Approaches to Adversarial Drift

Alex Kantchelian, Sadia Afroz, Ling Huang, Aylin Caliskan Islam, Brad Miller, Michael Carl Tschantz, Rachel Greenstadt, Anthony D. Joseph & J. D. Tygar

Elham Baqazi

CISC850 Cyber Analytics

Outline

- Challenges of applying ML systems for security applications
- Exploratory & Causative attack
- Families Isolation & Responsiveness
- Data Exploration

Adversarial Drift

- Designing changes to evade the classifier immediately or to make future evasion easier
- Handling the adversarial drift

CISC850 Cyber Analytics

Machine learning in Security Application

- One-Shot Approach
 - Training data
 - Building the model
 - Testing data

CISC850 Cyber Analytics

Problem Statement

- Security Apps data: Big & non-stationary data, drift over the time
- The typical ML approach fail

CISC850 Cyber Analytics

Proposed Solution

Designing adaptive, adversarial-resistant ML systems

- Ensemble of classifiers
- Responsive classifier

Formalism

Retraining the system to learn from new instances

- Producing a series of models Ht
- Ht (xi) = c(xi) [correctly classifies]

Population Drift

- Xt (x) is the probability of encountering instance "x" at time t
- Adversaries post new malware X_{t+1}
- Population Drift \rightarrow Xt != Xt'

Types of Attacks

Exploratory attacks

Causative attacks

Exploratory Attacks

https://mascherari.press/introduction-to-adversarial-machine-learning/

Causative Attacks

Families and Isolation

Families and Isolation

- Training classifiers
 - One-vs-all method
 - One-vs-good method
 - Isolation
- Combining classification

Responsiveness

- Why it being overlooked?
 - Zero training error, poor generalization
 - Unreliable training data.

- Wrapped ML algorithm
 - Blacklist & Whitelist

Evaluation

- Executable malware dataset with chronological appearance for each instance.
- Demonstrating the importance of temporal drift in a very adversarial environment.
- Improving the robustness of ML algorithms.

Data Exploration - Dataset

• Sampled from two stratums :

• TimeStamp, Label, Feature vector

	Old: Apr '07-Mar '13	New: Apr '13- Jul '13
Benign	85549	8803
Malware	40861	82984
Total	126410	91787

Top 10 Families

Family	# of instances	Duration
worm:win32/vobfus	14203	10/2008 - 06/2013
trojandownloader:win32/beebone	11125	03/2012 - 06/2013
pws:win32/zbot	5691	01/2008 - 06/2013
adware:win32/hotbar	3913	09/2010 - 07/2013
virus:win32/ramnit	2387	11/2010 - 06/2013
trojan:win32/ramnit	2078	12/2010 - 06/2013
rogue:win32/winwebsec	2022	05/2009 - 06/2013
trojan:win32/killav	1917	11/2007 - 06/2013
trojan:win32/vundo	1601	11/2007 - 06/2013
worm:win32/allaple	1567	05/2007 - 06/2013

Experiments – Approach

An empirical loss minimization approach

$$\mathbf{w} \mapsto \frac{1}{2}\mathbf{w}^T \mathbf{w} + C \sum_{(\mathbf{x}, y) \in \mathcal{D}} \max(0, 1 - y\mathbf{x}^T \mathbf{w})^2$$

Data Exploration – Experiments 1

- Splitting the dataset into two epochs [mid-April], 60,000 malware in each period
- Train two-class SVM models
 - Regularization factor: $10^{-5} < C < 1$
 - False Positive Rate (FPR) < 1%
- Calculating the Performance by two ways

Result 1 _ conclusion

- The evaluation of ML based on security system should
 - Temporal nature of the instances
 - Avoid Random-cross-validation

Data Exploration – Experiments 2

- Fixed the testing set [most recent instances]
- Train SVM models
- Constant $C = 10^{-4}$
- Constant FPR < 1%
- Ignore the temporal order

Conclusion

- Drift must be organized to limit the impact of campaigns
- Zero training error of high-impact instance means correctly classification
- Drift and temporal order must be respected in term of detector accuracy

Thank you Questions?