Malware analysis using visualized images and entropy graphs

Kyoung Soo Han · Jae Hyun Lim · Boojoong Kang · Eul Gyu Im

Presented by Ruikai Zheng

CISC850 Cyber Analytics

1.Introduction

- Malware variants developed using automated tools
- Automated tools reuse modules
- Similarities may exist among malware variants

2.General Idea

3. Bitmap Image

Bitmap Image converter

Some examples

4. Entropy graph

Entropy graph generator

For each line of bitmap image: (suppose the image is 256 * 256)

$$Entropy = -\sum_{i=0}^{255} p_i \times \log_2 p_i$$

5. Compute similarities

 Align the x-axes(the heights of bitmap images) of the two entropy graphs

Compute similarities

• Compute K₁ and K₂ -K₁

$$k_1[H, L] = \exp\left(-\frac{s[H, L]}{\bar{s}}\right)$$

where

$$s[H, L] = \int_{x} |H(x) - L(x)| dx$$

$$\bar{s} = Average(H) \times Length \text{ of } y \text{ axis}$$

Compute similarities

• Compute K₁ and K₂ -K₂

$$k_2[H, L] = \sum_i u_i[H]c_i[H, L]$$

where

$$u_i = \frac{\left| H^{(2)}(x_i) \right| \times l_i}{\sum_{i=1}^{n(H)} \left| H^{(2)}(x_i) \right| \times l_i}$$

$$c_{i,j} = c_{i,j}^{x} \times c_{i,j}^{y}$$

$$c_{i,j}^{x} = -\exp\left(\frac{\Delta x_{i,j}}{\delta x}\right)^{2}$$

$$\Delta x_{i,j} = x_{i} - \tilde{x}_{j}$$

$$c_{i,j}^{y} = -\exp\left(\frac{\Delta y_{i,j}}{\delta y}\right)^{2}$$

$$\Delta y_{i,j} = H(x_{i}) - L(\tilde{x}_{j})$$

Compute similarities

• Similarity value

$$S = t_1 \times k_1 + t_2 \times k_2$$

Experiment result

Backdoor.Win32.Nethief				Virus.Win32.HLLP.Zepp			
	21	22	25		а	с	i
21	1	0.889	0.951	a	1	0.889	0.880
22	0.986	1	0.949	с	0.889	1	0.982
25	0.951	0.949	1	i	0.880	0.982	1

Experiment result

Threshold

 False positive rate
 False negative rate

Limitation

- Malware applied with packing technique
 - The entropy values of binaries can be very high
 - Packed malware binaries are difficult to classify

Conclusion

- The paper proposed a malware visualization method that using binary grayscale bitmap images and entropy graphs.
- The paper proposed a method to calculate similarities of malware to classify malware families.
- Experimental results showed that proposed method can classify malware families with a small false-positive/false negative rate.

Thank you