Use of K-Nearest Neighbor classifier for intrusion detection Yihua Liao, V. Rao Vemuri Mingxing Gong

CISC850
Cyber Analytics

- Introduction
- Methodology
- Experiments
- Discussion & Conclusion

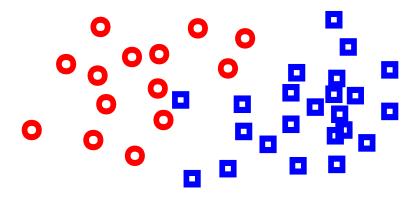
- Introduction
- Methodology
- Experiments
- Discussion & Conclusion

Introduction

- High false alarm probability or low attack detection accuracy
- Two general approaches:
 - Misuse detection
 - Anomaly detection

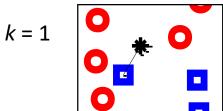
Local ordering vs. frequency of system calls

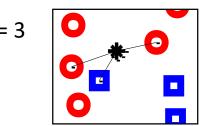
Nearest Neighbour Rule



Consider a two class problem where each sample consists of two measurements (x,y).

Compute the *k* nearest neighbours and assign the class by majority vote.





Introduction

Methodology

Experiments

Discussion & Conclusion

Methodology

Apply text categorization methods to intrusion detection

Table 1: Analogy between text categorization and intrusion detection when applying the kNN classifier.						
Terms	Text categorization	Intrusion Detection				
N	total number of documents	total number of processes				
M	total number of distinct words	total number of distinct system calls				
n_i	number of times ith word occurs	number of times <i>i</i> th system call was issued				
f_{ij}	frequency of <i>i</i> th word in document <i>j</i>	frequency of <i>i</i> th system call in process <i>j</i>				
D_{j}	jth training document	jth training process				
X	test document	test process				

Methodology

Each document is represented by a vector of words

$$a_{ij} = f_{ij}$$

 Weighting approach tf·idf (term frequency – inverse document frequency)

$$a_{ij} = \frac{f_{ij}}{\sqrt{\sum_{l=1}^{M} f_{lj}^2}} \times log\left(\frac{N}{n_i}\right)$$

The cosine similarity is defined as follows:

$$sim(X, D_j) = \frac{\sum_{t_i \in (X \cap D_j)} x_i \times d_{ij}}{\|X\|_2 \times \|D_j\|_2}$$

- Introduction
- Methodology
- Experiments
- Discussion & Conclusion

Experiments

- DARPA data
- Cross validation and 50 distinct system calls

Table 2: List of 50 distinct system calls that appear in the training data set.								
access	audit	auditon	chdir	chmod	chown	close	creat	
execve	exit	fchdir	fchown	fcntl	fork	fork1	getaudit	
getmsg	ioctl	kill	link	login	logout	lstat	memcntl	
mkdir	mmap	munmap	nice	open	pathdonf	pipe	putmsg	
readlink	rename	rmdir	setaudit	setegid	seteuid	setgid	setgroups	
setpgrp	setrlimit	setuid	stat	statvfs	su	sysinfo	unlink	
utime	vfork							

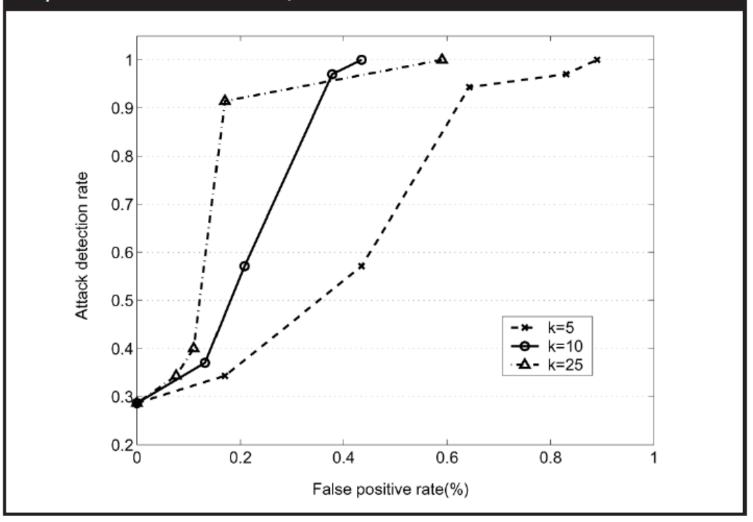
KNN classifier algorithm for anomaly detection

Figure 1: Pseudo code for the kNN classifier algorithm for

```
anomaly detection.
build the training normal data set D;
for each process X in the test data do
  if X has an unknown system call then
     X is abnormal;
  else then
     for each process D_i in training data do
       calculate sim(X, D_i);
       if sim(X, D_j) equals 1.0 then
          X is normal; exit;
     find k biggest scores of sim(X, D);
     calculate sim_{-}avg for k-nearest neighbors;
     if sim\_avg is greater than threshold then
       X is normal;
     else then
       X is abnormal;
```


KNN classifier performance

Figure 2: Performance of the kNN classifier method expressed in ROC curves for the tf-idf weighting method. False positive rate vs attack detection rate for k=5, 10 and 25.

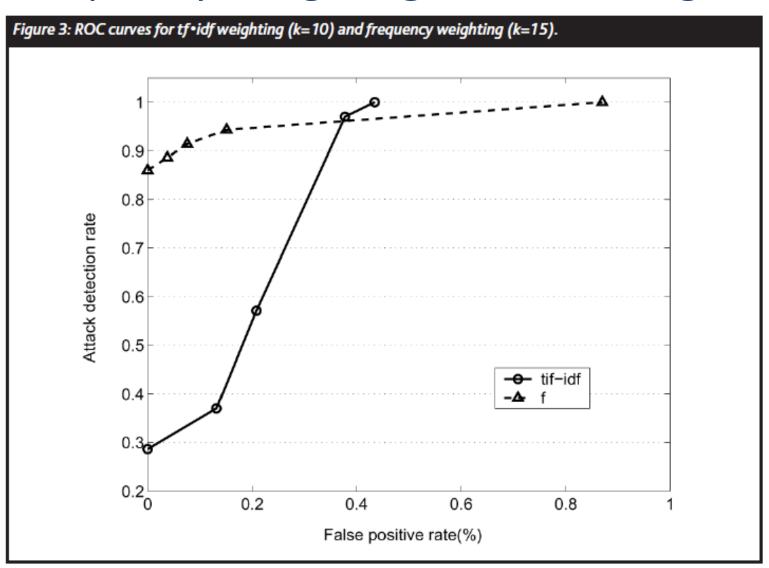


Anomaly Detection

• The overall running time of the kNN method is *O(N)*

Integrate with signature verification

Frequency Weighting vs. tf·idf Weighting



Frequency Weighting vs. tf·idf Weighting

Table 3: Attack detection rate for DARPA testing data when anomaly detection is combined with signature verification.

Attack	Instances	Detected	Detection rate
Known attacks	16	16	100%
Novel attacks	8	6	75%
Total	24	22	91.7%

- Introduction
- Methodology
- Experiments
- Discussion & Conclusion

Discussion

- kNN Classifier advantages
- Compared tf-idf weighting with the frequency weighting
- Classification cost can be further reduced by only using most influential system calls

Conclusion

 kNN Classifier is able to effectively detect intrusive program behavior with low false positive rate

 Further research is in process to investigate the reliability and scaling properties of the kNN classifier method

Reference

- [1] www.robots.ox.ac.uk/~dclaus/cameraloc/samples/nearestneighbour.ppt
- [2] Yihua Liao, V. Rao Vemuri, 'Use of K-Nearest Neighbor classifier for intrusion detection', *Computers & Security, Volume 21, Issue 5*, 1 October 2002, Pages 439-448