References

White paper: Intel is leading the way in designing energy-efficientqoiais (2006)

AGEIA Technologies: The PhysX processurt p: / / www. agei a. com

ClearSpeed Technology: The CSX processbt,p: / / ww. cl ear speed. com

Codeplay: Portable high-performance compilétst, p: / / www. codepl ay. com

Lindley, S.: Implementing deterministic declarative concurrencygusiaeves. In: Proceed-

ings of the ACM SIGPLAN Workshop on Declarative Aspects of Multicoregpamming

(DAMP), ACM Press, New York (2007)

6. Allen, R., Kennedy, K.: Optimizing Compilers for Modern ArchitectreMorgan Kauf-
mann, San Francisco (2002)

7. Harris, T., Fraser, K.: Language support for lightweight tratieas. In: Proceedings of the
18th ACM SIGPLAN conference on Object-oriented programming, sysféanguages, and
applications (OOPSLA), pp. 388—-402. ACM Press, New York (2003)

8. Intel: Threading building block#t t p: / / wwv. i nt el . coni sof t war e/ pr oduct s/

t bb
9. RapidMind: Software development platforht,t p: / / www. r api dmi nd. net

apwhE

10

