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Abstract

It is well known [Wand] that concurrency can be expressed within lan-
guages that provide a continuation type. However, a number of misconcep-
tions persist regarding the relationship between threads and continuations.
I discuss the proper relationship between these two objects, and present a
model for directly expressing concurrency using continuations. The model
is designed to support systems programming, and has several novel features:
it is synchronous, preemptable, and fully virtualisable, allowing schedulers
to be written by unprivileged users that are indistinguishable from top-level
schedulers that actually control access to the hardware resources.

1 Introduction

An operating system exports to its client programs protected interfaces to the ma-
chine resources, such as memory, persistent storage, network connections, and pro-
cessors. An important part of the OS design is the model of these resources that
the OS presents to the client program. For example, one of the benefits of the
Unix operating system is that its “everything is a file” design presents a simple and
consistent interface to a wide array of I/O resources

In a similar fashion, one may consider in what fashion an operating system
should model the processors it manages—that is, how should the OS export access
to the processor? Typical operating systems, such as Unix and Microsoft's NT, use
processes and threads to model computational agents. The MIT Express project is
concerned with the design of operating systems for and in advanced, functional
programming languages. We have designed a new model for allowing program-
mers to implement computational agents that execute concurrently on the machine
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resources that directly models the processor in the programming language. We
exploit continuations to do so.

2 Multi-continuations

A linguistic feature we intend to exploit is the ability to define procedures that take
multiple continuations as arguments {Note Tops-20}. This will require allowing
the programmer to drop down into a CPS sublanguage when it necessary to define
or use such procedures. In other words, if the compiler is a CPS-style compiler,
then its CPS-converter front-end would pass fragments of the program written in
the CPS sublanguage directly through with no further conversion

I do not expect that much CPS code will be written by programmers; it is a low-
level form whose use will be limited to definitions of concurrency primitives and
frequently hidden behind convenient forms of syntactic sugar by macros. How-
ever, it is important that we have this mechanism present for expressing control
operators.

For example, the call-with-current-continuationor call/cc operator
can be directly defined in this CPS sublanguage {Note Value/Cont Distinctions}:

(call/cc £ k) = (f (A (v k) (k v)) k)
We can also push a control frame onto a captured continuation with
(compose-cont k f) = (A (v) (f v k))

As we will see later, multi-continuations are useful for expressing concurrency
and choices.

3 Synchronous threads

There are several goals our concurrency mechanism needs to satisfy. It should
e be a powerful, expressive model;
o cfficiently export the resources of the underlying hardware;
o fit with the language in a harmonious fashion;

e admit optimisation at the language level by standard optimising compiler
technology for lambda-calculus-based languages.



The model is based upon concurrent serial computations—individual concur-
rent computational agents are synchronous processes. An individual computation
can be thought of as

e A thread

e A virtual processor

e A computational agent

e A trajectory in continuation space

An important element of this model is that these various viewpoints are equivalent
and interchangeable.

4 Problems with interrupt handlers

One striking feature of our model is that it is completely synchronous, by which I
mean that asynchronous interrupts are not a part of the model. As an agent evolves
over time, its next step is always determined by the program it is executing (which
may direct the thread to interact with other, concurrently executing agents, or attend
to external events, of course).

Interrupts were ruled out because they have several problems. First, they con-
found several distinct computational elements, e.g., concurrency, mutex, and com-
munication. It is better to factor these elements into their individual components,
allowing the programmer to use only those which are needed by a given applica-
tion.

Second, the interrupt model doesn't parallelise—it is fundamentally a unipro-
cessor mechanism. Because the main process is suspended while an interrupt han-
dler runs, there is a mutex “built in” to the handler. This means that if the program
is executed on a parallel processor, the system can't run the handler in parallel with
the main program—to do so might violate some assumption of mutex made by the
programmer.

Third, interrupt handlers are not modular. If one module of code installs a
handler for an interrupt, it will clobber the handler installed by any other module.
Global resources are always a potential source of conflict.

Finally, there is the argument of economy of mechanism: as we'll see, the
thread model functionally dominates the interrupt model, so it is superfluous to
provide both mechanisms.

In our synchronous-thread model, if a program wishes to attend to some set
of external events, it must synchronously block and wait for an occurrence of the



events. If it wishes to compute concurrently while attending to the external events,
it must spawn a sub-thread to wait for the event while it performs its main compu-
tation.

5 Threads and continuations

Although it is widely known that we can model threads with continuations in pro-
gramming languages that provide them as first-class values, there are some misun-
derstandings concerning relationship between these two types.

Myth: thread = continuation

It is common for members of the Scheme community, for example, to declare that
“threads are just continuations.” This belief derives from the fact that, given a
means of accessing implicit continuations (such as Scheme's call/cc procedure),
a simple co-routining thread scheduler can be written in about seven lines of code.

Better: thread = trajectory in continuation space

However, threads are not continuations. It would be better to state that “A thread
is a trajectory in continuation space.”

The standard definition of a continuation is “the rest of the computation,” i.e.,
what remains to be computed after performing some action. As a thread evolves
over time, this must change, of course. If a thread has some schedule of actions
it must perform, a1, as, ..., a,, then after performing actions a; through ay, its
remaining schedule is simply as, . .., a,. Its continuation has changed because it
has carried out part of its original continuation.

At each point in time, as the thread performs an atomic action, the thread
evolves from one continuation to another. Hence we may view a thread as a tra-
jectory in continuation space, or equivalently, we may view a continuation as a
snapshot of a thread at some particular instant.

This observation calls attention to a fundamental distinction between threads
and continuations, that of mutability. A continuation, being a description of a
thread at some instant, is a functional, immutable value like an integer or a char-
acter. In contrast, a thread is an object which has an identity as it evolves over
time—an imperative, mutable value. The thread structure performs the function of
providing a name for the computation as it sequences through continuation space —
a name we can use to reference the computation as we schedule it or otherwise
operate upon it over time.



Better: thread = virtual processor

We can also view threads as virtual processors. A thread is an agent of computation
that iteratively takes its continuation, and depending upon the value of this contin-
uation, performs some atomic unit of computation, resulting in a new continuation.
This is precisely the model of a state machine, where the thread is the machine.

Myth: continuation = stack

A second misconception of continuations is that “a continuation is just a stack.”
This belief derives from the fact that continuations created by operators such as
Scheme's call/cc are typically created by copying the run-time stack to heap
storage.

Continuations created by call/cc are special because they are created syn-
chronously: the program explicitly requests the continuation to be constructed at
some statically known point in its processing. Because the compiler knows where
each call/cc occurs, it can emit code to save the live registers and the program
counter on the stack, ensure that other processor state such as condition codes is
unused, and otherwise “narrow” the processor state down until it can be described
by a single value: the stack pointer.

If we step outside the limits of synchronous continuations constructed at points
clearly marked to the compiler, we see that a continuation must include the en-
tire processor state. A continuation for a computation that has been preempted or
otherwise asynchronously interrupted must include the state of all of the processor
registers that might have bearing on the evolution of that computation.

Better: continuation = abstraction of processor state

This leads us to regard a continuation as an abstraction of processor state. The ab-
straction is exact, in that the state captured by the continuations we find in Scheme
or ML includes the processor state and no more. Continuations explicitly do not
capture the store or the state of the I/O systems. They capture only the state that
describes the processor.

This abstraction seems a particularly elegant one. A typical thread package
for Unix or Win32 will describe a thread context with some complex C struct
[C-threads]. Using continuations instead means that we can expose descriptions
of processor state to direct manipulation and optimisation at the language level by
standard A-calculus compiler technology.



6 Real/virtual equivalences

These observations lead us to a fairly strong relation between real, physical pro-
cessors and synchronous threads:

Concrete Abstract
Processor Thread
Register set  Continuation
Interrupt Event

For example, throwing to a continuation becomes the thread equivalent of a pro-
cessor “load context” instruction.

Note, however, one major distinction between our threads and real processors:
threads are simple, synchronous machines. They do not have interrupt handlers,
and do not perceive preemption. Real hardware is interruptible. In this respect, our
virtual structures simplify reality.

7 Thread operations

We can use our physical/virtual correspondence to guide the design of our thread
system. For example, the mechanism for attending to multiple events is the opera-
tor event-dispatch.

event-dispatch: (Ja.a event X a cont)* — Ans

Note that this operator is a multi-continuation operator, taking an arbitrary num-
ber of event/continuation pairs. For this reason, we define the operator in a CPS-
style declaration—as it does not return a value, we specify some fictitious Ans
type as its range to represent the eventual completion of the program. In order to
use this operator, we need to drop down to an explicit CPS language to pass the
multiple continuations it requires (although most uses of this operator would hide
it behind some form of branching construct implemented as a macro in terms of
event-dispatch).

When called, the event-dispatch operator blocks the thread and waits for
one of the indicated events to occur. When one does, the operator returns through
the event's corresponding continuation.

One way to view this operator is that, while a thread can normally be de-
scribed at some point in time by a single continuation, when the thread blocks in
an event-dispatch application, it enters a “mixed state,” with multiple possible
continuations eligible, each guarded by some associated event. When an external
event is observed, the thread's mixed state “snaps” or resolves itself into a single
continuation, and the thread can then evolve forward.



This event model is similar to the one employed by CML [CML], but it ex-
poses what in CML is the underlying “canonical event” structure. This means that
when the programmer wishes to discriminate between two different events, instead
of encoding the difference by tagging the events with wrap operators, and then dis-
criminating on the tags, he can directly encode the discrimination by associating
two different continuations with the two different events. In other words, we can
encode the discrimination “in the pc.” Eliminating the encode/decode pair of oper-
ations is, of course, more efficient {Note Value/Cont Duality }. Also, continuations
are fair game for optimisation by a A-calculus, CPS-based compiler, so uses of the
event-dispatch operator are fully exposed to the language-level optimisation
machinery.

It is interesting to consider the hardware analog of the event-dispatch op-
erator: it is simply the halt instruction. A processor's halt instruction halts the
processor. No matter how often we toggle the processor's clock, it will remain
stably in the halt state until an external agent “pokes” the processor by toggling
one of its interrupt lines. When this happens, the processor leaves its halt state,
and vectors through its interrupt table, resuming its processing at an address that is
determined by which of the interrupt lines was toggled.

The event-dispatch operator halts its thread, which remains halted until it
is activated by the occurrence of an external event. When this happens, the thread
leaves its halt state, and resumes its processing at a continuation that is determined
by which of the events caused it to re-awaken.

8 Pre-emption and virtualisation

Our synchronous, interrupt-free thread model seems a pleasantly simple one. How-
ever, we would also prefer our model be powerful enough to express thread pre-
emption. Without pre-emption, it's trivial to write a coroutining thread scheduler
using call/cc, but we need something more powerful to implement a fair, non-
cooperative thread scheduler.

It turns out that by introducing two more operators {Note Thread Inspection},
we can fully virtualise the model, allowing user code to create new virtual proces-
sors, and allocate its cycles to sub-threads in a pre-emptive manner. Surprisingly,
we will not need to introduce interrupts to achieve this.

The first of our two operators, fork-thread, creates new threads:

fork-thread : cont — thread

allocates a virtual processor, and initialises it with some continuation.



The fork-thread operator allocates and initialises a virtual processor, but it
does not provide a means for “powering” the processor. So the resulting processor
does not run forward after being created. For that to happen, it must be given some
cycles—it must be connected to a real, physical processor. We can use the second
of our two operators, advance-thread, to run this virtual thread forwards:

advance-thread : thread x (Ja.a event X a cont)* — Ans

Note that advance-thread, like event-dispatch, is a multi-continuation oper-
ator, meaning that it can return multiple ways.

When a thread ¢ applies the advance-thread operator to some sub-thread £,
thread ¢ gives all of its processing cycles to f. Whenever thread ¢ gets cycles,
those cycles will actually be passed to £. This state will persist until one of the
events in the preemption set occurs—that is, one of the events in the (Ja.cx event x
a cont)* set of event/continuation pairs passed to advance-thread. When such
an event happens, ¢ ceases to donate its cycles to ¢ and resumes computation with
the event's corresponding continuation.

If we make sure that “n cpu-seconds from now” and “the next time thread ¢
blocks” are events in our basic event vocabulary, it is straightforward for a thread
to use advance-thread to parcel out its cycles to a set of children. It simply loops
over the child threads, using advance-thread to give a quanta of cycles to each
child.

The advance-thread operator allows us to implement the illusion of an infi-
nite number of virtual-processors on top of a finite number of processors, or even a
uniprocessor. A program written using this infinite-processor synchronous thread
model will run unchanged on systems with varying numbers of actual processors.

Further, it allows us to completely virtualise our thread model. When a pro-
gram uses advance-thread to pass its thread's cycles to some sub-thread, it is
completely unable to detect if its thread is some virtual thread, or an actual hard-
ware processor. A scheduler written to schedule a thread's cycles at user level
is exactly the kind of program the OS could use to allocate the use of the actual
hardware processors. The model recurses down as far as we like {Note Turtles}.

Because it encodes pure mechanism, and no policy, the advance-thread op-
erator allows users to write a wide range of schedulers for their programs. Note that
multiple instantiations of these schedulers can run on multiple threads given to a
program by the operating system. These schedulers can use shared data-structures
to cooperatively share and schedule a common pool of child threads.



9 Related work

There is a wealth of related, prior research in the area of continuations and con-
currency. The standard work on concurrency models using serial processes with
synchronous communications is Hoare's [CSP].

Wand's early paper [Wand] showed means of modeling OS concurrency in
Scheme. However, Wand's model was intended more as an explicative aid than a
practical tool for use in an actual operating system.

Dybvig has reported on “nested engines,” a similar concept for providing pre-
emptable schedulers in Scheme [Engines]. A recent release of Scheme 48 [S48]
uses a variant of these engines for its thread package.

Reppy's doctoral work on Concurrent ML [CML] provided a concurrency mech-
anism based on synchronous sequential processes, although Reppy did not consider
problems of virtualisation. Reppy has also reported on the nature of continuations
in a system with asynchronous interrupts [AsyncCont].

Philbin's doctoral work [Philbin, STNG] on the STNG operating system con-
cerned the design of an operating system based on Scheme. The STNG system
provided explicit models of virtual processors and threads in Scheme.

10 Conclusion

The concurrency model we've just examined is neither completely developed, nor
is it implemented and tested by experience. Much work remains. Nonetheless, it is
a promising model, and leaves us with several observations:

e Explicit CPS is useful for expressing thread-level concurrency in a practical
systems-programming environment.

e Representing thread state with continuations can allow compilers to analyse
and optimise this state using standard CPS A-calculus technology.

e Our model is simple (i.e., fully synchronous and interrupt-free), yet general
(it still allows for pre-emptive scheduling on finite resources). By carefully
choosing our operators, we can not only provide for general scheduling, we
can make our processor model fully virtualisable. This is novel and promis-
ing.

e Our thread model has close hardware analogs that guide our design of the
virtual threads.



My research group at MIT intends to complete the details of this model and im-
plement it as the basic concurrency model for the operating system being designed
by the Express project. We hope to report on our results in future publications.
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Notes

{CPS/Direct Distinctions }

In these examples, I am deliberately glossing over distinctions between direct-style
calls A-expressions (in which the continuation is implicit), and CPS calls and A-
expressions (in which the the continuations are explicit). A proper CPS sublan-
guage would distinguish these. For example, if we wrote CPS procedures using u,
and CPS calls using brackets, we would more carefully define our examples as

call/cc = (u (f k) [£f (p (v k’) [k v]) k])
compose-cont = (A (k £) (u (v) [f v k1))

These details, along with issues of continuation typing and the tupling implicit in
the s-expression syntax I have employed, are beyond the scope of this note.

{Thread Inspection}

It isn't clear whether we wish to provide thread-inspection and thread-mutation
operators. In general, one operates upon a thread by causing events that it can
observe, and by scheduling a virtual thread to run pre-emptively with one's own
thread. However we could provide other, more invasive operators on our virtual
processors.

For example, the administrative operator

swap-thread-cont! : thread X cont — cont

allows us to asynchronously set a thread's continuation to a specific value. Invoking
(swap-thread-cont! t k) installs k as ¢'s continuation, returning ¢'s continua-
tion at the time of the installation. We can use this operator to kill a thread:

(define (kill-thread t)
(swap-thread-cont! t (A () (event-dispatch {})))
#t)

or to swap our computation with some other thread's:

(define (brain-swap t)
(call/cc (A (k) ((swap-thread-cont! t k)))))
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{Tops-20}

There are no new ideas. The Tops-20 operating system employed multiple con-
tinuations over twenty years ago [Jsys]. Tops-20 system calls were invoked with
the jsys instruction, which pushed the current program-counter onto the stack and
trapped into the kernel. If the system call completed successfully, the operating
system returned to the user program at word pc+2, that is, skipping the word fol-
lowing the jsys call. If the system call caused an error, the OS returned to the user
program at pc+1. Typical useage was to place a branch to error-handling code im-
mediately after the jsys instruction. The rest of the program handling the normal
case would simply follow after this branch.

In short, the programmer passed two continuations to the system call: a success
and fail continuation, albeit in assembler rather than a high-level language.

{Turtles}

An eminent astrophysicist is delivering a public lecture on cosmology. After his
lecture has concluded, a slightly eccentric, elderly lady approaches the professor,
and says, “Oh, Professor, I enjoyed your lecture very much. But I'm afraid you are
entirely mistaken about the structure of the universe and the shape of our world.
You see, the earth is actually a large, flat disk sitting on the back of four gigantic
elephants.”

The professor indulgently smiles, and inquires, “But on what do the elephants
stand?”

The little old lady earnestly replies, “Why, they stand on the back of an enor-
mous turtle.”

The professor smiles in quiet triumph as he administers his coup de grace:
“And on what does the turtle stand?”

The little old lady is completely unfazed. Her eyes twinkle, she smiles, and
replies, “You can't fool me, young man. Why, after that, it's turtles all the way
down.”

The application to formal semantics and systems architecture should be clear.

{Value/Cont Duality }

We are simply exploiting the equivalence between a continuation that accepts an
A + B sum type, and a product of an A continuation and a B continuation. These
relations are detailed further in Filinski's master's thesis [Filinski].

Because our multi-continuation CPS form permits us to choose the latter repre-
sentation, we can encode the discrimination directly in the pc for greater efficiency.
In making this design decision, I am indebted to Jonathan Rees for the guidance
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of his “don't encode” functional programming mantra, which may be expressed
as “Don't pass flags encoding actions to procedures which must then discriminate
them; instead, pass the actual action to be performed.”
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Errata

I have seized the opportunity to make one emendation to the original cited on the
title page: the three occurrences of existential types (37.%) in sections seven and
eight are incorrectly given as universal types (V7.%) in the original paper.
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