
Delayed Side-effects Ease
Multi-core Programming

Anton Lokhmotov1⋆, Alan Mycroft1, and Andrew Richards2

1 Computer Laboratory, University of Cambridge
15 JJ Thomson Avenue, Cambridge, CB3 0FD, UK

{anton.lokhmotov,alan.mycroft}@cl.cam.ac.uk
2 Codeplay Software Ltd, 45 York Place, Edinburgh, EH1 3HP, UK

andrew@codeplay.com

Abstract. Computer systems are increasingly parallel and heterogeneous, while
programs are still largely written in sequential languages. The obvious suggestion
that the compiler should automatically distribute a sequential program across the
system usually fails in practice because of the complexity of dependence analysis
in the presence of aliasing.
We introduce the sieve language construct which facilitates dependence analysis
by using the programmer’s knowledge about data dependences and makes code
more amenable to automatic parallelisation.
The behaviour of sieve programs is deterministic, hence predictable andrepeat-
able. Commercial implementations by Codeplay shows that sieve programs can
be efficiently mapped onto a range of systems. This suggests that the sieve con-
struct can be used for building reliable, portable and efficient softwarefor multi-
core systems.

1 Introduction

The evolution of high-performance single-core processorsvia increasing architectural
complexity and clock frequency has apparently come to an end, as multi-core proces-
sors are becoming mainstream in the market. For example, Intel expects [1] that by the
end of 2007 most processors it ships will be multi-core.

Homogeneous, shared memory multi-core processors, however, are but a part of the
multi-core advent. Another growing trend is to supplement ageneral-purpose “host”
processor with a special-purpose co-processor, which is typically located on a sepa-
rate plug-in board and connected to large on-board memory. Graphics accelerators have
been available since the 1990s and are increasingly used as co-processors for general-
purpose computation. AGEIA’s PhysX processor [2] is an accelerator for the highly
specialized simulation of physical environment. Yet another example is ClearSpeed’s
SIMD array processor [3] targeted at intensive double-precision floating-point compu-
tations. These accelerators containing tens to hundreds ofcores can be dubbed deca- and
hecto-core to distinguish them from the currently offered dual- and quad-core general-
purpose processors.

⋆ This author gratefully acknowledges the financial support by the TNK-BP Cambridge Kapitza
Scholarship Scheme and Overseas Research Students Awards Scheme.



Computer systems composed of multi-core processors can be fast and efficient in
theory but are hard to program in practice. The programmer isconfronted with low-
level parallel programming, architectural differences between system components, and
managing data movement across non-uniform memory spaces—sometimes all at once.
Writing parallel programs is hard (as people tend to think sequentially) but testing is
even harder (as non-deterministic execution can manifest itself in evasive software er-
rors).

Ideally, the programmer wants to write a high-level programin a familiar sequential
language and leave the compiler to manage the complexity of the target hardware. How-
ever, modern mainstream programming languages, particularly object-oriented ones,
derive from the C/C++ model in which objects are manipulatedby reference, e.g. by
using pointers. While such languages allow for efficient implementation on traditional
single-core computers,aliasing complicates dependence analysis necessary for sophis-
ticated program transformations including parallelisation.

In this paper we consider an original approach to automatic parallelisation employed
in Codeplay’s Sieve C++ system [4]. In C99, the programmer can declare a pointer with
arestrictqualifier to specify that the data pointed to by the pointer cannot be pointed
to by any other pointer. In Sieve C++, the programmer makes a stronger statement
about code enclosed inside a special block: no memory location defined outside of the
block is written to and then read from within the block (we will also say thatthe block
generates no true dependences on such memory locations). This guarantee makes code
more amenable to auto-parallelisation. Also, the block-based structure maps well to a
natural programming style for emerging heterogeneous hierarchical systems.

We describe the basicsieve concept in Section 2 and emphasise its importance in
Section 3. Section 4 provides experimental evidence. We briefly mention a few recent
approaches to parallel programming that are similar to the sieve system in Section 5
and conclude in Section 6.

2 Sieve Concept

We describe the basic sieve concept as an extension to a C-like language. The extension
is both syntactic and semantic. Essentially, the programmer encloses a code fragment
inside asieve block—by placing it inside a new lexical scope prefixed with thesieve

keyword. As a semantic consequence, all side-effects on data defined outside the sieve
block, aredelayed until the end of the block.

The name “sieve” has been proposed by Codeplay [4]. We can draw an analogy with
a French press, or cafetière. A code fragment inside a sieve block (cf. a cylindrical jug
with a plunger) is a mix of operations that either have delayed side-effects (cf. coffee
grounds) or not (cf. boiling water). By depressing the plunger, equipped with a sieve
or mesh, we collect the side-effects (grounds) at the bottomof the block (jug), leaving
operations without side-effects (cf. drinkable coffee) that can be freely re-ordered (cf.
thoroughly enjoyed).

2



2.1 Preliminaries

We say that a variable isbound in a given lexical scope if it is defined within this scope;
a variable isfree in a given lexical scope if it occurs in this scope but is defined outside
of this scope.

2.2 Syntax

The programmer opens a new lexical scope and prefixes it with the sieve keyword
denoting a sieve block:

sieve { int b; ... } // sieve block

We will call code enclosed in a sieve block assieve code.

2.3 Semantics

Lindley presented the formal semantics of a core imperativelanguage extended with
sieves in [5]. We illustrate the sieve semantics by drawing an analogy with calling a
function havingcall-by-value-delay-result parameter passing mechanism, which we de-
tail below.

In C-like languages, entrance to a new lexical scope can be seen as equivalent to
calling a function (whose body is the scope), arranging thatthe parameters to this func-
tion are the free variables of the scope and passing these by reference. For example, in
the following:

int main() {
int a; ...
{ ... = a ... a = ... } ...

}

the enclosed code fragment accessing the variablea can be abstracted as calling a func-
tion:

void f(int *ap) { ... = *ap ... *ap = ... }
int main() {

int a; ...
f(&a); ...

}

By passinga by reference we ensure that all modifications toa are immediately vis-
ible in the program. Note that reads and writes toa are treated equally by replacing
occurrences ofa with *ap.

Thesieve keyword changes the semantics of a lexical scope to mean thatall mod-
ifications to free variables aredelayed until the end of the scope, whereas all modifica-
tions to bound variables remainimmediate. In accordance with this semantics, we will
also refer to free and bound variables as, respectively, delayed and immediate.

Using the function call analogy, we say that:
int main() {

int a; ...
sieve { ... = a ... a = ... } ...

}

3



is equivalent to:
void f(int *ap) {

const int ar = *ap;
int aw = *ap;
{ // sieve block entry

... = ar ... aw = ...
} // sieve block exit

*ap = aw;
}
int main() {

int a; ...
f(&a); ...

}

Note the different treatment of reads and writes. On entry tothe function the parameter
(passed by reference) is copied into local variablesar andaw. All reads of the parameter
are replaced with reads ofar, and all writes to the parameter are replaced with writes
to aw. On exit from the function,aw is copied out to the parameter.

We coin the termcall-by-value-delay-result (CBVDR) for this, as the translation is
similar to traditionalcall-by-value-result (used, for example, forin-out parameters in
Ada), wherear andaw are coalesced into a single variable.

2.4 Understanding the Change in Semantics

The theory of data dependence [6] helps in understanding howthe sieve block semantics
departs from that of a standard lexical scope. In the presence of data dependences, the
behaviour of sieve code is affected as follows:

1. If a write to a free variable is followed by a read of it (true dependence), delaying
the writeviolates the dependence.

2. If a read of a free variable is followed by a write to it (anti-dependence), delaying
the writepreserves the dependence.

3. If a write to a free variable is followed by another write toit (output dependence),
delaying the writespreserves the dependenceif the order of writes is preserved.

Since true dependences are violated, it is up to the programmer to ensure that sieve
code generates no true dependences on delayed data (this gives the desired equivalence
with the conventional semantics). This is hardly restrictive, however, as instead of writ-
ing into and subsequently reading from a delayed variable, the programmer can write
into and read from a temporary immediate variable, updatingthe delayed variable on
exit from the block.

Anti-dependences present no problem.
Preserving output dependences can be achieved by replacingevery write to a de-

layed variable with a push ofaddress-value pair onto a FIFO queue, and applying all
queued writes in order on exit from the sieve block. We will refer to such a queue as
side-effect queue.

Note that the programmer’s implicit claim that sieve code generates no true de-
pendences on delayed data, can be verified at run-time (and used for debugging) by

4



additionally recording executed reads in the queue and checking that no read from a
memory address is preceded by a write to the same address.

2.5 Illustrative Example

Consider the following example:

int main() {
int a = 0;
sieve {

int b = 0;
a = a + 1; b = b + 1; print(a, b); // prints 0,1
a = a + 1; b = b + 1; print(a, b); // prints 0,2

}
print(a); // prints 1

}

The first twoprint statements behave as expected as writes to the free variablea

are delayed until the end of the sieve block, but the result ofthe third may come as a
surprise. This result, however, is easy to explain using theCBVDR analogy, since the
sieve block is equivalent to:

void f(int *ap) {
const int ar = *ap;
int aw = *ap;
{

int b = 0;
aw = ar + 1; b = b + 1; print(ar, b); // prints 0,1
aw = ar + 1; b = b + 1; print(ar, b); // prints 0,2

}

*ap = aw; // *ap = 1, since aw == 1
}
int main() {

int a = 0;
f(&a); // passing ap, where *ap == 0
print(a); // prints 1

}

The immediate variablear is never modified (by construction), hence both assignments
to aw inside the sieve block write1. After the sieve block, the immediate variableaw is
copied into the delayed variablea.

This behaviour seems counter-intuitive because the sieve code violates the require-
ment of the previous section by generating a true dependenceon the delayed variablea
(the compiler can reasonably warn the programmer).

5



If the programmer wants to use the updated value ofa, he needs to write:

int main() {
int a = 0;
sieve {

int b = 0, c = a;
c = c + 1; b = b + 1; print(c, b); // prints 1,1
c = c + 1; b = b + 1; print(c, b); // prints 2,2
a = c;

}
print(a); // prints 2

}

As this code generates no true dependences on delayed variables, the conventional
semantics is preserved.

2.6 Function Calls

A common imperative programming style is to use functions for their side-effects.
When calling a function inside a sieve block, the programmer can specify whether to
execute the function call immediately and have its side-effects delayed (this is natural
for functions returning a result) or delay the call itself until the end of the block (this
can be useful for I/O).

3 Importance of the Sieve Construct

3.1 Delayed Side-effects Facilitate Dependence Analysis

Effectively exploiting parallel hardware (whether executing synchronously or asyn-
chronously, in shared or distributed memory environment) often requires the compiler
to re-order computations from the order specified by the programmer. However, indirect
reads and writes, which are endemic in languages like C/C++,are difficult to re-order,
as alias analysis is undecidable in theory, and even state-of-the-art implementations
often give insufficient information for programs written inmainstream programming
languages.

Consider a typical multi-channnel audio processing example:

for (int i = 0; i < NCHANNELS; i++) process_channel(i);

Often, the programmer “knows” that each channel is independent of the others and
hence hopes that the code will be parallelised. In practice,this hope is usually mis-
placed, as somewhere inprocess_channel() there will be indirect memory accesses
causing the compiler to preserve the specified (sequential)execution order.

The kernel of the problem is that the programmer writes clearand concise sequen-
tial code but has no language-oriented mechanism to expressthe deep knowledge that
sequenced commands can actually be re-ordered.

The sieve construct provides the programmer a way to conclude a treaty with the
compiler:

6



“I solemnly swear that sieve code generates no true dependences on delayed
data. Please preserve false dependences on delayed data by maintaining the
side-effect queue.”

As a result of this treaty, the compiler assumes that sieve code can generate depen-
dences only on immediate data. This reduces the complexity of dependence analysis
and thereby makes the code fragment more amenable to parallelisation.

3.2 Programming Hierarchical Heterogeneous Systems

In modern heterogeneous computer systems, each processor can have its own memory
space mitigating a potential bottleneck when several processors require access to shared
memory. For example, a general-purpose processor connected to a (reasonably large)
memory can be supplemented with a co-processor (for specialised compute-intensive
tasks, such as graphics, physics or mathematics) having itsown local memory.

When programming such systems, it is often desirable to transfer code and data for
the off-loaded computation from host’s main memory to co-processor’s local memory,
perform the computation with the co-processor accessing only its local memory, and
then transfer the results back to main memory.

The sieve construct provides a high-level abstraction of this programming model.
Assume that code outside of any sieve blocks is to be executedon the host processor.
Think of a sieve block as containing code to be executed on theco-processor and im-
mediate data to be (statically) allocated in the co-processor’s local memory. Think of
delayed data (either statically or dynamically allocated)as residing in main memory.

Conceptually (recall CBVDR), delayed data is passed to a sieve block by reference,
read on entry to the block, and written to on exit. The actual implementation can be
system and program specific.

Suppose the co-processor can only access data in local memory, i.e. requires DMA
transfers to access data in main memory. The compiler replaces main memory accesses
in sieve code with calls to a run-time system.

The run-time system maintains the side-effect queue for writes to main memory;
furthermore, it can optimise reads from main memory by prefetching and servicing
them from local memory.

Run-time operation can be guided by a system description (specifying, for example,
latency and bandwidth of DMA requests) and pragma annotations. The annotations give
a benevolenthint to the compiler at what might be the most efficient implementation of
a particular sieve block (perhaps, suggested by profiling).

For example, for a system composed of a multi-core general-purpose processor and
a co-processor, the programmer can hint the compiler that itis better to parallelise a
particular sieve block across multiple cores than off-loading it to the co-processor. As
another example, if sieve code reads an array allocated in main memory, the program-
mer can hint whether array accesses aredense (hence it is worth prefetching the array
using a contiguous DMA transfer) orsparse (array elements can be read on demand).
The programmer can also specifywhen the side-effect queue is to be committed to
main memory. After dispatching code and data to the co-processor, the host proces-
sor can continue execution until off-loaded computation results are needed, apply the
queued side-effects, and resume execution.

7



1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Active cores

S
pe

ed
up

 (
w

.r
.t.

 n
o 

si
ev

e)

 

 
Matrix multiply
Image noise reduction
Cyclic redundancy check
Mandelbrot
Julia
FFT

Fig. 1. Experimental results on Dell PowerEdge SC1430.

3.3 Auto-parallelising Sieve Blocks

The sieve construct relieves the compiler from complex inter-procedural dependence
analysis on delayed data. The compiler, however, still needs to analyse dependences on
immediate data, and again the programmer can assist in this.

The programmer is discouraged from accessing immediate storage viaimmediate
pointers3, as this can hinder dependence analysis and defeat the very purpose of the
sieve construct.

Scalar variables are a frequent source of data dependences [6]. Two important classes
of scalar variables that give rise to loop-carried dependences are iterators (used to con-
trol loops) and accumulators (used as the target of reduction operations). The auto-
parallelising compiler needs to know the exact behaviour ofsuch variables,e.g. that a
loop iterator is modified only within the loop header or that areduction operation is as-
sociative. By defining and using special classes for accumulator and iterator variables,
the programmer can pass his knowledge about such variables to the compiler.

4 Experimental Evaluation

Sieve C++ is an extension to C++ by Codeplay [4], which supports the sieve construct
and several refinements, including the support of iterator and accumulator classes. As
of May 2007, Sieve C++ backends exist for: homogeneous multi-core x86 systems, x86
supplemented with an AGEIA PhysX board [2], and the IBM/Sony/Toshiba Cell BE
processor.

3 Immediate and global pointers are incompatible, as they may refer to distinct memory spaces.

8



The Codeplay Sieve system consists of a Sieve C++ compiler and a run-time sys-
tem. The compiler partitions code inside a sieve block into fragments which can be
executed in parallel. The run-time system is invoked on entry to a sieve block with the
independent fragments, which the system distributes amongmultiple cores. In partic-
ular, a parallel loop can be strip-mined and speculatively executed by parallel threads.
The threads build their own side-effect queues and return them to the run-time system
which then commits the side-effects in order.

In Fig. 1 we present results4 obtained on a Dell PowerEdge SC1430 system, with
two 1.6GHz quad-core Intel Xeon E5310 processors and 2GB RAM, running under
Windows XP. The execution time is normalised with respect tothe original C++ code.

The matrix multiplication is performed for square750 × 750 matrices. The noise
reduction program applies a median filter to a512× 512 image, using a20× 20 neigh-
bourhood per pixel. The cyclic redundancy check is performed on a random 1M (1M
= 2

20) word message. The Julia program ray traces a1024 × 1024 3D slice of a 4D
quaternion Julia set. The Mandelbrot program calculates a4500×4500 fragment of the
Mandelbrot set. The FFT program performs a 16M-point Fast Fourier Transform.

The Sieve C++ programs suffer up to a 10% overhead on a single core5, but show
a performance improvement on multiple cores. The Julia program has a nearly linear
speed up. The FFT program, however, shows little improvement. We attribute this to
cache-line locking because of the program’s irregular memory access pattern.

5 Related Work

Recent approaches to shared memory parallel programming include Software Transac-
tional Memory (STM) [7] and Intel Threading Building Blocks(TBB) [8].

In the STM [7] approach, the programmer places a fragment of code inside an
atomic block, which behaves similar to a database transaction: transaction side-effects
are not visible until the transaction commits. Unlike code in a sieve block, code in an
atomic block can immediately read new values of modified freevariables. Unlike code
in an atomic block, code in a sieve block always “commits” itsside-effects without
retrying.

Intel TBB [8] is a C++ runtime library that simplifies multithreaded application
development. Unlike Sieve C++, the TBB is a template libraryand works with ex-
isting compilers. Using TBB, however, implies parallel programming, not sequential
programming and auto-parallelisation by the compiler.

RapidMind [9] offers a high-level software development platform for programming
HPC algorithms to run on GPU hardware and the Cell BE. As with the sieve system,
the same source code can be compiled to a range of systems, butagain the programmer
explicitly manages parallelism and data movement.

4 We thank Colin Riley and Alastair Donaldson for providing performance figures.
5 Conceivably, the cost of maintaining the side-effect queue can be offset for some programs

by (stable) sorting the queue byaddress and thus improving spatial locality of writes; besides,
writes to the same address (in practice, these should be suspicious: remember Section 2.5) can
be optimised by writing only the last queued value.

9



6 Conclusion

This paper has introduced the sieve concept—a novel languageconstruct which facili-
tates dependence analysis by using the programmer’s knowledge about dependences in
his code and makes code more amenable to automatic parallelisation. Essentially, the
sieve construct plays the rôle of a treaty-point between what is easy for the programmer
to guarantee and what the compiler is capable of refactoring.

Observable behaviour of sieve programs is deterministic, hence predictable and re-
peatable. Codeplay’s Sieve C++ implementation has demonstrated that sieve programs
can be efficiently mapped onto a range of systems. All this suggests that the sieve con-
struct can be used for building reliable, portable and efficient software for multi-core
systems.

Since the sieve construct is a high-level abstraction, its performance is implementa-
tion dependent. Future work will concentrate on advanced implementation and optimi-
sation techniques for performance and scalability of sieveprograms.

References

1. White paper: Intel is leading the way in designing energy-efficient platforms (2006)
2. AGEIA Technologies: The PhysX processor,http://www.ageia.com
3. ClearSpeed Technology: The CSX processor,http://www.clearspeed.com
4. Codeplay: Portable high-performance compilers,http://www.codeplay.com
5. Lindley, S.: Implementing deterministic declarative concurrency using sieves. In: Proceed-

ings of the ACM SIGPLAN Workshop on Declarative Aspects of Multicore Programming
(DAMP), ACM Press, New York (2007)

6. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures. Morgan Kauf-
mann, San Francisco (2002)

7. Harris, T., Fraser, K.: Language support for lightweight transactions. In: Proceedings of the
18th ACM SIGPLAN conference on Object-oriented programming, systems, languages, and
applications (OOPSLA), pp. 388–402. ACM Press, New York (2003)

8. Intel: Threading building blocks,http://www.intel.com/software/products/
tbb

9. RapidMind: Software development platform,http://www.rapidmind.net

10


