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Abstract

* A general methodology to understanding a
neural model by using erasure

* To provide a way to conduct an error analysis
on a neural model
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Introduction

* Cons of Neural Networks
- Poor interpretability of its components
- Hard to pinpoint when it makes mistakes
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Introduction

e Erasing components:
- Can improve performance
- Show importance of components
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Introduction

* Erasing of features are done on these levels:
- Input-word vector dimensions

- Intermediate hidden units

- Input words
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Introduction
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Linking Word Vector Dimensions to
Linguistic Features

* Using the model to understand neural models
at word vector dimensions:
- Visualization Model
- Tasks and Training
- Results
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Linking Word Vector Dimensions to
Linguistic Features

* Linguistic Features which can be used:
- Parts of Speech
- Named Entity class
- word frequency
- word-shape



Linking Word Vector Dimensions to
Linguistic Features
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Linking Word Vector Dimensions to
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(b) Word2vec, with dropout.
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Linking Word Vector Dimensions to
Linguistic Features
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(c) GloVe, no dropout.
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Linking Word Vector Dimensions to
Linguistic Features
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(d) GloVe, no dropout; 31rd dimension (e) GloVe, no dropout; 31rd, 26th di-
removed. mensions removed.
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Linking Word Vector Dimensions to
Linguistic Features
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(f) GloVe, with dropout.
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Linking Word Vector Dimensions to
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Finding Important Words in Sentiment
Analysis

* Using the model to understand neural models

at word level:
- Computing log likelihood of correct

sentiment when a particular word is erased
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Finding Important Words in Sentiment

Analysis
word Bi-LSTMs Uni-LSTMs RNN
greatest 9.463 5.593 0.742
wonderful 9.521 3.292 0.704
worst 7.739 4.698 0.967
excellent 6.835 4.883 1.859
best 4916 2.448 0.548
hated 6.557 3.512 4.338
love 1.678 1.786 0.999
unforgettable 2.286 1.648 1.482
waste 4.579 3.600 2.342

disaster 3.728 3.362 0.021
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Finding Important Words in Sentiment

Analysis

S » N W & U OO N O

0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1 1.0-20 2.0-10 10-100

ERNN = Uni-LSTM = Bi-LSTM
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Finding Important Words in Sentiment
Analysis
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Finding Important Words in Sentiment
Analysis
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Finding Important Words in Sentiment
Analysis
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Reinforcement Learning for Finding
Decision-Changing Phrases

* Using the model to understand neural models

at sentence level:
- Task, Dataset and Training

- Results



Reinforcement Learning for Finding
Decision-Changing Phrases

(1) clean updated room. friendly efficient staft .

(2) the location is fantastic. the staff are helpful and service oriented . sleeping rooms meeting rooms and public lavatories not cleaned on a
daily basis . the hotel seems a bit old and a bit tired overall . trolley noise outside can go into the wee hours . if you get a for a few
nights this hotel may be a . breakfast 1s very nice remember if you just stick to the cold buffet

(3) location is nice . but goes from bad to worse once you walk through the door . staff very surly and unhelpful . room and hallway had a
very strange smell . rooms very run down . so bad that 1 checked out immediately and went to another hotel . intercontinental chain should be

ashamed .

(4) 1 took my daughter and her step sister to see a show at webster hall . . 1 felt safe . the rooms were tiny . lots
of street noise all night from the partiers at the ale house below .




Reinforcement Learning for Finding
Decision-Changing Phrases

(1) clean updated room. friendly efficient staff . plus they charged 10 day for internet access in the room .

the location is fantastic. the staff are helpful and service oriented . (2) sleeping rooms meeting rooms and public lavatories not cleaned on a
daily basis . the hotel seems a bit old and a bit tired overall . trolley noise outside can go into the wee hours . if you get a for a few
nights this hotel may be a . breakfast is very nice remember if you just stick to the cold buffet

(3) location is nice . but goes from bad to worse once you walk through the door . staff very surly and unhelpful . room and hallway had a
very strange smell . rooms very run down . so bad that i checked out immediately and went to another hotel . intercontinental chain should be

ashamed .

(4) 1 took my daughter and her step sister to see a show at webster hall . . 1 felt safe . the rooms were tiny . lots
of street noise all night from the partiers at the ale house below .
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Conclusion

* This methodology shows the benefits and
harms in erasing representation, helps in the
error analysis of neural networks.

* This has the potential to benefit a wide variety
of models and tasks.
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Thank You



