Visualization of Shared System Call Sequence Relationships in Large Malware Corpora Authors: Josh Saxe David Mentis Chris Greamo Presenter:

Zicheng Liu

Background

- Deluge of new malware Variants
- Few effective methods to address this problem
- Need for interpretable visualization

System Introduction

Semantic Extraction and Similarity Calculation Component

Categorization Component Visualization tool

Overview

loding in Unknown isual basic 299 Trojan.Win32.VBKrypt.dukn Trojan.Win32.VBKrypt.dsro Trojan.Win32.VBKrypt.dgwr icuale plus plus Trojan.Win32.VBKrypt.ditc Trojan.Win32.VBKrypt.dift Trojan.Win32.VBKrypt.djuq Trojan Win32 VEKrypt didt Trojan Win32 VEKrypt didi sion Min 19 MRM cant dot! Files Dropped /microsoft/windows_media/9.0/wmsdkns.xml /system32/drivers/etc/hosts* twork Connections Made 192.168.151.254:80 82.152.54.41:80 127.0.0.1.1050 09.111.163.121:00 92.168.151.254:443 92 168 151 254 21 88.198.240.123:80 **Registry Keys Modified** filea/content.iet 12 a8-032511d3-b6b1-00c045c324a1}/languageprof 3 aw e/micro-soft/cryptography/mg]) . hkcn/interface/(53bad8c1-e718-11cf-893d-00a0c905422 0

Inspector Panel

Filter Panel

Projection of Similarity Matrix

Pipeline

• Similarity Matrix Computation

- Visualization
- Overall Analysis

Semantic Sequence Extraction

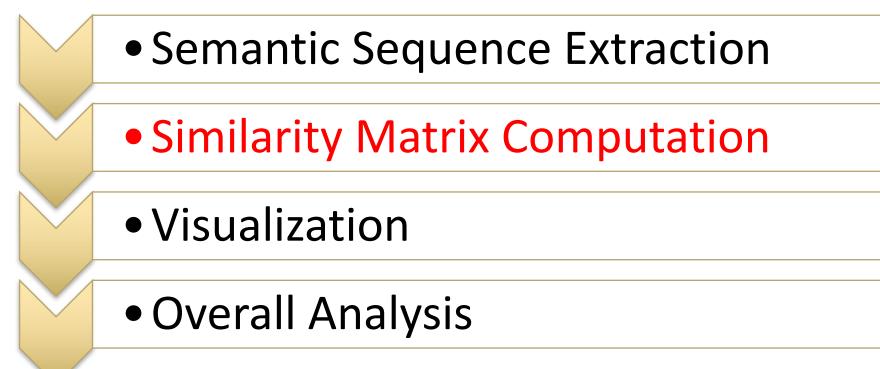
- Two Intuitions
 - Improbable state transitions
 - Divergent objects locate the meaningful partitions

Example output

Example Semantic Subsequence Extraction from Sample of Variant Type "menti-gtmr"
ReadFile C:/WINDOWS/WinSxS/x86_Microsoft.Windows.GdiPlus_6595b64144ccf1df_1.0.2600.5512_x-ww_dfb54e0c/GdiPlus.dll
RegQueryKey HKLM/SOFTWARE/Microsoft/Windows-NT/CurrentVersion/Fonts
RegCreateKey HKU/S-1-5-21-436374069-813497703-1177238915-1004/Software/Microsoft/GDIPlus
RegQueryValue HKU/S-1-5-21-436374069-813497703-1177238915-1004/Software/Microsoft/GDIPlus/FontCachePath
QueryOpen C:/RUNME/ShFolder.DLL
QueryOpen C:/WINDOWS/system32/shfolder.dll
CreateFile C:/WINDOWS/system32/shfolder.dll
CreateFileMap C:/WINDOWS/system32/shfolder.dll
CreateFileMap C:/WINDOWS/system32/shfolder.dll
Load Image C:/WINDOWS/system32/shfolder.dll

Semantic Sequence Extraction(cont'd)

- Three Steps
 - Derive a Markov Chain
 - Compute parameter similarity
 - Insert partitions and extract subsequences



Derive a Markov Chain

- Sort Malware behavior log
- Define nodes
- Calculate Transition probabilities

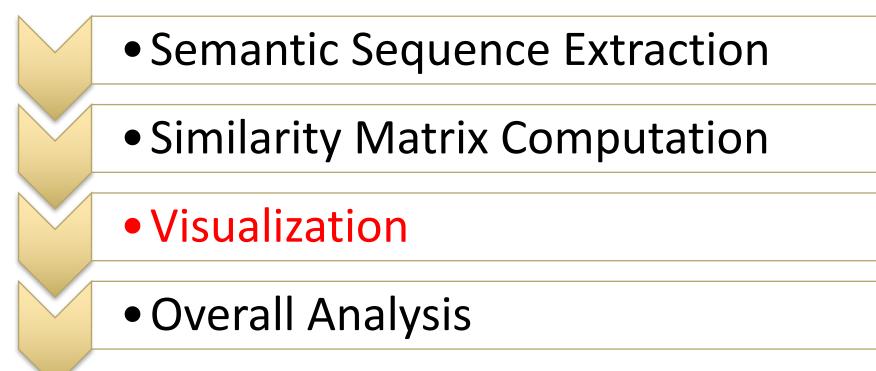
Pipeline

Compute Parameter Similarity

- A score
- Compare the parameter strings of two adjacent System calls
- More different, more lower

Insert Partitions and Extract Subsequences

- Average the system call transition's parameter similarity score and its transition probability
- Check if this value is below a threshold 0.3
 - If is below, interpret as a partition



Similarity Matrix Computation

- Boolean Sample Vectors based on the occurrence of variable-length sequences
- Compute a Jaccard Index pairwise based on the vectors

Pipeline

Visualization

- Sequence Visualization
- Similarity Map
- Filter Panels



Three Views Are Linked

Mouse Over on a System Call Sequence

A Sequence detail text box

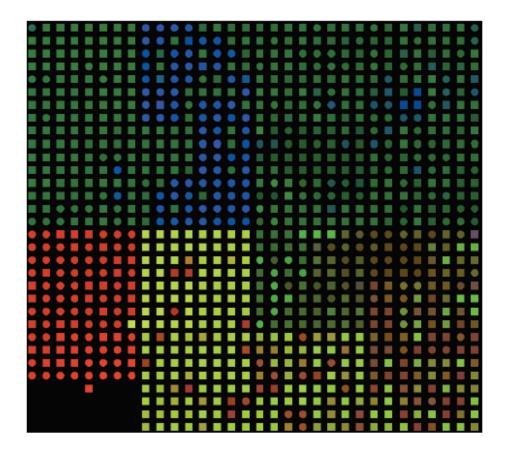
Samples that executed the sequence highlight

Sequence Visualization

Rainbow colored but equal length bands depict variation in sample behavior.

A cluster of malware samples

jorik.fraud samples appear differently


Sequence Visualization(Cont'd)

 It reveals similarities and differences between malware samples

• Assign each unique sequence a unique color

Sample Similarity Map

Colored shapes represent clusters

- Circles -- known
- Squares -- unknown

Sample Similarity Map(Cont'd)

- Principal Component Analysis
- Sort by the first principal component
- Color nodes
 - Green, Red or Blue with respective computed positions

Filter Panels

• Behavioral Traits are shown on the left

 Support users to insight into the similarities and differences between regions

Filter Panels(Cont'd)

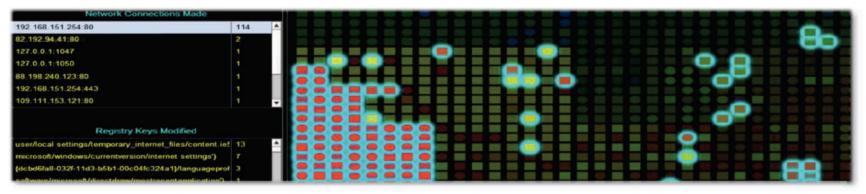


Figure 12. The user brushes an IP address and port on the left, and the samples that connect out to that IP address and port highlight on the right.

Accomplishment

- Helpful in relating novel samples to known malware samples
- Provide user with visual insight into a focal system call sequence
- Visually discover and investigate cluster structure in malware

Thank You